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This paper solves the problem of determining the stress state near cracks in an infinite
hollow cylinder of arbitrary cross section during longitudinal shear oscillations. We
propose an approach that allows us to separately satisfy conditions both on the cracks
and boundaries of a cylinder. The problem reduces to the equations of motion in a flat
domain with the defects bounded by arbitrary smooth closed curves under anti-plane
deformation conditions. The solution scheme is based on the use of discontinuous solu-
tions to the equations of motion of an elastic medium with displacement jumps on the
surfaces of defects. Displacements in a cylinder with defects are represented both as a
sum of discontinuous solutions constructed for each defect and an unknown specific
function ensuring that the conditions of a harmonic load on the body boundaries are
met. This function is sought as a linear combination of linearly independent solutions
to the equations of the theory of elasticity in the frequency domain with unknown coef-
ficients. The constructed representation makes it possible to separately satisfy the
boundary conditions on the surfaces of defects, which results in a set of systems of in-
tegral equations that differ only in their right-hand sides and do not depend on the
body boundary shape. The resulting systems of integral equations can be solved by the
method of mechanical quadratures. After that, the conditions on the boundaries of the
cylindrical body are satisfied, from which the unknown coefficients of the introduced
specific function are determined by a collocation method. Using the approach pro-
posed, the stress intensity factors in the vicinity of defects were calculated. With the
help of those calculations, we investigated the effect of the frequency and location of
the defects on the stress intensity coefficient values.

Keywords: hollow cylinder, harmonic oscillations, stress intensity factors, system of
cracks.

Investigation of the stress state of the bounded bodies with cracks is relevant both for determining the
conditions for the destruction of the bodies by estimating the coefficients of the intensity of dynamic stresses in
the vicinity of cracks and diagnosing such defects based on the information on their effect on resonance frequen-
cies. The results obtained in this direction related mainly to both unbounded and semi-bounded defective bodies
[1-4]. A much smaller number of situations have been considered for the cases where the bodies occupy limited
areas. This is due to the fact that with the application of the method of boundary integral equations, the original
problems are reduced to the interrelated systems of integral equations given on both the defect surface and
boundary of the body [5-7], which significantly complicates the numerical implementation, especially in the
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case of uncommon defects and multi-connected domains. This paper proposes a method that allows the bound-
ary conditions on the defects and surface of a body to be independently and consistently satisfied.

Problem Formulation v
A hollow elastic cylinder is considered, with its elements being parallel to , V X GP(p)e ™

the Oz axis, and the xOy cross-section being a two-connected plane domain “1\ = '

bounded by arbitrary closed smooth curves. These curves are in the polar coordi- T TED

nate system whose center coincides with the origin of the xOy coordinates, and are AN

determined by the equations: r=rW, (¢) for the external boundaries and 4 ﬁ:b/ *

r=ny, (¢)for the internal ones, 0<¢ < 2m. The cylinder contains N through

cracks with centers at the points (ck ,d, ). that in the xOy plane do not extend be- Fig.1 Infinite hollow cylinder

yond the cross-section and occupy 2a, ,k = I,_N long segments (Fig. 1). with cracks

In the cylinder, longitudinal shear oscillations occur. They result from the lateral surface being under
the action of the self-equilibrium harmonic load GP(¢)e™™ , where G — the shear modulus, P(¢)-the given

non-dimentional load amplitude, @ — the oscillation frequency. The multiplier ¢ is omitted everywhere.
Under such conditions, other than zero is only the z-component of the displacement vector, with the compo-
nent satisfying the Helmholtz equation [8]. In the polar system, this equation has the form:
5 2 19 1 97
AW+K2W=0; A=—2+——+—2—2,
or° ror r’ad

ey

where K, :Cﬂ; C, = \/E ; P is the density of the cylinder material.
2 p
The outer surface of the cylinder is considered to be loaded:

