DYNAMICS AND STRENGTH OF MACHINES

UDC 539.3 Modern elements of building structures and machine parts often contain structural ele-
ments or technological defects that can be considered as thin inclusions of high rigidity.
STUDY OF Reinforcing elements of composite materials can also be thin rigid inclusions. But studies
show that thin rigid inclusions cause a significant stress concentration in the environment,
wnich can lead to tne formation of cracks at the inclusion. 1he problems of determining the
THE STRESSED hich lead to th i ks at the inclusion. The probl d ining th
STATE NEAR stress state in the vicinity of complex defects were solved, as a rule, in a static formulation
THE CRACK and for the case of rectilinear defects. This is due to the difficulties that arise in the case of
their solution by the common method of boundary integral equations, which consists in
THAT INITIATES reducing such problems to singular integral or integro-differential equations with fixed
singularities. Sucn equations require that special methoads be created for their numerica
AT THE INCLUSION | singularities. Such equations require that special methods b d for thei jcal
UNDER solution. Recently, there has been a continuous growth in the number of papers where spe-
cial quadrature formulas are used for singular integrals with fixed singularities, for exam-
LONGITUDINAL ple, for cracks or inclusions in the form of broken or branched defects. These works pro-
SHIFT WAVE pose a collocation method that takes into account the real feature of the solution, and in
INFLUENCE order to calculate integrals with fixed singularities special quadrature formulas are used.

The problems of determining the stress state around the defects, which are thin inclusions

Jfrom whose edge a crack propagates at a certain angle, have been barely solved. The pur-
pose of this paper is to study the stress state near the crack that initiates at the inclusion
when subjected to a longitudinal shear wave. The formulated problem is reduced to a sys-
tem of singular integro-differential equations with fixed singularities with respect to the
unknown voltage surges and displacements on the surface of a defect. To solve this system,
a similar collocation method is used. There have been shown dependences of the change in
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National University the dimensionless values of the stress intensity factors (SIF) on the dimensionless value of
«Odessa Maritime the wave number in the case of wave propagation at different angles. For numerical ex-
Academy», periments, different values of the angle between the inclusion and crack were taken. In all
8, Didrikhson St., Odesa, cases, there was found the value of the dimensionless wave number at which SIFs for the
65029, Ukraine crack reach their peaks. With an increase in the angle between the inclusion and crack, SIF

values for the inclusion, up to certain oscillation frequency values, decrease. For the case
when the defects are on the same straight line, SIF values for the inclusion are smallest.
Conversely, when the angle between the defects increases, SIF values for the crack in-
crease too. In general, as a result of the complexity of the wave field created by the reflec-
tion of waves from a defect, SIF dependence on frequency has significant maxima, whose
magnitude and position are influenced by the configuration of the defect.

Keywords: stress intensity factors, singular integro-differential equations, harmonic oscil-
lations, fixed singularity, inclusion, crack.

Introduction

In the field of building technology and engineering, structures and machine parts often contain elements
or technological defects that can be considered as thin inclusions of high rigidity. However, as studies [1] show,
thin rigid inclusions cause a significant stress concentration in the environment, which can lead to cracks at the
inclusion. The problems of determining the stress state in the vicinity of complex defects were solved, as a rule, in
a static formulation and for the case of rectilinear defects in [2-5]. This is due to the difficulties that arise in the
case of their solution by the common method of boundary integral equations, which consists in reducing such
problems to singular integral or integro-differential equations with fixed singularities. Similar problems were
solved in a static formulation, but the real feature of the solutions was either ignored, or the Gauss-Jacobi formulas
were applied to integrals with fixed singularities, resulting in a rather slow convergence of numerical solutions.

