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UDC 519.85 This paper discusses the problem of optimally packing spheres of various dimensions into
containers of arbitrary geometrical shapes. According to the international classification, this
METHODOLOGY | problem belongs to Sphere Packing Problems (SPPs). The problem is to pack a set of spheres

TO SOLVE (circles, hyperspheres) with given radii into a container with given metric characteristics. The

aim of this work is to create an integrated methodology for solving SPPs. The basic formula-
MULTI- tions of the problem are presented. in the form of the knapsack problem (KP), open dimension
DIMENTIONAL problem (ODP), and their corresponding mathematical models. The solution strategy selec-
SPHERE tion is influenced by the form of problem statement, dimension of the space where the spheres

are to be packed, metric peculiarities of the spheres (equal or unequal), number of the
PACKING spheres to be packed, geometric shape of the container, presence of technological restraints,
PROBLEMS and count time limit. The structural elements of the methodology are mathematical models,

methods for constructing initial packings, and methods of local and global optimization. In

developing the solution method, we construct the initial feasible packings by using both the
random and lattice methods, using a greedy algorithm and solving an auxiliary nonlinear
programming problem. As local optimization methods, we consider the modifications of the
feasible direction method, interior point method, Lagrange multiplier method, and method of
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Introduction

Problems of optimally packing geometric objects are the problems of geometric design [1]. Accord-
ing to the international classification, such problems belong to cutting and packing (C & P) problems [2].
One of the C & P problems is SPP of various dimensions (2D — circles, 3D — spheres, nD — hyperspheres).
SPP is to pack spheres of a set with given radii in a given container. It is necessary either to obtain the
maximum infill factor of the container, or find the minimum possible container size.

SPPs are widely used both in scientific and practical applications, for example, in the textile, cloth-
ing, automotive, aerospace and chemical industries [3], in nuclear power engineering for modeling processes
in a nuclear reactor [4], in additive manufacturing to optimize the geometric shapes of parts and components
[5] and in medicine for planning automated radiosurgical treatment [6]. Hypersphere packing is used for
modeling the geometry of crystalline states [7]. Such problems also arise in the numerical evaluation of the
integrals either on the surface of a sphere or inside it [8]. The main applications of SPPs are coding theory,
digital communication, and information storage, for example, CDs, cellular phones and the Internet [8, 9].

Depending on the problem statement, there are two main classes of SPPs: KPs and ODPs [2]. KP is
to pack spheres of a given set into a container of given fixed sizes with the maximum infill factor. In ODP,
all the spheres of a given set must be packed into a container, with all its dimensions fixed except for one
whose value must be minimized.

In [10-14], some researchers use SPP formulation in the form of KP. If it is necessary to go to solv-
ing ODP, a dichotomous search for the minimum container size is used, i.e. a sequence of KPs is solved. At
the same time, in order to search for the initial points, rather efficient heuristic greedy algorithms (GAs) are
used [10, 11, 13, 14].

© Georgiy N. Yaskov, 2019

ISSN 0131-2928. Journal of Mechanical Engineering, 2019, vol. 22, no. 1 67



I[MPUKIIATHA MATEMATHKA

In [15], SPP is formulated as ODP. As a minimum container size, the radius, length, height, perime-
ter, area, volume, and surface area are used. A nonlinear mathematical model with twice differentiable func-
tions is proposed. This model allows a local minimum of the problem to be obtained. Initial sphere packings
are randomly selected.

In [16, 17], in order to solve SPP formulated as KP, a mathematical model based on increasing prob-
lem dimensionality is used. It is assumed that the radii of the spheres temporarily become variable and the
sum of volumes (areas in 2D) is maximized. The optimization process continues until the radii of the spheres
reach their original values.

The idea of introducing additional variables was also used to solve ODP in order to pack unequal
spheres [18, 19]. Additional variables improve the distribution of spheres in a container where there is un-
used space allowing the sphere radius to be increased. A transition is made from one local minimum point to
another, with the best value of the objective function. When using such an algorithm, it is important to find
the connection between the original and auxiliary problems with additional variables.

With a small number of spheres, we can use the methods of complete enumeration of the problem
extreme points and theoretically get a global extremum. However, in practice, this is hampered by the com-
plexity of solving systems of nonlinear equations [20].

