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As is known, thin plates with holes are one of the most common structural ele-
ments. To increase their reliability and service life, it is of interest to find such
a hole contour that ensures the minimum circumferential stress thereon, and
also prevents the growth of possible cracks in the plate. This article deals with
the problem of minimizing the stress state on the contour of a hole in an un-
bounded isotropic stringer plate weakened by two rectilinear cracks. Crack
faces are considered to be free of stress. Determined is the optimal hole con-
tour, at which no crack growth occurs, and the maximum circumferential
stress thereon is minimal. The minimax criterion is used. The parameter char-
acterizing the stress state in the vicinity of crack tips, according to the Irwin-
Oroan theory of quasi-brittle fracture, is the stress intensity factor. The plate
undergoes uniform stretching at infinity along the stringers. It is believed that
the plate and the stringers are made of various elastic materials. The action of
the stringers is replaced by the unknown equivalent concentrated forces ap-
plied at the points of their attachment to the plate. To determine these forces,
Hooke's law is used. Applying the small parameter method, the theory of ana-
Iytic functions and the method of direct solution to singular equations, we con-
structed a closed system of algebraic equations. This system depends on the
mechanical and geometrical parameters of the plate and stringers, ensures the
on-hole contour stress state minimization and equality of stress intensity fac-
tors to zero in the vicinity of crack tips. The minimization problem is reduced
to a linear programming problem. The simplex method is applied.

Keywords: stringer plate, stress minimization, cracks, optimal hole contour,
minimax criterion.

One of the most common structural elements is thin plates. Frequently, such plates have technological
holes. Since the holes are stress concentrators and can lead to premature failure, the problem of minimizing the
stress state on the hole contour is of great interest [1-15]. Article [1], based on the finite element method (FEM),
develops an iterative method to optimize the hole contour to simultaneously minimize the tangential stresses in
several areas around the hole boundary. It shows that such an optimal hole contour can significantly reduce peak
stress in all the areas around the hole boundary, compared to typical non-optimal circular holes. Article [2] de-
scribes a piecewise-smooth optimal contour that minimizes local stresses under remote shear for a single, stress-
free hole in an elastic plate, with the methods of conformal mapping and genetic algorithm used. It shows nu-
merically that the hole contour found provides a shear stress by 30% lower than the stress concentration factor
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for commonly used circular holes. Article [6], considers three holes for the case when two identical side holes
differ in shape and area from the central one. Compared with one hole, interacting optimal holes create 15-19%
less energy, depending on the distance between them and the shape of the central hole. Article [3] gives a solu-
tion to the inverse elastic problem of determining the optimal shape of the hole contour for an isotropic medium
with a system of foreign transverse straight inclusions (an unbounded plate reinforced by a regular stringer sys-
tem). The criterion for determining the optimal shape is the condition that there is no concentration of stresses on
the surface of the hole or the requirement for the plastic region to form at once over the entire surface of the hole.
Article [5] obtains a solution for the inverse elastic-plastic problem of determining the optimal shape of hole
contours for a riveted perforated plate. Article [4], investigates the mixed problem of the theory of elasticity for a
rectangle weakened by equal-strength holes. It assumes that the tangential stresses at the outer boundary of the
rectangle are zero, and the normal displacements are constant, with the tangential stresses on the contours of the
holes being zero, and the normal stresses being constant. It also determines the boundaries of the holes for which
the tangential normal stress is constant. Article [7] carries out the optimization of the shape of staggered holes,
free from stresses. Article [8] provides common basic equal-strength forms and structural elements, gives equal-
strength forms of an aircraft swept-back wing, and finds some new equal-strength forms for elastic bodies with
any number of infinite branches pulled out of the body under the conditions of plane deformation and plane
stress state. Article [9] considers the problem of finding the equal-strength hole form at the crack tip and its ef-
fect on crack growth. The obtained solution to the problem of optimal design allows selecting the optimal geo-
metric parameters of the body, ensuring effective crack retardation. Article [10] presents an evolutionary method
for optimizing structures, based on the displacement of control points along the boundary of elements, and de-
termines the optimal element form, i.e. one for which the stress concentration factor is reduced. Article [11] con-
ducts the minimization of the stress concentration around the hole edge in an orthotropic plate, and investigates
the optimal holes and stress distribution at different loads, Young's modulus and fiber direction in the plate. Arti-
cle [12] carries out a semi-analytical study of periodic and doubly periodic non-standardly located equal-strength
holes in an infinite plate with a given volume load, with the main attention paid to periodic structures with some
rotational symmetry. Article [13] conducts a theoretical analysis to determine the mine working form ensuring
maximum strength. Article [14] proposes a criterion and method for solving the inverse problem of preventing
the destruction of an isotropic elastic plate weakened by a hole and an arbitrary system of cracks under the action
of a given system of external loads, with the principle of equal strength and minimization of stress intensity fac-
tors implemented. Article [15] determines the optimal hole shape in an isotropic elastic plate weakened by an
arbitrary system of cracks on the basis of the minimax criterion.

To increase the service life and reliability of a structure, it is important to consider the possibility of
the presence of cracks, i.e. determine the hole contour, at which no crack growth will occur [9, 13-15].

The problem under consideration is to find such a hole contour in the stringer plate, weakened by
two rectilinear cracks, at which no crack growth will occur, and the maximum circumferential stress on the
contour will be minimal.