Recently, there has been a continuous growth in the number of papers where special quadrature formu-
las are used for singular integrals with fixed singularities, for example, for cracks or inclusions in the form of
broken or branched defects. These works propose a collocation method that takes into account the real feature
of the solution, and in order to calculate integrals with fixed singularities special quadrature formulas are used.
The problems of determining the stress state around the defects, which are thin inclusions from whose edge a
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crack propagates at a certain angle, have been barely solved. The purpose of this paper is to study the stress
state near the crack that initiates at the inclusion when subjected to a longitudinal shear wave. The formulated
problem is reduced to a system of singular integro-differential equations with fixed singularities with respect to
the unknown voltage surges and displacements on the surface of a defect. To solve this system, a collocation
method is used. This method is similar to the one applied in [6— 8].

Problem Formulation

An elastic isotropic medium in a state of antiplane y
deformation is considered. In the environment, there is a a
penetration defect in the form of absolutely rigid inclusion.
From its end a crack propagates at an arbitrary angle. The
inclusion and crack in the Oxy plane occupy the segments
2d,, forming the angles o, /=1, 2 with the Ox axis (Fig. 1).

The defects interact with a flat longitudinal dis-
placement wave that causes in the environment the follow-
ing displacements along the Oz axis:

2
W, (x, y) _ AeiKz(xcose()+ysin 9())’ K% _ P ,

G
where o is the oscillation frequency, p and G — are the density

and environment shear modulus. Dependence on time is de-

Fig. 1. Inclusion with a crack propagating from
its edge

termined by the factor ¢ ignored here and to be ignored

later. Under these conditions, the only non-zero z — component

of the displacement vector satisfies the Helmholtz equation
Aw+Kw=0, (1)
where A is the Laplace operator in the Oxy coordinate system.

To formulate the boundary conditions for a defect, we associate both the crack and inclusion with the
local O,x,y,;,1 =12 coordinate system whose center coincides with the middle of the corresponding defect

(Fig. 1). The relationship between the coordinate systems is given by the formulas
{x =(d, + (=1 x,)cosa, — (-1) y, sina,,

y=(d, +(=1)'x)sina, +(=1)" y, cosa,, °
{x, =(=1)' xcosa, + (=) ysino, — (1)’ d,,

y, = (D" xsino, +(=1)' ycosar,, [ =1,2.

Let w,(x;,y,), [ =12, be obtained from w(x,y)as a result of the transition to local coordinates by

formulas (2). We formulate the crack boundary conditions on the basis of the fact that there are no stresses on
the crack faces. This results in the equality

1,.(5.0)=0, x, € [-d,.d,] 3)

On the surface of the crack, the displacements w,(x,,y,) have a gap with an unknown jump for
which the following designation is introduced.

W, (X 40) =y (4,,=0) =X, (), X, (d,) =0, x, € [~ d,,d,]. ©))
On the inclusion, under the condition of ideal adhesion there must be fulfilled the equality
wi(x,0)=a, x¢€ [_dl’dl]’ &)

where a is the unknown amplitude of the longitudinal (along the axis Oz ) oscillations of the inclusion.
On the surface of the inclusion, the stress T, (x;,y,) has a gap with an unknown jump for which the

following designation is introduced
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T, (5. 40) =T, (x,,-0) =), (%), x; € [-d,.d,]. (©6)

The unknown amplitude of the inclusion oscillations is determined from the equation

d,
—mw'a= jxl(n)dn, m=2d,p,h.

_dl
Under these conditions, it is necessary to determine the stress state in the vicinity of the defect.
Method of Solution

To solve this problem for a crack and inclusion in a coordinate system connected with defects, discon-
tinuous solutions of equation (1) with jumps (4), (6) are constructed. These solutions are based on the formulas

)—jXIm)rz(n X, y)dn ., wi(x,,y,)= sz(n) rz(n—xz,yz)dﬂ, 0

—d, —d,

d
wy (X, )

nn-x,y)= —iH((,l)(Kz Mm-x, )+ y; j [=1,2, where H (x) is Hankel's function.
After this, the displacement of the diffraction field in the QXY system is given in the form

w(x, y) =wf (x, ) +wi(x,y),

where wf (x,y), [ =12 are obtained by formulas (7) after the transformation of coordinates (2). In order to

finally determine the displacement and strain in a semi-space, it is necessary to find the unknown jumps of dis-
placements and strains. To do this, conditions (3), (5) should be used.

