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UDC 539.3 This paper considers a solution to an axially symmetric dynamic problem of determining
the stress-state in the vicinity of a circular crack in a finite cylinder. The cylinder lower base
STRESSED STATE | is rigidly fixed, and the upper one is loaded with time-dependent tangential stresses. In con-
IN A FINITE trast to the traditional analytical methods based on the use of the integral Laplace trans-
form, the proposed one consists in the difference approximation of only the time derivative.
CYLINDER To do this, specially selected unequally spaced nodes and a special representation of the
WITH A CIRCULAR solution in these nodes are used. Such an approach allows the initial problem to be reduced
to a sequence of boundary problems for the homogeneous Helmholtz equation. Each such
CRACK AT NON- problem is solved by applying the finite Fourier and Hankel integral transforms with their
STATIONARY subsequent inversion. As a result, an integral representation was obtained for the angular
TORSION displacement through an unknown displacement jump in the crack plane. With regard to the
derivative of this jump from the boundary condition on the crack, an integral equation was
obtained which, as a result of the integral Weber-Sonin operator application and a series of
Oleksandr V. Demydoy transformations, was reduced to the Fredholm integral equation of the second kind regard-
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ing the unknown function associated with the jump. An approximate solution of this equa-
tion was carried out by the method of collocations, with the integrals being approximated
by quadratic Gaussian-Legendre formulas. The numerical solution found made it possible
to obtain an approximate formula for calculating the stress intensity factor (SIF). Using this
SJormula, we studied the effect of the nature of the load and the geometric parameters of the
cylinder on the time dependence of this factor. The analysis of the results showed that for all
the types of loading considered, the maximum value of SIF can be observed during the tran-

sient process. When a sudden, constant load is applied, this maximum is 2-2.5 times higher
than the static value. In the case of a sudden harmonic load, SIF maximum also signifi-
cantly exceeds the values it acquires with steady-state oscillations, in the absence of reso-
nance. Increasing the cylinder height and reducing the crack area result in an increase in
the duration of the transient process and a decrease in the value of SIF maximum. The same
effect can be observed when the crack plane approaches the stationary end of the cylinder.
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Introduction

A large number of machine elements and structures are cylindrical in shape. Their having such de-
fects as cracks significantly reduces their operational characteristics and can lead to destruction, especially
under the conditions of dynamic loading. Therefore, the study of stress distribution in cylindrical bodies with
cracks under dynamic loading is an important task.

The analysis of modern scientific literature shows that the stress state of finite and infinite cylindrical
bodies with cracks under static loading has been studied sufficiently enough. Examples of solving such prob-
lems are given in [1-6]. In solving dynamic tasks, basically, unbounded bodies with cracks were considered,
most often circular. A detailed analysis of the results is presented in papers [7, 8]. As far as harmonic oscilla-
tions are concerned, there are a number of works, for example [9, 10], where circular cracks are considered
in plates and infinite cylinders, and [11, 12] where circular and ring cracks are considered in a finite cylinder.

It is also proposed to use mixed numerical-experimental methods to determine the stress intensity
factors in cylindrical bodies with outer ring cracks [13, 14]. But these methods, like all the experimental
ones, are characterized by the disadvantages associated with the need to carry out experiments for each par-
ticular sample. This complicates the study of the impact of cylinder geometric dimensions on CIF values.

The complexity of theoretical studies of dynamic problems is due to the necessity of using the Laplace in-
tegral transform in time with subsequent numerical inversion. However, this task is not only mathematically com-
plicated, but incorrect. Recently, there have appeared works in which the modified method of finite difference in
time is applied. With the help of this method, this paper solves the problem of determining SIF in the vicinity of
the plane circular crack in a finite cylinder under torsional loading. So far, such a problem has been considered
only in a stationary formulation [15], for a harmonic moment [11] or for a cylinder with a cover plate [16].
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Problem Formulation Z

An isotropic finite elastic cylinder with height a and radius r, is considered
(Fig. 1). The cylinder is related to the cylindrical system of coordinates, whose center
coincides with the center of the lower base, and the Oz axis with the cylinder axis. The
lower base is considered to be stationary, and to the upper one at the initial time ¢ = 0 is

under the tangent load G -;(r, 1). At a height of z=c, 0<c<a, in parallel with the cylin-

der ends, three is a circular crack of radius b<r,, whose center is on the axis. Both the
cylinder side surface and crack surface are considered to be free of stresses. Under
these conditions, the cylinder is in a state of axisymmetric torsional deformation and

only the angular displacement v_v(r, z,t) will be different from O.