With increasing the number of the spheres to be packed, the problem dimensionality increases pro-
portionally and the number of constraints, nonlinearly. For large dimensionality, in order to solve the prob-
lem, we use either random sphere packings [21] or the approximate methods based on problem decomposi-
tion, for example, using the optimization method in groups of variables (OMGV) or GA [22, 23].

Thus, with different formulations of a packing problem, different approaches and methods for their
solution are used. However, there is still no integrated methodology for solving such problems.

Therefore, the goal of this work is to create a methodology for solving problems of packing multidi-
mensional spheres.

Mathematical models of the multidimensional sphere packing problem
It is obvious that, first of all, the solution strategy selection is influenced by the type of problem
statement. Consider the statements of KPs and ODPs and their mathematical models in more detail.

KP is formulated as follows. Let there be a container C < R“ of a given geometric shape with fixed
sizes and a set of spheres §;(u;) C R%iel v ={L2,..., N} with given radii, where u; is the sphere translation
vector, S;,i€ I, d 22 is the space dimension. The problem is to pack the spheres from the set S;(u;),ie I

(all or part of them) without mutual overlapping in the container C with the maximum infill factor.
Suppose that there are K sizes of the spheres from the set S;(u;),ie I, with the radii 7,

ke I, ={1,2,..,K}. Denote the number of the spheres with the radius r, that can be packed inside the con-
tainer C as n,, ke I, and generate a tuple = (n, ,n,,.....,ny). The tuple # must contain at least one non-

zero element n, , k€ I . Denote the set of all possible tuples ¢ as 7. The power of the set T'is equal to
K

H(nk+1).

k=1
Form a subset S’ of the spheres Sj(uj), je J ={1,2,...,n} of the set Sj(uj), jeJ ={12,...,n} in

accordance with the tuple ¢ = (n, ,n,,....,n; ), where

K
n=n, .
k=1

The subset S', taking into account the translation, is denoted as S'(v)={E ) jed }, where

d . . . .
v=,v,,...,v,)€ R" is the vector of packing parameters, Sj(vj), jeJ, v; :(xlj,xzj,...,xdi) is the

translation vector of the sphere S i v j) .
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KP can be formulated as follows. Find a subset of spheres S'(v¥), ge I o» Which can be fully

packed in the container C with the maximum infill factor

F'=F (" .f')=max ) (r,)* given (v.)e W cR"xT, (1)
teT Y
WZ{(V,Z): ®[j(v[’vj)20,i’j€ J’i> j’q)[(vi)zo’ie J}’ (2)

where @, (v,) is the ®-function for S, € S" and the object C’ =R*\intC [24,25],
d
2
Dy (vv,)= Y (= xg) = (1 +71,)” 20.
k=1
The solution to problem (1)—(2) can be reduced to the enumeration of the elements of the set 7T .

A point ve W can be found for the elements and the search for this point can be performed by solving the
following optimization nonlinear programming problem where the radii of the spheres are variable:

K =k, r’) :maXer given (v,r)e M, 3)
jel
where r = (1,5,....1,,) ;
— (d+D)n .. . .
M—{(v,r)eR 1@y (v, v 1,r) 20,0, jE T i< 4)

®.(v;,r)20, ieJ, r—-r>0, ieJ},

n
2 2
¢[j(v[9vjar;‘srj)=z(xki_xkjj _(”; +rj) .
k=1

Problem (3)—(4) is multi-extremal. The objective function is linear, so the extrema are at the extreme
points of the feasible region M. The function ®;(v;,v;,r;,r;) 1s a quadratic form. The type of the function
®,(v;,r.) depends on the geometric shape of the container.

Now consider ODP. A set of spheres S;(u;),ie I, must be packed in the container C with a mini-
mum size (area, volume, or metric characteristic).

The mathematical model of ODP [16] can be represented as

i =min f(u) given ¥ =(u,u)e W c RV, (5)
where W is the variable metric characteristic (vector of variable metric characteristics); A is the number of

variable metric characteristics (A =1 for a linear characteristic, for example, length, height, etc., and A >2 if
the container size is specified by several metric characteristics, for example, area, surface area, volume);
f () is the function that determines the variable size of the container C ( f (L) = for A=1);

W={r e RN : @, (u,u,)20,0<i< je I, ®,u,0)20,icl,}: (6)

d
2
q’g(”ia”;)= E (xki_xkj) _(”;"‘”j)z«
k=1

Problem (5)—(6) is a multi-extremal nonlinear programming problem.

