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UDC 539.3 The development of composite technologies contributes to their being widely introduced
into the practice of designing modern different-purpose structures. Reliable prediction
MAJOR STRESS- of the stress-strain state of composite elements is one of the conditions for creating reli-
STRAIN STATE OF | able structures with optimal parameters. Analytical theories for determining the stress-
DOUBLE SUPPORT strain state of mu{tilayer rods (bars, beams) are sig{aificantly inferior in development to
those for composite plates and shells, although their core structural elements are most
MULTILAYER common. The purpose of this paper is to design an analytical model for bending double
BEAMS UNDER support multilayer beams under concentrated load based on the previously obtained
CONCENTRATED ivolution of the elasticity theory for a multi-layer Cantileye.r. The first part of the article
includes a statement of the problem, accepted prerequisites and main stages of con-
LOAD structing a model for bending a double-support multi-layer beam with a concentrated

load (normal, tangential force and moment) and general-view supports in the extreme
PART 1. MODEL cross-sections. When building the model, the double support beam was divided across

CONSTRUCTION the loaded cross-section and presented in the form of two separate sections with

equivalent loads on the ends. Using the general solution of the elasticity theory for a

Stanislav B. Kovalchuk multilayer cantilever with a load on the ends, the main stress-strain state of the design
sections was described without taking into account the local effects of changing the
stress state near the concentrated load application points and supports. The obtained
Aleksey V. Gorik relations contain 12 unknown initial parameters. To determine them on the basis of the
conditions of joint deformation (static and kinematic) of design sectors, a system of
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Poltava State Agrarian algebraic equations has been constructed. The constructed model allows one to deter-
Academy mine the components of the main stress-strain state of double support beams each con-
173, Skovorody Str., Poltava, sisting of an arbitrary number of orthotropic layers, taking into account the amenability
36003, Ukraine of their materials to lateral shear deformations and compression.
Keywords: multilayer beam, orthotropic layer, concentrated load, stresses, displace-
ments.
Introduction

With the development of technology, composite materials are increasingly being used in various-
purpose constructions. Reliable determination of the stress-strain state (SSS) of composite elements of vari-
ous types is one of the conditions for creating durable and reliable structures. Modern numerical methods and
software systems built on their basis have a large arsenal of tools for solving this problem when performing
checking calculations. However, at the stage of designing and solving optimization problems it is more con-
venient to use analytical methods for determining the SSS of composite elements.

A significant number of scientific papers [1-8] are devoted to separate types of composite, in par-
ticular, multilayer elements such as plates and shells, in which various analytical, numerical, and analytical
methods for determining SSS are constructed.

The deformation of composite rods (bars, beams) has not been studied well enough, although such
structural elements are most common. As it is difficult to take into account the inhomogeneous structure of
multilayer composite rods when constructing analytical theories of their deformation, approximate methods
for solving problems in the theory of elasticity, in particular, the iterative method [9-11], are very common.
Despite the introduction of simplifications, the deformation models constructed using this method remains
cumbersome and complex for practical application.

Exact solutions to elasticity theory problems have been obtained only for those of bending narrow
cantilevers with separate types of loads [12, 13]. Such solutions are quite limited in terms of accounting for
various types of supports and loads. However, on their basis it is possible to build relatively simple, but fairly
accurate applied solutions to typical problems of bending beams.

The purpose of this paper is to build an analytical bending model for double-support composite mul-
tilayer beams under the action of a concentrated load, based on the general solution of the theory of elasticity
for a multilayer cantilever with a load on the free end [12].
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Main part z 2= Zygn
Consider the‘ general case of the / P, Zyins
plane transverse bending of a straight multi- | z F, P
layer beam under the action of a concentrated — Zhax
load, taking into account that, in the general | O x » o 5%
case, the‘beam has rigid supports excluding x, ; F ; X sz\ Zun
all the displacements of the extreme cross- ! 2 & Zhan
sections (Fig. 1). b 2= Zpao

The beam consists of m parallel lay- a b

ers P, (k :I,_m , made of various materials
e ( ) Fig. 1. Double support multi-layer beam:

and rigidly cognected.on the contact surfaces. a — load and support diagram; b — cross-section diagram
The cross-sections (Fig. 1, b) along the beam
axis have a uniform structure and dimensions Segment Segment 2

that meet the condition b=h=1[.
The beam is related to the Cartesian
coordinate system xyz, whose origin O co-

incides with the leftmost section rigidity cen-
ter. The Oxaxis coincides with the longitudi-
nal axis of beam stiffness, and the plane
xOz coincides with the beam symmetry
plane and the external load plane.