Next, in order to formulate the initial boundary-value problem, it is expedi-
ent to pass on to dimensionless quantities using the formulas Fig. 1. Cylinder with a

v_v(ro’r],aC,ro’C/Cz)= Iy 'W(TLC,T), ’Y=a/r0 1= C/a’ B:b/ro ) crack

r=rm, z=al, 0<n,{<1, t=71/c,, 1€ (0,+0), c; =G-p",
where p, G is the density and shear moduli for the cylinder material.
Then, dimensionless displacement will satisfy the equation
9w @ 19 1 129
=—7 D=7+ Tt a2
Jt m- nom n° oy
Equation (1) is considered as having zero initial conditions.

We formulate boundary conditions in relative dimensionless quantities.
On the cylinder ends, they have the form

0
WIC:O =0, 8_W =ypm,1), 0N <1, Te0,+0), (2)
Clea

DT]CW

ey

where p(n,t)= ;(r/r0 Lot [1y).
On the lateral surface of the cylinder, there must be fulfilled the equality
7, (1L, 1) =0, 0<{ <1, te[0,+o0). (3)

For the conditions on the crack we have
T,.(.L, 1) =0, 0<N<P, 1€ [0,+00), xM.D)=X(r/r.c,t/1) 4)

where x(m,1) =0, n=>p, and i(r,t) is an unknown jump of displacements in the plane of the crack.

To solve the formulated initial-boundary problem (1) — (4), we apply a method based on the differ-
ence approximation of time derivatives, detailed in [17]. For this purpose, we create a time grid

k
=E =1, -7 1,=0), k=1,2,3,... h#h,.
- J
rk h\/’h\l k k17(0 )7 9 Ly Dy i

v=1
We introduce the designation w(n, {, T,)=wi(1, ) and use the left difference time derivatives. Then, from
the initial conditions, we find wo(1, £)=0 and from equation (1) we find the following differential equations:
Wi Wio W[ 1 1

k= — ke (—+ j k=2,3,.... &)
e Wb B By by

Wi _
Dngwl _ﬁ - O, Dncwk -

The analytical solution to equations (5) is considerably complicated by the fact that on the right side
there are displacement values in the two previous moments of time. To avoid these difficulties, according to
[17], we write the angular displacement and stress in the form of a linear combination of new functions

k k k k
Wi :zCkVUv’ Tork ZZCkVT(I)rV’ Tozk :zCkVT(I)zv’ P :zCkVPV’ (6)

v=1 v=1 v=1 v=1

where U, is a new unknown function.
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In [17], it is shown that if we choose the coefficients in formulas (6) according to the formulas
h

Cyu=1 k=123,..., Cppo=——, k=23,...,
hk—l - hk
2
Cov=a | Mg, —(1+h—k](:k_w k=34, v=12.. k-2,
b —hy \ hy_,
then the functions U =+ satisfy the homogeneous Helmholtz equations
D, U,-xU,=0, v=1,23,..k, =h @)
The boundary conditions on the cylinder surfaces with respect to these functions can be written as follows:
ou
Uyl =0. a—gm =P Tya,_, =0. (8)

The conditions for the crack will take the form

k
=% m) %, )=0. M 2B, % =D Cun - ®

v=l

Tyl =0,0<n<p, (U,)

Reducing the Problem to an Integral Equation and its Solution
We represent the solution to the resultant boundary-value problem (7), (8), (9) as the sum

U,M.5)=U{M)+U;m.0).

