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UDC 519.6 Designers often use a numerical analysis of mechanical engineering product models. The
analysis is based on partial differential equations. One of the most used numerical methods is
ADAPTIVE the finite element method, in which the continuous object model is replaced by a discrete one.
As a result, the first stage of modeling is the construction of a discrete object shape model as
DISCRETE the final union of simple shapes. The distribution of elements in a discrete object shape model
MODELS OF has a significant impact on the accuracy of numerical analysis. One of the most universal
approaches to the computer modeling of object shapes is functional representation. This ap-
FUNCTIONALLY proach is based on using implicit functions to determine the set of points that corresponds to
REPRESENTED the object shape. Moreover, implicit functions for complex objects can be created construc-
tively using combinations of simpler functions. For this, one can apply the real functions that
OBJECT SHAPES are proposed in the R-functions theory and correspond to logical operations. Although func-
tional representation makes it possible to check whether a point belongs to a set, it requires
Serhii V. Choporov that methods for constructing discrete models be developed. In this paper, a method is pro-
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posed for constructing adaptive discrete models of object shapes represented functionally.
This method uses an estimate of the accuracy of the finite element analysis to determine the

Zaponzhzhm National areas where nodes and elements are refined. In the process of refinement, the refinement
University templates of elements are used that are proposed for the most common elements (triangles,
66 Zhukovsky Str., quadrangles, tetrahedra and hexagons), with reprojection on the domain boundary of
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boundary nodes. Examples of constructing adaptive discrete models for solving two- and

three-dimensional problems of studying stress-strain state are shown.
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Introduction

One of the important parts of designing complex technical objects is studying their operational charac-
teristics. In such industries as rocket production, shipbuilding, mechanical engineering, construction, etc., in
designing, it becomes necessary to study the stress-strain state, strength or stability of structural elements. In
this case, as a rule, modeling requires the use of the systems of partial differential equations that have no ana-
Iytical solution. One of the most common numerical methods, the finite element method, is based on the idea of
replacing a continuous model with its discrete analog. In this case, the object shape is modeled by a set of sim-
ple shapes (for example, tetrahedra or hexagons).

The first step in modeling the behavior of an object is to specify its shape. At the same time, one of the
most universal approaches to the description of object shape models is the functional one [1-3]. It makes it pos-
sible to use implicit functions and logical operations with them to describe complex object shapes. However, in
the general case, the implicitness and complexity of the resulting functions do not make it possible to directly
generate discrete models. As a result, it is important to develop methods for constructing discrete object shape
models that allow one to investigate their behavior with a given accuracy.

The aim of the research is to develop a method for constructing adaptive discrete object shape models
that are represented functionally.

At present, highly effective methods have been proposed for constructing discrete shape models based
on triangular [4], quadrilateral [5], tetrahedral [6], and hexagonal elements [7]. They make it possible to ap-
proximate geometric object features but do not take into account the accuracy of modeling object behavior.

To improve the accuracy of modeling, adaptive discrete models are used. The most common methods
for constructing adaptive discrete models are based on a local increase in the number of nodes and elements [8],
search for the optimal coordinates of nodes or approximation on finite elements by high-order functions [9].
Searching for the optimal coordinates of nodes, as a rule, does not allow one to significantly increase the accu-
racy of modeling independently and is used in conjunction with other methods. Increasing the number of nodes
and elements in the worst approximating areas is most common. However, its use makes it necessary to correct
the positions of the boundary nodes. Using a finite-element solution approximation by high-order functions
improves the accuracy of modeling but significantly increases the algorithmic complexity and in some cases
can lead to poor convergence of numerical solutions.
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1. Functional approach to modeling object shapes
The main idea of the functional approach is to use implicit functions to represent the object shape.
For example, the function

2 2
X +Yy
b
r2

circle(x, v, r): 1- r>0,

greater than zero in the middle of the region bounded by a circle of radius r centered at the origin of coordinates
is zero at the boundary of this region and less than zero at the points external to it. More complex forms can be
described using R-functions [1-3], which correspond to logical operations. They are combined into systems,
among which one of the most common is

X =—X,

XAY=X+y—qx>+y%,
XVY=x+y+yxi+y,

where x and y are the values of the implicit functions corresponding to the shapes of the areas (primitives) in-
volved in the corresponding operation. For example, the shape of a flange (Fig. 1), can be given by the function

flange(x, y)= [rectangle(x -60, y—50, 80,100)v
v rectangle(x — 50, y—50, 100, 60)v circle(x — 20, y — 20, 20)v
v circle(x—20, y—80, 20)v circle(x —100, y—50, 50)| A (1)
A=cirele(x —100, y —50, 30) A ~circle(x — 20, y—20,10) A
A ﬂcircle(x —20,y—280, 10),

2 2
where rectagle(x, y, w, h)= [l —%} A (1 _%J ‘
w

2. Building discrete models of object shapes

Let there be an implicit function F corresponding to a certain object shape, and an initial discrete model
B is constructed for the area completely including this object. In this case, B consists of the elements whose
form corresponds to the required one. To generate a discrete model, one can use the following algorithm.