T (1w (9).0) = GP(9). 0< o < 2m, e)
The interior surface is considered to be motionless:
w(ry,(0).0)=0,0< ¢ < 2m. 3)
In order to formulate the boundary conditions at cracks, each of the crack centers is associated with the
local coordinate system x, 0, y,,k = I,_N (Fig. 1). The relationship between the local and global systems is given
by the formulas:

{x:ck + X, cOsQ, — y, sin0,, @
y=d, +Xx,sin0, + y, cos0.
{xl =(ck—c,)cosal+(dk—d,)sin0c,+xk cos(ock—ocl)—yk sin(ock—ocl), k=12 N
v, =—(ck—cl)sin0cl +(dk —d,)cosoc,+xk sin(ock—ocl)+ Vi cos(ock—ocl), B
The relationship between the local and polar coordinate systems has the form:
X, = (rcosq)—cl)cosocl +(rsin¢—dl)sinocl,
{yl =(rsin(l)—dl)cosocl—(rcosq)—cl)sinocl. ©)

Let w, (xk , yk) be a z-component of the displacement vector in the conversion from Polar to Carte-

sian coordinates by formulas (5). Cracks are considered to be free of loads:

) I
T, (xk,O): ka(xk,O):O, |xk|<ak, k=1,N. (6)

k
Also, on crack surfaces, there are discontinuous displacements with jumps

<wk> =w, (xk ,+0)—wk (xk ,—0)=xk (xk ), |xk| <a.k =1,_N_ @)

From the conditions for crack closure, it follows that (* a, )=0.
Under these conditions, a problem of determining the stress state in the vicinity of cracks is assigned.
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Solving the Problem
For each crack in the local coordinate system, a discontinuous solution [9] with jumps (7) is constructed:

P a,
Wz(d)(xz’yZ):g J-Xz(ﬂ)rz(ﬂ—xz’yz)dﬂ, @
]

-a;

where r,(N—x,,y,) = —i Hél)(KN Mm-x,)>+ )712 ), H(()l) is the Hankel function.

Further, in the Polar coordinate system, the displacement is presented as:

W (r.0)= D (r.0)+ 3wl (r.0). ©
I=1

where w,(g )(r,(b) are discontinuous solutions (8) after the conversion to polar coordinates, w(()g )(r,¢) is some un-

known function, which is the solution to the Helmholtz equation (1) through which conditions (2), (3) on the cyl-
inder surface will be met.
Next, this function is presented as a linear combination of partial solutions to the Helmholtz equation (1):
M

wi(r.0)=1,>" (4,8, (r.0)+ B,h,(r.0)) (10)

s=1

where
hy (r,0)=H, _ (Kyr)cos(m—1)0, h,,, (r,0) = H,, (K,r)sin mo;

Zoma (1,0)=J,_ (k,r)cos(m—=1)9, g,,,(r,0) = J,, (K,r)sinmo .
These functions are linearly independent and form a complete closed system in the cross-section [10].
In order to realize boundary conditions (6) at the cracks in the coordinate system associated with the
k™ crack, the displacement is given similarly to (9)

N
Wk(xk’yk)zWl(c)(xk’yk)-i-zwllc('xk’yk) (11)

=1

where w,? (xk , yk) is obtained from w(()g )(r,(I)) after the conversion of coordinates by (5), and w,l( (xk,yk) asa

result of substitution into wl(g )(r,<|)) x;,y, by the second formulas in (4).