After realizing the boundary conditions on the defects, we obtain a system of singular integro-
differential equations with respect to the unknown jumps. This system, after separating the kernel functions of
singularities and transitioning to the gap [— 1, 1] , has the form

jcm(r)[ R c>} r——jcpzmgz(lm {yde-

1
_%I(Pz(T)Rz(T’C)dT:fl(C),

1
LJ{ ' (1) L iR (t,) d1+@j' (1) [ln|'c—§|+R t.0)] de— ®)
ZTt_I(PZ T—C 3(T, o _I(Pz 4(T

1
_Zinj 00 [g,(1-T1+0) + Ry(v.0)]dr= £,(0),
-1

1 21
i [ 0,00 nft+ 1+ Ry (0] + Y—nz [o: R, @ dr= 1,
-1 -1

where
O (D =x0/G,9,(v) =%, (M)/d,, 9,(T) =Y, (M),
g (x,y)= x/pl(x, ¥),p(x,y)= Y,zyz —2v, yxcos(o,, —0l,) + X2, 1=1.2,
F1(§)=—Agik, cos(a, — B )e M=o
£>(©) = Agi, sin(or, — B )e 072 1L =00
fo = =A™ N0 A = Ald, d =max(d,,d,).

As can be seen from the above, the functions g,(x,y) have features at t==+1,{=7I.
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Approximate solution of the system of integro-differential equations
The presence of fixed singularities (at T=1,{ =-1 and t=—-1,{=1) in a singular part of system (8)

influences the behavior of its solutions in the vicinity of the points { =%1. The asymptotics of the solutions in

the vicinity of these points is determined by the method described in [9]. The result is that unknown functions
need to be searched for in the form

00 =1+0" 1=y, (0, ¢, (D) =1 +1 (1= "y, (D), ©)
where the singularity indicator is determined by the equality
2B-3n

B=loy, —a,|0<p<m.

2(-2m)°

For the functions with such features to be a solution to system (8), there must be fulfilled the equality

Wi (D) =(1/72) " W),
and the functions y,(t), /=12 are to be considered as satisfying the Holder condition at the gap [— 1,1]. The
further solution is based on the approximation of these functions by interpolation polynomials

= P (1)
()= - In , (10)
VO= 2V

where W, =y, (t, ), [=12, P, (0)=P > 2(t), P, (t)=P /> (1)  are the Jacobi polynomials, and T,
are their roots.
For integrals with the Cauchy kernel, we use the following quadrature formulas [10]:

(Py ! (D 4.
(11
T Clk Z Ck

51
where [=1,2,k=1,2,...n—1, {, — are the zeros of the Jacobi functions of the second kind J, > A(T) and

J ; o (t),and A,, are the coefficients of the corresponding Gauss-Jacobi quadrature formulas [11].
Next, analogous formulas need to be obtained for integrals with fixed singularities

E = o (g, 0+ (-1t~ (-1 Odel =1.2. (12)

If 1-{>¢e,1+{>¢, where 0<e<1 is some approximate number, then the functions g,(t,{) are in-

finitely smooth and to integrals (12) the Gauss-Jacobi quadrature formulas can be applied. The main difficulty
is the computation of these integrals at 1£{ — 0. For this purpose, representations (9), (10) are used and the

following transformations with sub-integral functions are performed:
8(%8) _ g1+ (=D'7, 1-(=D'C)
- Tlm - rlm
1 &1+ D Tl =D O+ (D)'ry,) |
P+ (D', 1= (=D'C)
2
=0y (1- 1Y)
P+ (D', 1= (=D p 1+ (=D Tl = (=D'{)
Integrals of the functions included in representation (13) can be found using a method based on the

application of the convolution theorem for the Mellin integral transform. Finally, the formulas for calculating
integrals with fixed singularities { =, are of the form