The first term is the solution to the problem in the absence of crack. It satisfies the conditions on the
cylinder ends and lateral surface and is given by the formula

020 0)= [ LS 0 o),

where o) = (1 +). B ()= [nA,00), 0k )an.
0

The second term is the solution to equation (7). It satisfies the zero conditions on the cylinder ends
and lateral surface

U,
1 1
=0, Y =0, =0,
Vie=o o - ¢W‘n:1
where as on the surface of the crack it is discontinuous with a jump (9) and satisfies the conditions
T D=0, D, 0<n<B, (U3) =x, (). x,(n)=0, n>p. (10)

The solution to this boundary value problem is constructed by the integral transform method, analo-
gous to papers [11, 16], and it has the form

Uy = [&x, ©)sEn.)+ DEm.Olde,

where

$6.0)=2 [ W GIF .1+ FOLE+ 1,

11<2 (qJV)I (a,8)1,(q,m).

© 2\
D(&JLC)=22—;cos7x,jl~sin7\,i§-
J=1 Y ‘ 2 q<jv
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shor, (1 —|c+l|))

sha,

F(X,Cil):sgn(Cil

o, =WA +K;, g, =—2+K;, 7\,j=§(2j—1).

This solution contains an unknown function x,(&). If we use condition (10) on the crack, we obtain
an equation With respect to the function ¥,(&), which, after integration by parts, will take the form:

jawv )l )+ Dy s - jy‘*‘;‘;) SRS, (), 0= =B, an

v

where

1d
vy (§)=Ed—g(§xv (&))
Kyla,)

Z—COS 7» - q—l(q—) (qﬂ§)11(4jvn)’

N

Fem)=— < ch(, (1=-1))-chlay))- 7, (1), (1)

To solve equation (11) we reduce it to the Fredholm equation of the second kind according to the
known method [11, 16]. To do this, we introduce a new unknown function @,(t):

v)--2Ld el ,

and to both parts of equation (11) we apply the operator:

PR EC jf

dx 0\/X -y

Due to these transformations, the introduction of designations

e (2 Y
_\/(2] 1) +( . j,e
t=By, 9,(t)=Bg,(y). x=Bs,

and the even extension of the function g,(y) on the interval [-1; 1], equation (11) is reduced to the Fredholm
integral equation of the second kind

2. 1-2 [, (Bl ) 00yl 0= ) 1)

u2+1,

V2

where

1 oo
Z \s)=—4x P MJ KU sinz(m}ud ,
,(s) vﬁln V(’n){ iy p) ) S plun
and B(y,s) and Q(Y) are represented as uniformly convergent series and proper integrals.

An approximate solution to equation (12), as in [11, 16], is sought in the form of an interpolation
polynomial. To solve equation (12), we approximate its integrals according to the quadrature Gauss-
Legendre formula [18] and obtain a system of linear algebraic equations with respect to the values of the un-
known function in the interpolation nodes

ISSN 0131-2928. Journal of Mechanical Engineering, 2018, vol. 21, no. 4 25



JMHAMIKA TA MILIHICTb MAIIINH

ngm A, B, y,)+00,) -0y, - v, )]- Zb"gm— z(y,). (13)

where

B(v,.v,)=G (3, v, )+ Ry, ;)
2 o___ PR(0)

n

1-52)20,) o i)
After solving the system, the unknown function is approximated by the interpolation polynomial
()
—9 = > :1’ 27 3’-“9
gv(y Z 0 e =7 e gy, ) m n

where P,(y) is the n-th Legendre polynormal, and Y 18 the polynomial root.
The resultant solution allows us to determine the stress state at any point in the cylinder.
For the criteria of destruction, an important role is played by SIF, which is determined by the formula

K(t, )= rl_i)iriox/r—b Ty (1,0t

The dimensionless value of SIF after the solution of system (18) can be obtained from the formula

K(1 )= Ié(f ZCkVKV K, =~ Jz—émgﬁ(l). (14)

Results of Numerical Studies

Using formulas (14), there was performed a numerical study of the dependence of SIF on the dimen-
sionless time T=c,t/r, for different load cases. The time grid nodes were condensed near the point T=0.

The function determining the load on the cylinder end in condition (2) was presented as the product

pn.t)=n-f(1).