1. From the discrete model B, delete all the nodes in which the function F is less than or equal to zero,
as well as the elements incident to these nodes.

2. For each boundary node from the discrete model B, calculate the direction of the search for the
boundary as the arithmetic mean of the normals to the adjacent edges (edges in the two-dimensional case).

3. For each boundary node from the discrete model B, calculate the projection on the object boundary
as the point of intersection of the ray with the vertex in this node and the direction coinciding with the normal
found at the previous step. Move all the projections on the border, located at a small distance from the geomet-
ric object features to the corresponding points.

4. For each boundary face of the discrete model B, form the boundary elements that break the plane
or volume formed by the boundary vertices and their projections. In the two-dimensional case, each bound-
ary edge will correspond to a pair of vertices on the boundary. Accordingly, if B consists of quadrilaterals,
then one quadrilateral is to be added to the model; if B consists of triangles, then a pair of triangles are to be
added by drawing a diagonal in the quadrilateral formed by the vertices and their projections. In the three-
dimensional case, if B consists of tetrahedra, then the nodes of the boundary faces with their projections will
form the triangular prisms, which are to be subdivided into three new tetrahedrons by drawing diagonals. If B
consists of hexagons, then each quadrangular boundary face will correspond to a projection of four points on
the boundary, which together form a new hexagon.

5. Move each internal node to the center of mass of the figure formed by neighboring nodes. Apply
element-specific local transformations.
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Fig.1. Flange drawing and the distribution of the values of function (1)
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Fig. 2. Discrete models of the flange shape:
a — based on triangles; b — based on quadrilaterals

Let us consider an example of constructing a discrete model of the flange shape based on a uniform
initial mesh consisting of 45x30 nodes (Fig. 2). When using triangles, the model shown in Fig. 2, a will be
obtained. When using quadrilaterals, the model shown in Fig. 2, b will be obtained.

Construction of Adaptive Discrete Object Shape Models

The models obtained using the algorithm de-
scribed above do not take into account the approximation
accuracy of the problem being solved. To do this, it is
necessary to refine the discrete object shape model in the
process of finite element analysis. Thus, in two-
dimensional models based on triangular elements, each
triangle can be subdivided into four new ones by insert-
ing nodes in the centers of its sides (Fig. 3). This scheme
is known as the 'green triangles' scheme [10]. It makes it
possible to perform a uniform refinement of discrete
models based on triangular elements.

The 'green triangles' scheme can be generalized

o~

/>

Fig. 3. Subdivision scheme for triangular elements

to the case of tetrahedra. By inserting new nodes in

the centers of their sides, a tetrahedron can be subdivided into eight elements (Fig. 4). If a tetrahedron has a
common edge with the subdivided one, then it is subdivided into two elements by inserting a new node into

the center of the common edge. If a tetrahedron has a co

mmon face with the subdivided one, then it is subdi-

vided into four elements by inserting new nodes in the centers of the edges that belong to the common face.

Thus, for tetrahedra there are three refinement patterns.
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Fig. 5. Subdivision scheme for
Fig. 4. Subdivision scheme for tetrahedral elements quadrilateral elements

For the discrete models based on quadrangular elements, one can use the scheme for subdividing an
element into nine parts (Fig. 5) [11]. At the same time, for the neighboring elements two templates will be
enough. If a element has a common edge with the subdivided one, then it is subdivided into four parts. If the
element touches the subdivided elements with its two adjacent edges, then it is subdivided into five parts. As a
result, there are three basic patterns for quadrilaterals.

In the case of discrete models based on hexagonal elements, each hexagon subject to subdivision is
subdivided into 27 parts (Fig. 6) [11]. If some element has an edge participating in the subdivision process, then
it is subdivided into five parts. If an element has a face participating in the partition, then it is subdivided into
thirteen parts. If the subdivision process involves three vertices belonging to the same face, then the element is
subdivided into six parts. If the subdivision process involves six vertices belonging to two faces with a common
edge, then this element is divided into five parts. In the latter two cases, elements are obtained to which one of
the first two templates must be recursively applied.

As a result, each element shape has main types of templates described. In total, taking into account ro-
tation, there are 8 of them for triangles, 16 for tetrahedrons and quadrangles, and 256 for hexagons. Accord-
ingly, the following algorithm can be formulated.