El Z(_I)IZ’;:IWIm mk’l_1 2 (14)

13)

-(=D

[=1,2.

where
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3
Srlnk :Zp 1 /)(Tlm’Cjk)h/)(n ) 8>rl >0 n= Y1(1+(_1)1Clk)/(2Y3—1)’

Alm (Yl /73_1)2(1 + (—1)l X) COSB
pl ()C, )’)
B; (x,y)= [A+ DD /15)? v + ((_1,)1 p(x,9))* " ]cosP ’
pi(x, WIP, ()]

2750592 I'(n+0.5)
hl —_ 3—1 d
p (y) 2 sm(7t5) Z YI’y Z YI’y

B (x,y)= Jh(n) =1,

Y; sinf
o= I'(d+s+n+1)sin(B(-0+s+ p—2))
P SIC(s=8+1)(n—s+0.5)

g - (=D (=8 + s+ p—2)sin(B(s +1))
P (s+p-)I(-8—s5+n+0.5)

L 1=12,p=23.

Thus, at 1+&;;, — 0 and 1-,, — 0 integrals (12) can be calculated using fast convergent power series.

For an integral with a logarithmic function, as a result of integration by parts and using the represen-
tation of derivative (9), we obtain the following quadrature formula:

_[(Pz(T)IHh C2k|dx z Ay Vs, By (15)

B, =—(1+0C,, )(1n|1+ C.:2k| —1=(ty, —Cx )(1n|T2m + C2k| -D.

To calculate an integral immediately containing an unknown function, it is necessary to find its ap-
proximate value by means of the equality

0, (1) = —f @, (x)dx.

Next, we use the representation for derivative (9), as well as the Christophel-Darboux identity. As a
result, after the integration, there is obtained the expression

0 (0=-(1-0"D" 4,80, (16)
1-5 131 T 1-8 —1/2,-8 1/2,1-3
=28 62 +(1+1) Z P71, )P (1) /207 .

Representation (16) is the basis for such quadrature formulas with an unknown function @, (1) :
1 n
.[—1 0, (OR(T,Cy )dx = Zm:l Ay WU i (TR (T3, 80, )

242 1
A=T5)((R ()
(1) are the Jacobi polynomials, and T, are their roots.

The application of quadrature formulas (11), (14), (15), (17), as well as the Gauss-Jacobi formulas
leads to the replacement of the system of integro-differential equations (8) by a system of linear algebraic equa-
tions with respect to the values of the functions y,, /=12 in the interpolation nodes.

For fracture mechanics, of greatest interest is the stress intensity factors

K, = hm d,+m-x,M),K, =nglt‘1r]1+01/x2 -d, -‘c‘;zz(xz,O).

T]—)

Ur%u' (Tp;) = _Z AgiSin (Toi)s Ag; = =12,
i=1

where P” 2,0

Due to the solution of the system, the approximate values of the SIF are determined by the formulas

K, =~G\Jd, 270y, (-1),K, = —G,[d, 27y, (1).
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Analysis of Numerical Results and Conclusions
There have been considered the defects of the same length dj=d, I=1, 2, starting at the coordinate ori-
gin and located symmetrically with respect to the Oy axis. An in-going wave propagates along a positive

Oy axis direction. Figure 2 shows the dependences of the change in the dimensionless values of SIF

(k, =K,/G4d,,l=12) from the dimensionless value of the wave number in the case of wave propagation

at an angle 6;=90° and in Fig. 3 — at an angle 6,=270°. The angle between the defects was taken consistently
(B=30°, 60°, 90°, 120°, 175°) and corresponds to the curves in the figures under numbers 1, 2, 3, 4, 5.