Beam layers are made of homogene-
ous orthotropic materials with elastic symme-
try planes parallel to the coordinate planes.
The elastic material properties of all the beam
layers are known. For an arbitrary & -st layer

they are represented by a set of constants Fig. 2. Beam design diagram
S(Ek] = ‘ E)[ck]’ EEk]’ Eik], G)[cli]’ Gy;]’ G,y;]’V[vk»]’V[}l;]’v[zli]’vgkz]’vakz]’v[zi] ’

where E)[f ],ELk ],E B‘ ] are the elastic moduli along the coordinate axes of the system xyz ; G)[Cl;],Gy;],G)[!;] are the
(]

For an entire multi-layer beam, the elastic material properties will be piecewise constant functions

shear moduli in the planes parallel to the coordinate planes; v ,v[z';] are Poisson's ratios.

pf (z), which, by analogy with [12] and [13], will be represented using the Heaviside functions H(z)

Hi :i(sc[:k](H(Z_Zbd,k—l)_H(Z_Zbd,k ))) (D

k=1
Consider SSS of such a beam during the elastic work of the materials of its layers, neglecting the lo-
cal distortions of the stress and displacement distribution near the concentrated load application points and
near the fixing supports. Such SSS, by analogy with the theory of shells [14], will be called the main one.
We present the concentrated load to the beam stiffness axis and represent it in the form of compo-
nents F,, F, and M , applied to the section stiffness center (Fig. 2). Next, we divide the beam across the

loaded section (x =/, ) into two design segments. In so doing, we replace the support and the discarded part

of the beam with the corresponding internal force factors for each section and introduce our own reference
system of the section coordinates (i =1, 2 — section number).

If we consider the beam segments separately, then at some distance from the extreme sections their
stress state (SS) will be similar to that of the cantilever beam with the load on the end, for which an exact
solution was obtained in [12]. Using this solution, we write (for the i -th design segment) the relations for the
SSS components
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where N iﬁ), le), M £i1) — internal force factors in the initial section of the i-th segment (Fig. 2);
”1(11) =y |x(,):0,z:z1 , ”1(12) =y |X(,):0,Z:z2’ W1(i1) =l Ix(i):O,z:zl — displacements of the i-th segment extreme

points (Fig. 3, a); i =1, 2 — number of the beam segment.
In relations (2) — (4), the integral cross-section stiffness characteristics are determined by the formulas:

e b el ol Tk

14 xz 21

Relations (2) — (4) are obtained for the main coordinate system xyz in which the condition B, =01is

satisfied. The original position of the beginning of such a system relative to an arbitrary parallel auxiliary
coordinate system xzy~ is determined by the relation

’ 4
Zp, = 1/ B,
where B/, B, are the characteristics determined in an arbitrary auxiliary coordinate system xzy’ .

The internal strength factors within the boundaries of the i -th segment are related to their initial values
by the relations
N =N, 0! =), MY =00x, +m"). (5)
For the entire beam, the expressions for the SSS components and internal force factors can be com-
bined using the Heaviside function

F=rO o =HG=0)+ P, o Hx-1,), 6)

where f f is the SSS component distribution in the first and second design segments, respectively.

Relations (2) — (4) contain 3 unknown internal force factors (static initial parameters) and 3 un-
known displacements of the points in the initial section (kinematic initial parameters). With the help of these
unknowns, one can specify the displacements of 4 points of the beam design segments, making it possible to
simulate various restrictions on the displacements of its extreme sections.

For the two design segments of the beam under consideration, in the general case, we will have 12
unknown constants. Such a number of the unknowns is not sufficient both for the exact fulfillment of the

compatibility conditions for the displacement of the adjacent design segments of said beam
(2)| (1)|
X(2)=0 xm=h

((u(l),w(l))| _0 ( () (2)

(u(l) Ix(l):z =u =w?| (2):0 ), and  absolutely rigid fixation of its ends

e =0)-
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Therefore, the kinematic con- ORI
ditions on the boundary between the Segmentl ~— 722 — 2 Segment 2
: ; IORMORENE OO \
beam design segments will be de- | %2:%a - Up Wy 2, L/
. . . . e o . z \_.77\,.,7 -77_i\
scribed in a simplified way, combining 2 ] -
the displacement of only the extreme P ——— 0 {/ (/ o
- 1 1 1 i i i Z, \
Cross sec.tion. points according to the ”1(1)"4’1 1) ! uf) w® 2
diagram in Fig. 3, b. J 0
In this case, we will have the ﬁ“ﬁ
following system of kinematic condi- W) =)
tions for the beam design segment a
joint deformation: Fig. 3. Restrictions on beam design segment displacements:
W | _, = u? o a — segment kinematic parameters;
m=h: X(2)=Y . . . . .
2=z =g b — diagram of the boundary section kinematic relations