1. For an object whose form is determined by the implicit function F, construct the initial discrete
model B.

2. Using the finite element analysis, obtain an approximation of the desired quantity at the nodes of the
discrete model B.

3. If there are elements for which the accuracy estimate obtained using the error function is greater than
a given value of &, then subdivide them and neighboring elements in accordance with the templates. Go to
step 2. Otherwise - the end of the algorithm.

Fig. 6. Subdivision scheme for hexahedral elements
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Fig. 7. Comparison of flange stress intensity:
a — triangular finite elements; b — quadrangular elements
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Fig. 8. Flange adaptive discrete model obtained as a result of using formula (2)

As a test example, consider the problem of studying the stress-strain state of a flange (Fig. 7). In di-
mensionless values, the thickness is assumed to be 20, Young's modulus is 200,000, and Poisson's ratio is 0.33.
The flange is believed to be under the action of a force uniformly distributed over a hole of radius 30, with an
intensity of 20, and the force vector coinciding with the x-axis. Both holes of radius 10 are rigidly fixed.

As a result of the finite element analysis of the flange plane-stressed state, it was found that when us-
ing triangular finite elements (linear shape functions), displacements in the first direction (x) are in the inter-
val [0; 0.0497], in the second direction (y) they are [-0.0168; 0.0168], stress o,, is [-24.683; 128.299], stress
Gyy 18 [-67.017; 67.624], stress t,, is [-43.924; 46.691], the intensity of the von Mises stress o; is [1.558;
132.909] (Fig. 7, a). When using quadrangular elements (bilinear shape function), displacements in the first
direction (x) are in the interval [0; 0.0503], in the second direction (y) they are [-0.01772; 0.0172], stress Gy,
is [-31.130; 141.285], stress oy, is [-77.568; 71.964], stress t,, is [-47.566; 47.151], the intensity of the von
Mises stress o; is [2.343; 141.520] (Fig. 7, b).

Common techniques for determining the areas for refining the number of nodes and elements use dif-
ferent estimates of the accuracy of the result. The simplest way of estimating accuracy (with an unknown exact
solution) is to compare the change in nodal values with the average value on the element [12]. In this case, the
error function used in the adaptive finite element analysis algorithm will take the form

C,-C;
error(e,C)= max ——— (2

i,jee l Z Ck
|€|kee
where e is an element; lel is the number of vertices in the element; C is a vector of nodal values.

When using formula (2) in the algorithm for constructing an adaptive discrete model (if C is the length
of the displacement vector, the limit on the maximum permissible error on the element is €=0.4), as a result of
three iterations for the two forms of finite elements, the refinement will be around holes of radius 10 (Fig. 8).

In the practice of engineering analysis there arises not only the task of studying the stress-strain state,
but also strength of structures. In this case, areas of greatest stress intensity are of fundamental interest to the
researcher. Accordingly, it is necessary to refine discrete models in the areas with the greatest change in stress
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intensity (or another scalar of interest to the researcher). At €=0.2, if C is the von Mises stress intensity o;, then
for the to forms of finite elements the refinement will be in the vicinity of the hole of radius 30, where the larg-
est relative change is o; (Fig. 9).
To study the stress-strain state of the flange in the three-dimensional setting, one can use the function
flange3(x, Y, z) = ﬂange(x, y)/\ ZA (20— z).

In the three-dimensional case, when using models based both on tetrahedra and hexahedra (Fig. 10) for
the adaptive finite element analysis, if the limit on the maximum permissible error on the element is €=0.2 and
C is the von Mises stress intensity o;, then the refinement zones will be similar to the two-dimensional ones

presented above .

(150 100) {0; (150 ; 10Di
Von Mises

14Z.709
127.114
111.51%
95.9234
80 .32281
64.7329
49.1376
33.5424
17.%471

{150%'3?139

won Hises
1138 .818
123.568
10§.317
~DE6R
-B16E
5662
3158
-DE54
-B15
1.56467

(150 0)
a 0
Fig. 9. Adaptive discrete flange model obtained as a result of using stress intensity to control accuracy
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Fig. 10. Adaptive 3D discrete flange model

Work Discussion
It should be noted that the difference between the numerical values in the extreme stress values be-

tween a conventional and an adaptive analysis is a few percent. If we compare the results for the plane-stressed
state with those for three-dimensional models, we obtain a difference of about 10%, which is explained by the
simplified hypotheses used for the two-dimensional case.

The results obtained in this work, in contrast to [4—7], allow one to construct discrete models for object
shapes, taking into account not only the geometric features, but also the accuracy of approximation of the value
of interest to the researcher.