Thereafter, the substitution of (11) into (6) leads to a system of integro-differential equations, which,
after separating the singular components, takes the form:

1 , 1
L) [T%;Rﬁ(«—g)}wz—; [k v Ve
NIl Lo 1 b :
+z[2—n [0 e L o0 e g)dr} ) 12
L :
k=1..N;s=1,.M; i=12.
The kernels of the integral operators F(t,c), Fk(ll)(r, g) are the functions that are infinitely differen-
tiable with —1< 1,6 <1, while for others, there occurs the asymptotic behavior:

R()=0(emfz) ROG)=0( ) -0
The right-hand sides in (12) are equal to

o .0 oh (a,c,0
FQ)=—r, 20080 gy, IlacO)
9y, 9y,

When deriving system (12), we used the representations:
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a c d
_ _ 4 _ _ 0_Cr 0_ G

Ko =Kolgs Ve == =T, X, =aq,G, ¢ =—, dp =—,
0 o 0

Oy =a, =0, a,0, (t)= X (azT)s Xz,(az'c) = (I)z,('c)-

In addition, due to linearity (12), we gave the unknown functions as:

0,(0)=a, 3 (4,00(x)+ B,0P(x)
N 5=l / (13)
o/ )= 4,00 + 5,60 )

To (12) we should add another equality, which results from the conditions for crack closure:

j(¢§33(r)fdr=0 (14)

-1
The solution to integral equations (12), (14) is based on the representation of the derivatives of the
unknown functions in form [11]:

, (i)
o) =D joia as)

V1-1°

and approximation of the functions \u(jk) (t) by the following interpolation polynomial

i c i Tn T
W)= 3 w), —2E (16)
m=1 (T_Tm )I‘n (Tm)
where T, (1) is the Chebyshev polynomial, T, are its roots, (\ug’k) )m :wffk) (’Cm)
As shown in [4], from formulas (15), (16) for ¢(Y’k) (1) the following approximation is derived:
i N (oo 28 o) ST, 5,0
o) =12 (1)), () == Y wld), 2 e (7)
m=l p=1
Formulas (15) and (17) give us the opportunity to solve the equations by the method of mechanical

quadratures using the roots of the Chebyshev polynomial U, _, (c):¢ ;= cosﬂ, Jj=L2,...,n—1 as collocation
n

points. In applying this method, for the Cauchy integrals, the well-known quadrature formula [11] is used,
for the integrals with regular nuclei, the Gauss-Chebyshev formulas are used. The integral with logarithmic
singularity is calculated by the formula obtained from [4]:

jq) ln‘c -G; ‘d‘c Zam\pm > k=1,...,nj=1,..,n-1,

S +1)o,
C/ (lnz——COSZGJ 22 cos PB (COS(p—l)Gj—M}
p=2 p+1
Bmzw;ojzf_“;ang
2n n n

As a result, a set of well-defined systems of linear equations with respect to the node values (\pg’k) )m
is obtained:
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ml

N
+$ |:Zam( vl )ij];ri +zam( vil )m jm:| fv(kl)( j)’
=1

Sl e L) i, -0

(18)

m=1
1#k

> a, W), =
m=1
j=len—1; k=1.,N; s=l..M, i=12.
In (18)

R, =R, =), Fi=E0(,—c,) DY =3B R —c) EL=3B.FHG ).
r=l =l

___ 2 sin ZCOS(PB )Sm(PP) Bmzw’pvzs—n,zvzcospv.
P R p 2n 0 o+l |

rm

The unknown coefficients A, , B, in (10) are determined from conditions (2), (3) at the boundaries
of the cylinder. To implement (2), we calculate the stress

T (w(0).0) =T, (w(0). 0)c, + 7, (w(0).0)c, - (19)

In formula (19), c,, c, are the directional cosines of the normal vector.