Problem Solving Methodology

The methodology for solving optimization sphere packing problems is based on the analysis of the
problem statement, initial data and constraints. It includes the construction of mathematical models that
cover SPPs, study of their features and development of strategies for solving the problem assigned. A struc-
ture, logical connections, proposed methods and means of solving the problem are studied.

The solution strategy selection is influenced by the following factors:

— type of problem statement (KP or ODP);
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— dimensionality of the space in which the spheres (d =2, d =3 and d >4 ) must be packed;

— metric features of the spheres (equal or unequal);

— number of the spheres to be packed;

— geometric shape of the container;

— presence of technological limitations;

— constraint on the count time.

Depending on the peculiarities of the problem statement and mathematical model, a strategy for solv-
ing the problem is proposed, with the methods for constructing admissible packings (initial points or approxi-
mate solutions), local optimization methods and global optimization methods being its structural elements.

It is proposed to use the following methods for constructing admissible packings: random, lattice,
greedy algorithm, auxiliary nonlinear programming problem. The random method is to randomly select the
coordinates of the centers of the spheres and check the admissibility of packing [16]. In the lattice method,
the centers of the spheres coincide with the lattice nodes [16, 23, 26]. When using GA, which is a modifica-
tion of OMGYV, the problem is decomposed into subproblems [27]. The coordinates of one sphere are chosen
as a group of variables, and the objective function can be chosen heuristically. In order to obtain an admissi-
ble packing, an auxiliary nonlinear programming problem or a sequence of such problems can also be used
[26]. In some cases, it is advisable to use combinations of these methods [16, 26].

As methods of local optimization, depending on the peculiarities of the mathematical model and
number of the spheres to be packed, modifications of the feasible direction method (FDM) [16, 23, 26], inte-
rior-point method (IPM) [18, 19, 28, 29], Lagrange multiplier method (LMM) [30], and optimization method
in groups of variables (OMGYV) [30] should be used. In all the methods, it is advisable to apply the strategy
of an active set of constraints [31], due to which computational costs are significantly reduced.

FDM makes it possible to reduce the solution of a nonlinear programming problem to a sequence of lin-
ear programming problems. For SPPs, the specifics of the constraints are taken into account: some of them may
be linear, the matrices of the first and second derivatives are highly sparse. Such peculiarities make it possible to
apply special software packages [32, 33] and solve problems of a sufficiently large dimensionality (500010 000)
variables. At the same time, such programs work more steadily for the spheres of smaller dimension d <3.

IPM is designed for solving problems of nonlinear programming and works effectively for problems
of medium dimensionality (up to 1000 variables).

LMM is used to search for a local extremum in combination with the steepest descent method and is
based on the analysis of Lagrange multipliers of active constraints.

In the case of packing a large number of spheres (with the number of variables greater than 10 000),
we should use OMGYV, choosing from 1000 to 10 000 variables in a group. To obtain a quick result with a
constraint on the count time, we can optimize the packing of each sphere locally and separately by selecting
a group of variables d that define the coordinates of the sphere center. This packing method is also called the
sequential addition method (SEM) [1, 22, 34].

Global optimization methods are presented by: the method of enumerating the sphere subsets of a set
(MESS), method of enumerating the extreme points (MEEP) of the feasible region on the basis of the branch
and bound algorithm [20]; modifications of the decremental neighbourhood search methods (DNSM)
[35, 36]; method of smooth transition (STM) from one local minimum to another based on increasing the
dimensionality of the problem by introducing additional variable metric characteristics [18, 19, 29], method
of solving sequences of non-linear programming problems of increasing dimensionality (MSSP) [16, 26]. A
combination of these methods can also be used. For all these methods, we apply a multi-start method
(MMS), which allows us to expand the selection of possible packing options.