In all cases, there has been found the value of the dimensionless wave number at which SIF values
for the crack reach their maxima. In the case of an increase in the angle [ between the inclusion and crack,
the value of SIF for the inclusion, up to certain values of the oscillation frequency, is reduced. For the case
where the defects lie on the same line, SIF values for the inclusion are smallest. It can be seen that for small
frequencies (x, < 2), with increasing angle B, the value of SIF for the crack increases, and the greatest values

can be observed when the angle approaches 180°. In general, due to the complexity of the wave field gener-
ated by the reflection of the waves from the defects, the dependence of SIF on frequency reaches significant
peaks, whose value and position are affected by the configuration of the defect.

5 1.6
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0.4

0.2

Fig.2. Dependence of SIF for the inclusion and crack on the wave number under the influence of longitudinal
displacement (angle 6,=90°)

Tl 11kl

Fig. 3. Dependence of SIF for the inclusion and crack on the wave number under the influence of longitudinal wave
displacement (angle 6)=270°)
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JocitixKeHHsI HATIPYKEHOT0 CTaHy OiJfl TPilMHM, 10 BiAXOAUTH Bill BKJIIOYEHHS IiA BINIMBOM XBHJIi

MO0310BKHBOT0 3CYBY
Mimapiun A. C., ITonos B. I'.

Harionanpauit yaiBepcuter «Onechka MOPChKa akaaeMis»,
65029, Ykpaina, M. Oneca, ByiI.. JligpixcoHa, 8

Cyuaci enemenmu 6y0i6ebHUX KOHCIPYKYIU | 0emai Mauiut 00CUmMb 4acmo MiCmsms KOHCIMPYKIMUGHI eJleMeHmu