After substituting the expressions found for the stress into (19), boundary condition (2) takes the form:

ZA [ZJ% (1, 0)dr+ FU( J+ZB [ZI% G, (t.0)dt+ F )(q))J P(0) (20)

k=1_1 k=1 _1

Condition on the inner surface (3), after the unknown functions are presented as in (13), will look like:

f(ZM (o) g, (w0 J+ZB[ZM r¢dr+h(w1(¢)¢)J=o. @

Approximation (17) makes it possible to replace the integrals in (20), (21) with integral sums using
the Gauss-Chebyshev quadrature formula, after which, by applying the method of collocation in the nodes

c. = %, r=1,..,M from (20), (21), we obtain a system of 2M linear equations to determine A, and B, .

r

The values that determine the possibility of crack development are the stress intensity factors (SIFs)
at the vertices x;, = %*a,, which in this case are determined by the formulas:
K =./q Q_l)lglﬂ)\/ ltylz(a,r,O)

After solving both (18) and the system obtained after the boundary conditions are satisfied, SIFs
have the dimensionless values obtained:

gt gy refest] Segorele]

m=1 m=1

n(2m—1)

where v, = 5
n
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Results of Numerical Studies

As an example, a cylinder with a cross-section bounded /'

by two ellipses was considered (Fig. 2). [ N
It was considered that the external boundary is under ¢ A

load P(0)=sin2¢, the eccentricities of the inner and outer el- & jB k/ D A

lipses are identical and equal €=0.5, the ratio of the semisolid of

the ellipses /5, =0.5.
First, we investigated the dependence of the absolute SIF | Fig.2. Cross-section of a cylinder with a crack

values on the dimensionless wave number ¥, = K,#, for different angles of the crack in relation to the surfaces of
the body. Fig. 3 corresponds to the case of an inclined crack with a fixed length equal to one third of the distance
between the vertices of the ellipses AB and the center of the crack at an equal distance from the cross-section.
Curves 1-5 illustrate the behavior of SIFs for angles of 0°,30°,45°,60°,90°, respectively. As the analysis of

calculations has shown, the behavior of SIFs is identical
k+
results of numerical studies of the behavior of the SIF
absolute values in the frequency domain, in particular
k+

kK
. In view of this, the 2

for both crack vertices, but‘k“ <

their achieving the resonance regime, are given for

(Fig. 3).

Before reaching the first resonance frequency,
SIFs decrease as the crack inclination angle increases.
The inclination angle also significantly affects the num-
ber and value of resonant frequencies. So, for the inclina- 0

tion angles oo =0° and o =90° there is no resonance at
Ky =2.6 that can be observed for other angle inclination |  Fig. 3. Dependence of the SIF behavior on frequency
values. However, all the cases considered are character- when the crack inclination angle changes

ized by the SIF resonant behavior when x, = 3.8.

Fig. 4. shows SIF behavior dependence on frequency with the increase in the relative crack length
when the vertex approaches cylinder boundaries. Fig. 4, a corresponds to a crack along the axis of abscissa

((x = 00) with a variable length, so that the left end of the crack C was fixed, and the right one D approached the
outer edge of the cross-section. That was achieved by changing the parameter Y=a/r, from 0.094 to 0.189
when the crack reached the outer surface. Curves 1, 2, 3 correspond to the values of y=0.094; 0.141; 0.188.

it ) i k .
4 I l," : % |4 | ! l
I \\ .',
i ¥ i
A R il
¥V |
2 — 2
;o |
| /4/ ]
T2
0 0
0 2 4 K 0 1,5 3 Ky
a b
Fig. 4 Dependence of the SIF behavior on frequency with the increase in the relative crack length:
a— when the vertex approaches the top to the loaded surface; b — when the vertex approaches the motionless (inner) surface
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It turned out that such a parametrization almost does not affect the absolute SIF values ‘k“ in the
k+

as the relative crack length increases and the vertex approaches the outer boundary of the cylindrical body.
Resonance phenomena can be observed in the frequency range of 3<x, <4 (Fig. 4, a).

vertex of the crack S that is distant from the crack outer contour. In the case considered, SIFs increase

Fig. 4, b shows the SIF behavior for the same crack in the case when the right end was fixed, and the
left one approached the inner surface at the same values 7. It turned out that such a parametrization affects

k+
As the crack length increases and approaches the inner boundary of the cylindrical body, in contrast to

similar results for the crack end approaching the outer boundary (Fig. 4, a), the absolute SIF values decrease.
Resonant phenomena can be observed, as in the previous case, in the frequency range of 3<x, <4 (Fig. 4,b).

the behavior of ‘k“ , while for

the values are almost unchanged.