After discretization by formulas (6) we received
P =1n- fv s

where f, can be found from the recurrence relation f(t k z Cofy-

The results of calculations are shown in Fig. 2 in the form of graphs of time dependencies of relative
SIFs. During these calculations it was considered that the relative height of the cylinder is y=a/ry=2, the relative
crack radius is f=b/ry=0.5 and the crack is located in the middle plane of the cylinder /=c/ry=0.5. The charts in
Fig. 2 have been constructed for the case of the action of a suddenly applied torsional load f{t)=H(t) (curve 1),
the case of specifying the torsional load by a suddenly applied moment of the unit length f{t)=H(t)-H(t-1)
(curve 2), as well as for the case of the action of a suddenly applied harmonic torque load f{t)=H(t)-cos(37).

From the graphs in Fig. 2 it can be seen that in all considered types of loading, during the transient
process, the maximum SIF values are observed. When a sudden constant load is applied, this maximum is 2—
2.5 times higher than the static value of SIF. In the case of sudden harmonic loading, the maximal value of
SIF also significantly exceeds the value it acquires during steady-state oscillations, in the absence of reso-
nance. Hence, it is most likely that the destruction of the cylinder will occur during the transient period.

A numerical study of the influence of the cylinder geometric characteristics on the time dependence of
SIF was also conducted. Calculations were made for the case of a suddenly applied torsional load (Fig. 3-5).

Curves 1-3 are constructed for the values of the relative cylinder height y=a/ro=: 1; 2; 4. As can be
seen from this figure, an increase in the relative length of the cylinder leads to a decrease in the value of SIF
and a decrease in the time of the transient process.

In Fig. 4 different values of the relative crack location height /=c/ry=: 0.25; 0.5; 0.75 correspond to
curves with numbers 1-3. An analysis of this figure shows that an increase in the values of SIFs is observed
during the approach of the crack to the loaded end of the cylinder.
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In Fig. 5 values of the relative crack radius B=b/ry=: 0.25; 0.5; 0.75 correspond to curves 1-3. These
curves demonstrate the fact that in the case of an increase in the relative crack radius, an increase in SIF val-

ues can be observed.
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Conclusions

The article proposes a method for solving the problem of determining the stress-strain state of an
elastic finite cylindrical body with an internal circular crack that is under torsional loading. This technique is
based on the differential approximation of the time derivative and use of a time grid with specially selected
nodes. Numerical results demonstrate the effectiveness of such an approach when investigating the transient
processes that occur immediately after load application. It is to be noted that the presence of several cracks is
not critical for the application of the proposed method, but, of course, solving such a problem is technically
more complicated, since one will have to solve the system of integral equations. The appearance of boundary
conditions on the cylinder surfaces does not limit the capability of the method, since these conditions only
determine the type of integral transformations that are used.

It should also be noted that, in the framework of the above problem statement, no crack can be in-
definitely moved nearer to the cylinder ends, since in the case of the crack approaching them the conver-
gence of integrals and series that determine the solution and kernels of integral equations deteriorates signifi-
cantly, and upon reaching the very ends, the integrals in general become singular. Consequently, for these
borderline cases, it is necessary to solve individual problems.

There also arise some problems in applying this technique for large amounts of time, due to the step-

by-step accumulation of errors.
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Hanpy:xeHuii cTaH y cCKiH4YeHHOMY HWJIIHAPi 3 KPYTOBOIO TPIlIMHOKO 32 HECTAIlIOHAPHOI 0 KPYTiHHS

Hemunos O. B., ITonos B. T'.

Harionanpauit yaiBepcutet «Ofechka MOPChKa akaaeMis»,
65029, YVkpaina, M. Oneca, ByI.. JligpixcoHa, 8

Y ecmammi poss’azana gicecumempuuna Ounamiuna 3a0a4a 3 BUSHAYEHHS HANPYHCEHO2O0 CIAHY 8 OKOJ KPY2080oi