Conclusions
Thus, the main scientific result of the research is a new method for constructing adaptive discrete

models of object shapes that have been represented functionally. The proposed method, unlike the existing

ones, is based on the analysis of the finite element method results, and not only on geometric information.
The method algorithm can be used to construct adaptive discrete models based on arbitrary shape

elements. It is based on the idea of using patterns to reconstruct discrete models of geometric objects.
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Numerical convergence is confirmed by comparing the results for the models based on elements of

various shapes and having different numbers of elements, as well as comparing two-dimensional and three-
dimensional cases.

Prospects for further research are related to the use of machine learning methods to predict the areas

in which discrete models need to be refined.

This work was carried out as part of research on the state budget theme "Development of software

for engineering analysis of aerospace technology objects based on cloud technologies", 0117U007204.
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AanTUBHI JMCKPeTHI Moaei (PyHKUIOHAJBLHO MpeAcTaBJeHuX (popM BUPOOIB
Yomopos C. B.
3anopi3pkuil HalllOHABHUHN YHIBEPCHTET, 69600, Ykpaina, M. 3anopixks, Byi1. JKykoBcsKkoro, 66

11io wac npoexmysanms Yacmo 3acmoco8yEMbCs YUCETAbHUL aHANI3 Moodenell 8Upobie Mauuno0y0y8anus, wo

SPYHMYIOMbCS HA PIGHAHHAX Y YaACMUHHUX NoXioHux. OOuum i3 HatOibW NOUUPEHUX YUCETLHUX MeMOOi6 € MEMOO CKi-
HYEHHUX eeMeHMIB, 8 AIKOM) HenepepeHa Mooeib 8UpoOy 3aMIHIOEMbCSL OUCKPEMHOI0 MOOeLNio. B pe3ynomami nepuium
emanom Mo0eniosants € nobyoosa OuUcKkpemmuoi mooeni popmu upody K CKiHuenno2o 06’ conanms npocmux gicyp. 3a
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MaKux ymog po3nooil eremenmié 8 OUCKPEemHill Mooeni Gopmu upody iCIMOMHO GNIUBAE HA TMOUHICb YUCETbHO2O
ananizy. OOuum i3 HatOLILW YHIBEPCATLHUX NIOX00TI8 00 KOMN 10MEPHO20 MOOENI08AHHS (YOpM 8UpoDi6 € PYHKYIOHATb-
He nooans. Januil nioxio epyHmyemvbcs Ha SUKOPUCMAHHI HEABHUX (DYHKYIU O GU3HAYEHHS MHOJICUHU MOYOK, AKA
saeas€ co6o10 popmy 06’ ckma. Boonouac nessmi Qyuxyii 01 cKiaoHux 06’ ekmis Modicyms 0ymu no6yo0oeaui KOHCmpy-
KMUBHO, BUKOPUCIOBYIOUU KOMOIHayii npocmiwux ¢yHkyii. [nsa ybo2o Moxcyme 6ymu UKOpUCMari 3anponoHo8ati 6
meopii R-gyuxyii Oiticni ¢pyukyii, wo ionosioaioms n02iyHUM onepayisam. Xoua Qyukyionarvhe noOanHs 00360J5€
nepesipumuy HaiexiCHiCmb MOYKU 00 MHOJNCUHU, dlle OJi1 Hb020 HeOOXIOHA po3poOKa mMemoodie nobyooeu OUCKPemHUx
Mmodeneti. Y yitl pobomi 3anponoHo8ano memoo 075 no6y006u A0anmMusHUX OUCKPEemHUX mooenel Gopm 06’ ekmis, 30-
bpasxcenux gynkyionanvro. B yvomy memoodi 8ukopucmogyemvcs OYiHka mMOYHOCMI CKIHYEHHOECNEMEHMHO20 AHANI3Y
01 8U3HAYEHHs 0Dacmell 32yueHts. V378 | eleMeHmis. Y npoyeci 32yuieHHs 6UKOpUCMOo8yIomsbCsl wabionu po3oum-
ms enemMenmis, AKi 3anpoOnoOHOBAHI 015l HAUOIILUL YACIO BUKOPUCTOBYBAHUX eACMEHMIE (MPUKYMHUKIS, YOMUPUKYIMHU-
Ki6, mempaeopie i weCmuepanHuKia), 3 penpoeKyicro Ha epanuyr obaacmi epanuynux ¢y3uis. Ilokaszani npuknaou no-
6Y008U a0anmuHUX OUCKPemHUxX mooeell nio Yac po3e’A3amHs 080- i MPUBUMIPHUX 3A0aY 00CTIONCEHHS HANPYIHCEHO-
depopmosarnozo cmamy.

Knwouogi cnosa: ouckpemmua mooenv, popma supoby, nesasna ynkyis, R-ghynkyisn, mMemoo cKiHuenHux eiemenmis.
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