Conclusions

We propose an effective analytical-numerical method for the determination of dynamic stresses in a
hollow cylindrical body of arbitrary cross-section with transverse cracks for antiplane deformation. It allows
us to separately solve the integral equations at the defect and satisfy the conditions at the body boundary,
thus facilitating the numerical implementation.

The method can be generalized to the case of a flat deformation state. This is confirmed by the results
of [12], [13], where such problems are solved for a cylindrical body, whose cross-section is a simply connected
domain. Certain difficulties in applying this method arise when the defect approaches the cylinder outer bound-
ary. But in general, the proposed method allows us to approximately calculate SIFs and investigate how their
values are effected by the geometric parameters of the crack and cylinder in a rather wide frequency range.

It is shown that the presence of cracks in an elastic hollow cylinder under harmonic load is accom-
panied by both the intensity of dynamic stresses in the vicinity of defects and the resonance nature of their
change due to the generation of the wave process in the limited region.

In the frequency range considered, it is possible to achieve one or two resonances, depending on the
crack inclination angle in relation to the body boundary. The change in the inclination angle, as well as the
crack approaching the outer surface, significantly affect both the SIF value and speed of their achieving the
resonance regime from the low-frequency domain.
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Hanpyskenuii cTaH NOPOKHMHHOIO UJIIHAPA 3 CHCTEMOIO TPIlllMH 32 TAPMOHIYHIX KOJHBAHb
NOB310B:KHBOI'0 3CYBY

Kupunosa O. 1., [Ionos B. T
Harmionansauii yHiBepcuTeT «Oiechka MOpChKa akagemisi», 65029, Ykpaina, m. Ozeca, Byn. Jlinpixcona, 8

B pobomi po3s’sizana 3a0aua 3 GusHAUEHHA HANPYHCEHO20 CINAHY NOOIU3Y MPIWYUH 8 HECKIHUEHHOMY NOPOICHUHHO-
My YUIIHOPI Q0BIMbHO20 nepepi3y nid Yac KOMUBAHb NOG3008HCHLOSO 3CYEY. 3anpOnOHO8AHO MIOXIO, WO O0360J€ OKPEeMO
3A0060bHUMU YMOBU HA MPIWUHAX MA HA SPAHUYSAX YUIHOPA. 3a0aya 3600umvcsi 00 PiBHAHb PYXY 6 NIOCKil obnacmi 3 Oe-
Gexmamu, obmedicenumu O0GUILHUMU  2NAOKUMU 3AMKHEHUMU KDPUBUMU, 6 YMO8ax ammuniockoi oegpopmayii. Cxema
PO36’A3aHHA OA3YEMbCS HA BUKOPUCTNAHHI PO3PUBHUX PO38 S3KIG PIBHSAHb PYXY NPYICHO20 cepedosuwya 3i cmpubkamu nepe-
MiugeHb Ha nosepxrsx deghexmis. [lepemiwyents 6 yuninopi 3 Oepexmamu nOOArMbCsL CYMOK PO3PUBHUX PO38 SI3KI6, N06YO0-
BAHUX OJISl KOJHCHO20 OeqheKkmy, | Hegi0oMOI XapakmepHoi (yHKYil, wo 3a6e3nevye GUKOHAHHS YMO8 2apMOHIUHO20 HABAHMA-
JiceHHsl Ha medcax mina. L gynrkyis posutykyemocs y 6uensioi KOMOIHayil THITHO HE3ANeHCHUX PO38 SI3Ki6 PIGHAHb Meopil
npyscHocmi y yacmomuiii ooaacmi 3 Hegioomumu Koegiyienmamu. CKOHCIMPYUO8aHe NOOAHHA OAE 3MO2Y OKPEMO 3a0080.1b-
HUMU Kpatost yMoGU Ha NOBEPXHI OeheKmis 3 OMPUMAHHAM CYKYRHOCIE CUCeEM THIMeSPAIbHUX PIGHSIHb, U0 BIOPI3HAIOMbCS
MIbKU NPasumu 4aCmMuHaMu i He 3anexcamv 6i0 opmu medci mina. Ompumani cucmemu IHMESPATbHUX PIGHSHD
PO36’A3YI0MbCA MEMOOOM MEXAHIYHUX Keaopamyp. ani 3a00801bHAIOMbCS YMOBU HA SPAHUYAX YUTTHOPUUHOLO MIAd, 3 SAKUX
MemoOoM KONOKAYIU GU3HAYAIOMbCSL HeGiOOMI Koehiyicnmu 66edenoi xapakmepHnoi ynkyii. 3acmocogyiouu 3anponoHosa-
HUtl niOXI0, NPOBEOEHO PO3PAXYHKU KOeDIYIEHMIE IHMEHCUBHOCI HANPYICEHb 68 OKOJL 0e(eKmi, 3a 00NOMO20I0 SIKUX 00CII-
OICEHO 6NIUB HA IXHI 3HAUEHHS YACTNOMU A PO3MAULY8AHHS deeKmis.