(1) () (1) _ 0
lx“):ll,_ w l)‘(z)zo” u le:/] T |X(z)=0’ ’
7=z =7 =2, =2,

or, taking into account the accepted conditions

m_ @) M _ .2 n_ @) (7

Uy =Upys War =Wir's Uy =Up -

In addition to the compatibility of displacements of beam segments, we will integrally ensure the
compatibility of the SSS components. To do this, on the boundary between the segments, we will require that
the internal force factors be equal, taking into account the acting concentrated load

N =N -F, oW =0l +F, D108 em) M. (8)
Using conditions (7), (8) and relations (3) — (5), we construct a system of equations to determine all

the unknown constants in solution (2) — (4).
For this, we replace the variables in relations (3) — (5) with the values: x;,)=1;, z=2z,2,

N =N, 0 =00 MW =100+ M),
i l; i Zli2 i lz
ul) :b_N)gl)Jrl_Qil) MO 4 uf),
B, 2bB, bB,
O_ b v, b 0, 2l ) 4 )
u i :_iN i 24 i i M , 9
22 bBO xl 2b32 Qzl sz 12 ( )
) hl’+6D,l, A A A
ng) = WQA sz Mifl) +Z”i1) _Z”iz) + Wl(l)’
where ugl) =ul |y =t e=210 ug'z) =y =ty 2=z wgl) =t Ly=tye=z» =12,

Substituting (7) and (8) into (9) upon transformations, we obtain such a system of relations between
the initial (le ,Qﬁl),M ﬁl),ul(l),wl(1 ,u12 ) and final (NX2 ,Qg) M Vg,zz),u(zzl) ,wg) ,ug)) parameters of the beam de-

sign segments:

ND=NY-F; 0@ =0V+F; MY =108+ MY +1L,F +M;
WD =L Ny le oW 4 Al 4y 0) +u1(11>_lex Lab'F | ubM :
bB, 2bB, " bB, bB, 2bB,  bB,
2
ug) _ l N)(cll) N Zzl2 Qg)*‘ 2,1 M§;1i)+”ilz)_ LF, N 2,0,°F, N Zzle; (10)
bB, 2bB, bB, bB, 2bB,  bB,

(2)_ _hI>+6D,l

3 2
W) = o o, Lo Lo, o hly+6Db . 1L'M
6hbB,

- Uy ——u wyy —
Qa B, oM 6hbB,  ° 2bB,
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Discussion of the results

System (10) consists of 6 equations, which together contain 12 static and kinematic parameters. For
each particular type of supports, the values of 6 parameters will be known or can be expressed in terms of
other parameters and known values. This allows one to bring the original system (10) to the correct form and
determine the remaining static and kinematic parameters.

The first segment initial parameters obtained by the solution of system (10) are the input data for de-
termining the initial parameters of the second segment, using relations (7) — (9)

NO =N -F, oW =0+ F, MP =100 +M")+ M,

l zl2 zl
w? =L N S0 ol A0 0,0,
bB, 2bB, bB,
o_ b w2k 0, b0, 0
2 1 1 24 1 24 1 1
us =——NV+ +2Lpm Y 11
12 bBO x1 2sz Qzl sz yl 12 ( )

3 2
() _ _hly +6D,l, ) 1 . hoo_ L oo, 0
wp == l6thZNQzl - ZbIBZ M +;l”11 _Zl”u +wy

Substituting the initial parameters known and defined using (10) and (11) into the initial relations
(2) — (4) allows one to obtain expressions for the components of the main SSS of all the design segments of
the beam. In the future, the solutions for design segments using (6) can be combined into general expressions
for an entire multi-layer beam.

Conclusions

Thus, there has been constructed an analytical model of flat bending of double-support multi-layer
beams under the action of a concentrated load, which are represented by relations (2) — (4), (10) and (11).
The model allows determining the components of the main SSS of multilayer beams each consisting of an
arbitrary number of orthotropic layers, taking into account the amenability of their materials to transverse
shear deformations and compression.

The obtained relations can be used to solve the problems of deforming multilayer beams with differ-
ent types of supports on the extreme cross-sections.