MPIWUHY 8 CKIHUEHHOMY YUMIHOPL. HUdICHS 0CHO8A YUIIHOPA HCOPCMKO 3AKPINIeHA, d 6EPXHS HABAHMANCEHA MAHSEHYIA-
JIbHUMU HARPYICEHHAMU, SIKI 3anedxcamb 610 uacy. Ha 6iominy 6i0 mpaduyitinux ananimuynux Memooie, wo IpyHmyomscs
Ha 8UKOPUCMAHHI IHMe2paTbHO20 nepemeopenns Jlanaaca, 3anponoHoSanuli Memoo noia2ac 8 pisHuyesil anpokcumayii
minbKku NOXIOHOI 3a yacom. [ Yybo2co BUKOPUCIOBYIOMbC CHEeYIaNbHUM YUHOM NIOIOpAaHi HepieHOBIO0ANeHT 8Y3IU MA
cneyianbHe NOOAHHS PO36 3Ky 6 yux @ysnax. Taxuili nioxio 0036044€ 36ecmu 8UXIOHY 3a0ayy 00 ROCTIO0BHOCTI KPAUOBUX
3a0au 011a 00HOpioHozo pisHanHA I ervbmeonvya. Koswcna maxa 3a0aua po3s’s3yemucs uliaXom 3aCmoCy8aHHs CKIHUEHHUX

28
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inmeepanvrux nepemeopenv Oyp'ec i I'anxensn 3 nodarvuum ix obeprenuam. B pezyromami 6yn0 ompumarno inmezpaivhe
NOOaHHs 071 KYM0B8020 nepemiujentss uepes HegiooMulli CmpuboK ybo2o nepemiwerts 8 niowuHi mpiwunu. Bionocro no-
XIOHOT Yb020 CMpUOKA 3 2PAHUYHOL YMOBU HA MPIWUHI OMPUMAHO THMe2PATlbHe DIBHAHHA, AKe 8 Pe3VIbmami 3acmocy8aH-
HA iHmezpanvHoeo onepamopa Bebepa-Conina i pady nepemaopensb 36e0eHo 00 iHmezpanvHo2o pisHaAHHA Dpedzonbma
0pyeo2o pody 8IOHOCHO He8i0oMOI (hyHKyii, noe'a3arnoi 3i cmpubkom. Habauoicene po3e’sizanms yboco pieHsaHHS 30IUCHEHO
MemoooM KOOKayill, npuuomy iHmezpanu Habaudxicamu keaopamypuumu gopmyramu I aycca-Jlescanopa. 3naiioenuti yuc-
JI06UTL PO38 130K 0A8 MONCIUBICb OMPUMAMU HAOIUdICEHY OPMYTY Ol PO3PAXYHKY KOeiyicHma iHmeHCUBHoCmi Ha-
npyacens (KIH). Kopucmyrouuce yieio hopmynoio, nposenu 0ocniodcents 6naugy Xapakmepy HABaAHMANCEHHs | 2eomem-
PUHHUX NAPAMempie YUNiHOPA HA NOYACO8Y 3ANEHCHICMb Yb02o Koediyichma. AHani3 pe3yibmamis nokasas, wjo y 6cix
PO3IAHYMUX 8UOAX HABAHMANCEHHS. Makcumym 3Hadens KIH cnocmepizcaemucs nio uac nepexionozo npoyecy. 11io uac
NPUKIAOEHHs PANMOB020 NOCMIUHO20 HABAHMANCEHHA Yell Makcumym y 2—2,5 pasu nepesuwye cmamuyne 3Havenus. Y
pasi panmoeoco 2apMoHiuHo20 Hasanmadicenns maxcumym KIH medic 3nauno nepesuwjye 3uauenus, akux 6in Habysae 3a
VCMANEHUX KOMUBAHL, 3a GIOCYMHOCMI pe30HAHCY. 30iibueH s GUCOMU YUTTHOPA | 3MEHUEHHSL NI0Wi MPIWUHU NPU3EO-
0sImb 00 30LIbUEHHA MPUBATOCME Nepexionoco npoyecy i smenuienis geaununu maxcumymy KIH. Toii camuil epexm cno-
cmepieaemuvcs, Ko NAOWUHA MPIWUHU HADIUNCAEMBCA 00 HEPYXOMO20 KiHYs YUTiHOpA.

Knwouosi cnosa: xoegpiyicum inmencuenocmi nanpycenv (KIH), sicecumempuyna ounamiuna 3aoaya, CKiu-
YenHi pisHUYI 3a 4ACOM, CKIHUeHHUL YUTTHOD, KPY208a mpiujuna, KpYmuuil MOMeHm.
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