Kniouoei cnosa: noposicnunnuil YyuiiHop, 2apMOHIUHI KOTUBAHHS, KoepiyicHmu IHMEeHCUBHOCII HANPYICEHb, CUCTE-
Ma mMpiuH.
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The development of composite technologies contributes to their wide introduction into
the practice of designing modern different-purpose structures. Reliable prediction of
the stress-strain state of composite elements is one of the conditions for creating reli-
able structures with optimal parameters. Analytical theories for determining the stress-
strain state of multilayer rods (bars, beams) are significantly inferior in development to
those for composite plates and shells, although their core structural elements are most
common. The purpose of this paper is to design an analytical model for bending double
support multilayer beams under a concentrated load, with the model based on the pre-
viously obtained elasticity theory solution for a multi-layer cantilever. The second part
of the article contains examples of the implementation of the model for bending double-
support multi-layer beams under a concentrated load, with the model constructed in the
first part of the article. Using this model, solutions to the problems of bending multi-
layer beams with different types of fixation of their extreme cross-sections were ob-
tained. The resultant relations were approbated using test problems for determining the
deflections of homogeneous composite double-support beams with different combina-
tions of fixation, as well as in determining the stresses and displacements of a four-
layer beam with a combination of a rigid and hinged fixation at its ends. The results
obtained have a slight discrepancy with the simulation results by the finite element
method (FEM) and the calculation by the iterative model for bending composite bars,
even for relatively short beams. In addition, it is shown that the neglect of the shear
amenability of layer materials results in large errors in determining the deflections, and
in the case of statically indefinable beams, reactive forces and stresses. The approach
used in the construction of the model can be extended to the case of beams with arbi-
trary numbers of concentrated forces and intermediate supports, and to calculate multi-
layer beams with different rigidity of their design sections.

Keywords: multilayer beam, orthotropic layer, concentrated load, deflection, stresses,
displacements.

The mechanics of deformation of composite multilayer plates and shells is the subject of a large num-
ber of fundamental scientific works [1-8]. The deformation of composite rods (bars, beams) is less studied,
although such structural elements are most common.

When a problem of bending composite beams is solved, there is a wide spread use of refined models,
in particular, constructed by an iterative method [9—11]. Such models are quite universal, however, they are
very cumbersome and difficult for practical use at high refinement steps. At the same time, exact solutions for

© Stanislav B. Kovalchuk, Oleksii V. Goryk, 2019

24

ISSN 0131-2928. Ilpoonemu mawunodyoysannus, 2019, T. 22, Ne 1