MESS is used to solve KPs. To obtain a solution, we enumerate various options for selecting a
spherical subset of a given set, with the enumeration implemented in the form of a tree [37]. To reduce the
number of the tree tops under consideration, cut-off rules are used with the help of which non-perspective
tops are discarded based on the analysis of the lower and upper estimates of the objective function.

In MEEP, all the subsystems are solved from a system of constraints, i.e. all the surfaces describing
the feasible region boundary are investigated. For this, the branch and bound algorithm is used. In the case of
a linear objective function, a solution is found at one of the extreme points of the feasible region. If all the
constraints in a problem are reverse convex (for example, the packing of hyper-spheres in a hyper-
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parallelepiped), then the extreme point is determined by a system of equations whose number is equal to the
number of the problem variables.

With the help of DNSM modifications, the objective function is optimized on the various permuta-
tions of spheres and solution tree based on the probabilistic properties of the objective function.

Now we will consider the basic statements and strategies for solving the problem.

KP. If a problem formulated in the form of KP is under consideration, then for each option selected,
it is necessary to solve problem (3)—(4) with the help of FDM and IPM. With a small number of spheres and
dimensionality of spheres d <3, a complete enumeration of the extreme points of the feasible region (using
MEEP) is also possible. If the number of spheres is greater than 10, then either a truncated solution tree or
MSSP is used. With a large number of spheres (more than 10 000 variables), various modifications of
OMGY are used.

The method of obtaining the initial packing depends on the problem dimensionality, ratio between
the sphere sizes and container, and type of the container. If the problem of packing equal spheres is to be
solved, the size of the container is significantly larger than that of the spheres, and the problem dimensional-
ity is no more than four, then a lattice method of constructing the initial packing is used. In other cases, either
a random method or a special GA [26] is used, for example, in the step-by-step process of MSSP.

If the container has a complex geometric shape (for example, if there are a large number of prohib-
ited zones), then, in order to obtain the initial point, an auxiliary nonlinear programming problem should be
used, whose solution allows us to restore permissibility from any randomly selected point not belonging to
the container [26].

The presence of technological constraints, for example, those on the minimum and maximum per-
missible distances, narrows the feasible region, and consequently the number of packing options. Usually, in
this case, the lattice method of obtaining initial packings is not applied.

ODP. In order to solve problems with a variable container size, formulated as (5)—(6), the solution
strategy also depends on the number of the spheres to be packed and problem dimensionality. Usually, in
ODPs, the container with prohibited zones is not considered.

If the number of the spheres is not greater than 10, and the sphere dimensionality d <3, then MEEP
is used, implemented as a modification of the branch and bound algorithm [20]. In order to solve systems of
equations, the Newton method is used. In this case, a set of extreme points includes a set of local extrema
and there is no need to apply a method of local optimization.

When increasing the number of spheres or space dimensionality, it is necessary to use methods of lo-
cal optimization (FDM, DNSM), MST, and MPP, which work well for problems of medium dimensionality
(10-300) spheres. For high dimensionality problems, only an FDM algorithm, consisting in solving a se-
quence of linear programming problems (5000—10 000 variables), is applicable as a method of local optimi-
zation. In order to obtain an approximate solution to the problem, it is necessary to apply OMGYV. The same
method can be used to obtain approximate solutions.

As a method of obtaining initial packings, the lattice method is used for identical spheres and GA,
for different spheres.

It should be noted that KP can be solved as ODP, in which the container homothety coefficient is
minimized. Such a transition is expedient in solving problems of packing unequal spheres. It allows using
MST for solving KPs.

Conclusions

An integrated methodology for solving problems of packing multidimensional spheres is proposed.
This methodology is a development of the theory of geometric design and can be used by specialists in this
field to select a strategy for solving the problem. With the help of the methodology developed, it is possible
to solve sphere packing problems formulated as both KPs and ODPs. The methodology is focused both on
modern developments in the field of geometric design and use of powerful software packages for solving
problems of linear and nonlinear programming.
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MeTonooris po3B’si3aHHsA 32124 PO3TALLYBAHHS 0araTOBUMipHHX KYJIb
AcbxoB I'. M.