The approach used to construct the model can be generalized and extended to the case of multi-span
beams with an arbitrary number of concentrated forces and intermediate supports, as well as beams with dif-
ferent rigidity.
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OcHoOBHUIi HANIPY3KeHO-/1e(hOPMOBaHUIi CTAH TBOXONOPHUX HaraTomiapoBux 60K mija i€
30cepemkeHoro HaBanTa:kenns. Yactuna 1. [lodynoBa moaeni

Kopansuyk C. b., I'opuk O. B.
TlonraBcbka JeprKaBHa arpapHa aKkazeMis, 36003, Vkpaina, m. [Tonrraa, Byn. CkoBopoau, 1/3

Pozsumox mexnonoeiii KoOMno3umie cnpusie ix WUpoKoMy GNPOBAOICCHHIO 8 NPAKMUKY NPOEKMYBAHHSA CYUACHUX
KOHCMPYKYitl pi3Ho20 npusHaienust. JJocmosiphe npocHO3yY6anHs HANPyHCeHO-0eOPMOBAHO20 CIMAHY KOMNOSUMHUX elleMe-
HMIG € OOHIEIO I3 YMO8 CIMEOPEHHsL HAOIIHUX KOHCIMPYKYIL 3 ONMUMAIbHUMU napamempamu. AHanimuuni meopii 6U3HA4eHHs!
HANPYIHCEHO-0ehopMO8ano2o cmary 6azamowaposux cmepoichis (opycis, 6anok) 3HAYHO NOCHYRAIOMbCS Y PO3GUMKY Meo-
PIIM 0151 KOMRO3UMHUX NIUM | 0O0JIOHOK, X0UA CIMPUIICHEGI elleMEeHMU KOHCMPYKYIll € Hatnowuperiwumu. Memoro yiei po-
b6omu € nobyoosa aHanimuyHoOi MOOeli 6uUeUHY 0BOXONOPHUX 0A2aMOWAaposux OAIOK ni0 OIEH 30CePeOHCeHO20 HABAHMA-
JICEHHSL HA OCHOGI OMPUMAHO20 PaHiule po36’si3Ky meopii npyscHocmi 01 Oazamouwaposoi KOHCOM. Y neputiii yacmumi
cmammi HaeOeHO NOCMAHOBKY 3a0adi, NPUUHIMO nepedyMOo6U i OCHOBHI emanu noOy006u MOOe 32UHy 6a2amouapogoi
060X0NOPHOT bANKU 13 30CEPEONCEHUM HABAHMANICEHHAM (HOPMATILHA, OOMUYHA CUNA | MOMEHM) § 3aKPINICHHAMU 3A2AbHO20
suenady 6 Kpauix nepemunax. 11i0 uac nobydosu moodeni 06oxonopHa danka 0yna po30iieHa no HABAHMANCEHOMY nepepizy i
nooama y uznsadi 060X OKpemux OiIAHOK 3 eKGI6AIeHMHUMU HABAHMANCEHHAMU HA MOPYSX. 3 BUKOPUCMAHHAM 3A2abHO20
PO36’A3Ky Mmeopii npyacHocmi O 6a2amouaposoi KOHCOI 3 HABAHMAICEHHAM HA MOPYSX OY6 ONUCAHUL OCHOBHULL HANPY-
JHCEHO-0epOopMOBanULL CMAH PO3PAXYHKOBUX OLIAHOK 0e3 YPAaxyeaHHs TIOKATbHUX eqheKmi6 3MIHU HANPYICEHO20 CIAHY NoO.IU-
3) MOYOK NPUKIAOAHHS 30CEPE0NCEH020 HABAHMAMICEHHS | 3aKpinieHb. Ompumani cniesiOHowieHHs: micmsamy 12 nesidomux
HOYAMKOBUX NAPAMEMPIE, OJis BUSHAYEHHS SIKUX 3 YMOB CRIIbHO20 0eqhOpMYBanHsL (CIAmMUYHUX i KIHeMAMUYHUX) PO3PAXYH-
KOBUX OLIAHOK noOydosana cucmema aneebpaiunux pieHsib. 1106y006ana mMooenb 003601€ GUIHAUAMU KOMIOHEHMU OCHOB-
HO20 HANPYHCEHO-0ePOPMOBAHO20 CINAHY OBOXONOPHUX DAOK, WO CKAAOAIOMbCS 3 O0BLILHOT KiTbKOCMI OPMOMPONHUX Wd-
PI6, 3 YPAXYBAHHAM NOOAMIUSOCHI IX Mamepianie 0eopmayisam NONEPeuHo2o 3Cy8y | 0OMUCHEHHS.

Knrouosei cnosa: bazamowaposa Oanka, opmomponHuil wap, 30CepeoNceHe HABAHMANCEHHS, HANPYICEHHS,
nepemiujeHts.
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