Винтовой тип симметрии в деталях машин и дизайне при реализации на 3D-принтере
Ключевые слова:
теория R-функций, 3D-печать, винтовой тип симметрии, шнекАннотация
Создание математических моделей для реализации 3D-печати представляет значительный интерес, который связан с активным внедрением 3D-печати в различные отрасли промышленности. Достоинства применения 3D-печати: изготовление нестандартных моделей, сокращение времени на создание новых прототипов, простота и значительная дешевизна производства, использование современных сверхпрочных материалов. Изготовление деталей машин с винтовым типом симметрии происходит различными, зачастую весьма сложными способами. Это литьё с последующей токарной обработкой, способы горячей деформации, электрофизические и электрохимические способы и др. Весьма перспективным может оказаться их изготовление на 3D-принтере. В данной работе применяется теория R-функций для математического и компьютерного моделирования геометрических объектов с винтовым типом симметрии при реализации технологии 3D-печати. Аналитическая запись проектируемых объектов дает возможность использовать буквенные геометрические параметры, сложные суперпозиции функций, что, в свою очередь, позволяет оперативно изменять их конструктивные элементы. Рабочей деталью многих механизмов для продвижения материала вдоль винтовой вращающейся поверхности является шнек. Шнеки используются вместо колес в некоторых видах вездеходов или комбайнов. Они являются незаменимой деталью в экструдерах и на буровых станциях. На крупных предприятиях их используют в качестве средства транспортировки сыпучих веществ. Шнеки незаменимы в пищевой промышленности. Помимо прочего, они используются в стрелковом оружии, где деталь исполняет роль магазина для патронов. В работе построены математические и компьютерные модели шнеков с переменным и постоянным шагом закрутки, реализованные на 3D-принтере. В энергетических установках и других технических устройствах широко используется закрутка потока для организации и интенсификации различных процессов. Закрутка является эффективным средством стабилизации пламени в камерах сгорания газотурбинных двигателей; используется для интенсификации тепло- и массообмена в каналах; в химической, нефтяной, газовой и других отраслях промышленности. Построены математические и компьютерные модели шнекового завихрителя, трубы с локальной закруткой, скрученной трубы сложного поперечного сечения, которые реализованы на 3D-принтере. Осуществлен также процесс построения настольной лампы с дизайнерским оформлением в виде скрученных торов эллиптического сечения.Библиографические ссылки
Khalatov, A. A., Avramenko, A. A., & Shevchuk, I.V. (2000). Teploobmen i gidrodinamika v polyakh tsentrobezhnykh massovykh sil [Heat transfer and hydrodynamics in the fields of centrifugal mass forces (Vol. 1–4): Swirl flows (Vol. 3)]. Kiyev:Institute ofEngineering Thermophysics of NASU, 476 p. (in Russian).
Rvachev, V. L. (1982). Teoriya R-funktsiy i nekotoryye yeye prilozheniya [The R-functions theory and some of its applications]. Kiyev: Naukova dumka, 552 p. (in Russian).
Rvachev, V. L. & Sheiko, T. I. (1995). R-functions in boundary value problems in mechanics. Appl. Mech. Reviews, vol. 48, no. 4, pp. 151–188. https://doi.org/10.1115/1.3005099
Maksimenko-Sheyko, K. V. (2009). R-funktsii v matematicheskom modelirovanii geometricheskikh obyektov i fizicheskikh poley [R-functions in mathematical modeling of geometric objects and physical fields].Kharkov: IPMashNAN Ukrainy, 306 p. (in Russian).
Litvinova, Yu. S., Maksimenko-Sheyko, K. V., Sheyko, T. I., & Tolok, A.V. (2016). Analiticheskaya identifikatsiya mashinostroitelnykh detaley s pomoshchyu R-funktsiy [Analytical identification of machine-building parts using R-functions]. Informatsionnyye tekhnologii v proyektirovanii i proizvodstve − Information Technologies in Design and Production, no. 1 (161), pp. 38–44 (in Russian).
Lisin, D. A., Maksimenko-Sheyko, K. V., Tolok, A. V., & Sheyko, T. I. (2011). R-funktsii v kompyuternom modelirovanii dizayna 3D-poverkhnosti avtomobilya [R-functions in computer simulation of the design of the 3D surface of a car]. Prikladnaya informatika − Journal of Applied Informatics, no. 6 (36), pp. 78−85 (in Russian).
Загрузки
Опубликован
Выпуск
Раздел
Лицензия
Copyright (c) 2019 T. I. Sheyko, K. V. Maksymenko-Sheiko, A. I. Morozova
Это произведение доступно по лицензии Creative Commons «Attribution-NoDerivatives» («Атрибуция — Без производных произведений») 4.0 Всемирная.
Авторы, публикующиеся в этом журнале, соглашаются со следующими условиями:
- Авторы оставляют за собой право на авторство своей работы и передают журналу право первой публикации этой работы на условиях лицензионного договора (соглашения).
- Авторы имеют право заключать самостоятельно дополнительные договора (соглашения) о неэксклюзивном распространении работы в том виде, в котором она была опубликована этим журналом (например, размещать работу в электронном хранилище учреждения или публиковать в составе монографии), при условии сохранения ссылки на первую публикацию работы в этом журнале.
- Политика журнала позволяет размещение авторами в сети Интернет (например, в хранилищах учреждения или на персональных веб-сайтах) рукописи работы, как до подачи этой рукописи в редакцию, так и во время ее редакционной обработки, поскольку это способствует возникновению продуктивной научной дискуссии и позитивно отражается на оперативности и динамике цитирования опубликованной работы (см. The Effect of Open Access).