[HcTUTYT IpOGIeM MamHOOYAyBaHHs iM. A.M. Ilinropaoro HAH Ykpainu,
61046, Ykpaina, M. Xapkis, Byi1. [Toxxapceskoro, 2/10

B cmammi pozensadacmocs 3a0aua onmumanrbHo20 po3Mitgerts Kyib Pi3Hoi po3MIipHOCHI 6 KOHMeEUHepax 008ib-
HUX 2eoMempudnux hopm. 32i0no 3 MidcHapoOHoio Kiacugixayicio ys 3adava nanedscums 00 xkiacy SPP (Sphere Packing
Problems). Bona nonseae ¢ posmiugenti Habopy Kyiv (Kpyeis, 2inepkyiv) 3a0aHux paoiycig y KOHMeuHepl 3 3a0anumu Me-
mpuyHUMU Xapaxmepucmuxamu. Memoio danoi pobomu € cmeopenns €OuHoi memooonozii poss’szaunsa 3a0ay SPP. Ha-
6€0€HO OCHOBHI NOCMAHOBKU 3A0ayi: Y uaiali 3a0aui npo ProK3axK i 3a0aui 3i 3MIHHUM PO3MIPOM KOHMeUHepa ma 8i0no-
6I0HI MamemamuyHi modeni. Ha eubip cmpamezii po3s’sizanns eniueaoms U0 ROCMAHOSKU 3a0ayl, POIMIPHICMb HPOC-
mopy, 8 AIKOMY POIMIWYIOMbCSL KV, MEMPUUHI 0COOIUB0CMI KY/ib (DIGHI Ul HEPIGHI), KIIbKICMb POIMIULYBAHUX KYilb, 2€0-
MempuuHa opma KoHmeuHepd, HAsA8HICMb MEXHOL02IUHUX 00MedHCceHb, 0bMedceHHA Ha Yac obuuciens. CmpyKmypHumu
enremenmamt MemoOooao2ii € MamemMamuyti Mooemi, cnocoou noOy008U NOYAMKOBUX POIMIWEHb, MEMOOU JIOKANbHOL Ul
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enobanvroi onmumizayii. I1io yac po3podxu mMemooy po3e's3anis GUKOPUCTOBYEMbCSL N0OYO008a OONYCMUMUX POMIWEHb
BUNAOKOBUM, TPAMYACIUM CHOCODAMU, 3d OONOMO20I0 HCAOIOHO20 ANOPUMMY Ul WISIXOM PO38 A3AHHA OONOMINICHOL 3a0a-
Yi HeNMiHIH020 Npocpamy8anis. AK Memoou 10KAIbHOI onmumizayii po3erioarmscs MoOOUpIKayii Memooy MONCIUBUX
Hanpsamis, Memoo GHYmMpiuHbOi MoyKU, Memoo MHONCHUKIG Jlazpanaca ma memoo onmumizayii 3a epynamu 3MinHux. J{is
2100anbHOT ONMUMI3AYTT BUKOPUCTIOBYIOMBCS MEMOO Nepebopy NIOMHONCUR KVIb i3 3a0aH020 HAOOPY, Memoo nepedopy
Kpauimix moyox oonacmi 0OnyCmumMux po3e’s3Kis, peanizo8ani 34 00NOMO2010 AOPUMM)Y 2LI0K i medrc, Moougikayii me-
moOoi6 OKOJI6, W0 38VHCYIOMBCS, MEMOO NIABHO20 Nepexody 3 00HO20 JOKAIbHO2O0 MIHIMYMY 6 IHUIUIL HA OCHOBI 30i1bUleH-
H5l PO3MIPHOCII 3004l WLISXOM YBEOEHHS 00AMKOBUX 3MIHHUX MEMPUUHUX XAPAKMEPUCIUK, MEMOO PO36 S3aHHS, Peai-
308aHULL Y 6U2NA0T NOCTIOOBHOCMI 3a0ay HENIHIHO20 NPOSPAMYBAHHSL 3pOCMAOYOL POZMIDHOCI, MEMOO MYTbMUCIMAPMY.
3anpononosano cmpameeii po3e’szanns 3a0au SPP 015 pisnux it nocmaHosox.

Knwuosi cnosa: kyns, einepkyns, ynakoska Kyib, 3a0a4a Npo proK3aK, 3a0a4ad 3i 3MIHHUM PO3MIPOM, HeNIHIUHA
ONnmuMIizayis.
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