abo mexHono2iuHI dehekmu, sIKE MOJICHA PO32N80amu K MOHKI GKIIOUEHHS GeIUKOL JicopcmKrocmi. ApMyoui enemeHmu Kom-
NO3UMHUX MAMePIaie meic MOJ’CYMb AGIAMU COO0I0 MOHKI HCOPCMKI BKIIOYEHHS. Ane K NOKA3VIoMb 00CTIONCEHHS, MOHKI
HCOPCMKI BKIIOUEHHS CHPUHUHAIOMb 3HAYHY KOHYEHMPAYIlo HANPYHCEHb ) HABKOIUUHbOMY Cepedosuli, AKA Modice npusge-
cmu 00 YMBOPEHHsL MPIUH HA 11020 NPOO0BICEHHT. 3a0ayi 3 BUSHAYEHHS HANPYHCEHO20 CIMAHY 8 OKOJIL CKIAOHUX Oeghekmis
PO368’A3Y8aANUCH, K NPABUTO, Y CHIAMUYHIL NOCMAHOBYT | O BUNAOKY NPAMOJIHIUHUX Oeghexmis. [le nos’szano 3 mpyoHo-
wamu, AKi BUHUKAIOMb N0 4AC iX p036°A3GAHHA NOULUPEHUM MemOOOM ZPAHUYHUX THMESPATIbHUX DIBHAHb, WO NOIAAE Y 36e-
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Oenti nOJIOHUX 30044 00 CUHYIAPHUX THMESPATLHUX A00 THmMeSPo-OUupepeHyianbHUX PIGHAHb 3 HEPYXOMUMU OCOOIUBOCTSL-
mu. Taxi pigHAHHA 8UMA2alOMb CIMBOPEHHA CReYianbHUX Memoodi iXHb020 YUCI08020 po38’sa3aHHA. OCmaHHiM 4acom éce
binvute 3’aA671A€MbCA PoOIm, Oe Ol CUHSYIAPHUX THMEeSPANie 3 HEPYXOMUMU OCOOTUBOCMAMYU BUKOPUCTNOBYIOMbCS CREYianbHi
KeaopamypHi hopmyau, Hanpuriao, Oask mpiwur abo GKIIOYEHb y 8UeTA0L TAMAHUX Ab0 po3eanydceHux Oegexmis. B yux
pobomax 3anponoHOBAHO KOJIOKAYILIHUL MemOoo, AKULL BPAX0BYE CHPABHCHIO 0COOIUBICIG PO38 A3KY, d 01 0OUUCTIeHHs IHme-
2panie 3 HepyXoMuMu 0COOIUBOCHAMU BUKOPUCIAHO CheyidnbHi KeaopamypHi (popmyau. 3a0aui 3 USHAYEHHS HANPYHCEHO2O
CMAaHy HABKOIO deheKmis, Wo AGIIOMb COD0I0 MOHKe GKIIOUEHHS!, 810 KPAIO K020 Ni0 0esiKUM KYMOM 8I0X00ums mpiujund,
Maiidice He po36’s3ysanuce. Memoio yiei pobomu € 00CHIONCEHHs HANPYHCEHO20 CMAHY 0L MPIWUHU, WO 8I0X00UMb 6i0
BKIIOUEHHSL NIO 6NAUBOM XBUIE NO30062CHL020 3¢y8Y. ChOopMYTbO8aHa 3a0ata NPUEEOeHa 00 CUCEMU CUHSYIAPHUX IHmMezpo-
OupepenyianbHux piGHHb 3 HEPYXOMUMU OCOOTUBOCHAMU BIOHOCHO HEBIOOMUX CIPUOKIE HANPYICEHb I NepeMiyeHb Ha No-
sepxi deghexmy. [t po3e’si3amHs yiei cucmemu BUKOPUCMOBYEMbCS AHANOIYHUL KoNoKayitHutl memoo. Tlokasarno 3anedic-
HOCMI 3MiHU Oe3PO3MIPHUX 3HAYeHb Koeiyicumis inmencusHocmi Hanpycens (KIH) 6i0 6e3p03MipHO20 3HAYEHHS XUIbOBO-
20 UUCIa Y GUNAOKY NOUWIUPEHHS XGUTE Ni0 pisHuMU Kymamu. [[is 4uciosux excnepumenmie Opanucs pisHi 3HaueHHs Kyma
MIdHC BKTIOUEHHAM | MPiuHoIo. Y 6cix 8Unaokax 3Hau0eHo 3HA4eHHsA 6e3D03MIPHO20 X8UNbOBO20 HYUCIA, 30 AKO20 3HAYEHHS
KIH onsa mpiwyunu docaearoms maxcumymy. V pasi spocmanus Kyma misc éKnouenuam i mpiwunoro suavenns KIH ona
BKIIOUEHHS, 00 NeGHUX 3HAYEHb YACMOMU KOIUBAHb, 3MEHULYIOMbCS. [ 6unaodky, Koau oegexmu aesicamv Ha 0OHIl NPMl,
snavennss KIH ons exmoyenns natumenwi. I nasnaxu, koau Kym migic degpexmamu 3pocmac, swavenns KIH ons mpiwunu ma-
KOJiC 3pocmaioms. B yinomy, 6HACTIOOK CKIAOHOCHE XEUTbOBO2O NOJISL, CMEBOPEHO20 GIOOUMMAM X6UTb GI0 Oeekny, 3anedic-
nicmo KIH 610 wacmomu mae icmomHi Maxcumymu, Ha 6eIUYUHY I HOJOICEHHS SKUX 6NIUBAE KOHPieypayis deghexmy.

Kniouosi cnosa: xoeghiyicHmu iHmMeHCUBHOCMI HANPYJICeHb, CUHSYIAPHI IHMe2po-0UpepeHyianbHi PIGHAHHS, 2apmMo-
HIYHI KOJIUBAHHSL, HEPYXOMA OCOONUBICb, GKIIOUEHHS, MPIUWUHA.
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