Formulation of the Problem
Consider an unbounded thin plate reinforced by a regular stringer system (Fig. 1). The plate and string-
ers are isotropic and made of various elastic materials. At infinity, the reinforced plate is subjected to uniform

tension along the stringers with the stress G} =0 The plate with the thickness /4 is weakened by a hole and

two rectilinear cracks.

The following assumptions are taken: during deformation, the thickness of the stringers is un-
changed, and the stress state is uniaxial; the stringers are not subjected to bending and work solely in tension;
in the plate, the flat stress state is realized; the truss-type stringer system and the weakening of the stringers
due to the setting of attachment points is not taken into account; the attachment points are the same, their
radius a, (point adhesion area) is small, compared to their 2L step and other characteristic dimensions; the
plate and stringers interact with each other in the same plane and only at the attachment points.

It is believed that the attachments of the stringers are arranged in a discrete manner with a constant
step yo along the entire length of the stringer, symmetrically relative to the plate surface. The action of the
attachment points is modeled by the action of the concentrated forces applied at the points corresponding to
the centers of the attachment points: z= +(2m+1)L+iky, (m=0, 1, 2,...; k=1, 2,...). The action of the stringers
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is replaced by the unknown equivalent concentrated forces applied at the points of their attachment to the
plate. The magnitude of the concentrated forces are determined in the course of solving the problem.
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Fig. 1. The design scheme of the problem

On the unknown hole contour L, the boundary conditions have the form
c,=0, T, =0;
on the crack faces,
c,=0, T,=0 aslxl <b.
Here n and ¢ are the tangent and normal to the hole contour.

It is required that a hole shape be found, with no crack growth occurring, and the tangential normal
stress o,, acting on the contour, being minimal. According to the Irwin-Oroan theory of quasi-brittle fracture,
the stress intensity factor is taken as the parameter characterizing the stress state in the vicinity of crack tips.
Thus, it is necessary that there be fulfilled the conditions for minimizing the maximum circumferential stress

o; on the hole contour and the equality of stress intensity factors to zero in the vicinity of crack tips.
Therefore, we require that there be met the conditions

min max ¢,(0,1m) (1)
neC 6e[0,27]

K{ =0, K} =0. )

Here C is the set of constraints to be defined; 7 is the design parameters; K, K| are the stress intensity fac-

tors in the vicinity of crack tips. Since in the problem under consideration the cracks are arranged symmetri-
cally, K =K;“, K} =K;".

The problem set is to determine such a hole contour, at which the maximum circumferential stress o,

is minimal, and the stress intensity factors in the vicinity of crack tips are zero, as well as to determine the
magnitudes of the concentrated forces P,,, and the stress-strain state of the reinforced plate.
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Solution to the Boundary Problem
We will seek an unknown hole contour L, in the class of contours close to circular. Imagine an un-
known contour L in the form
r=pO)=R+eH(9),

where €=R,,,,,/R is the small parameter; R, is the maximum height of the roughness of the hole contour profile
L, of the cirumference r=R; the function H(0) is to be determined in the process of solving the inverse problem.

Without reducing the generality of the problem under consideration, we assume that the desired
function H(0) is symmetric about the coordinate axes and can be represented as a Fourier series

H(©)= Zde cos2kO .
k=1
The required functions (stresses, displacements, concentrated forces P,,, and stress intensity factors)
will be sought in the form of expansions in the small parameter &
(0)

6,=06V+ec”+.., ©0,=06"+ecV+.., T, =T +eth +...,
u, =u” +eul +..., v, =v 0 +erM 4
—_ pO 4 op®
P,.,=P, +€P. +..,

K =K +eK" +...

in which we neglect, for simplicity, the terms containing & degrees higher than the first one.

Each of the approximations satisfies the system of differential equations of the plane problem of the
theory of elasticity.

The values of the stress tensor components at r=p(8) are obtained by decomposing expressions for
the stresses in the vicinity of r = R. Using the well-known formulas [16] for the stress components 6, and T,
the boundary conditions of the problem are written as follows:

— for a zeroth-order approximation:

0
on the contour, =R ¢'” =0, 9 =0; 3)
on the crack faces, Gio) =0, ‘CSV)) =0 a<lxl<b; 4)

— for a first-order approximation:
(60

on the circuit, =R ¢’ =N, T =T;
on the crack faces, Gi” =0, ‘tgv) =0 a< |x| <b.
o6 © 0 3H (0 (0) ©0) _ ~(0)
Here, N=-H(©) 2 4250 HO) 7 g9, 00 —0, IH®)
or R 09 or R 00

Based on the Kolosov-Muskhelishvili formulas [16] and boundary conditions (3)—(4), both on the
hole contour and on the crack faces, the problem in the zeroth-order approximation is reduced to the defini-
tion of two analytic functions ®(z) and ¥(z) from the boundary condition

OV (1)+ V(1) —*® hcb“”' (+¥ (’C)J= 0 at t=Re", )
PO (x)+ 0 (1) +x () + ¥V (x)=0  as<lil <b. (6)

The solution to the boundary value problem (5)—(6) is sought in the form (k=0)
DX (2) =D (2)+ D[V (2)+ DY (2), )

PO () =P )+ () + ¥ (2) .
The potentials CID(()O) (2), lI‘éo)(z) describe the stress and strain field in a solid plate under the action

of a system of the concentrated forces Pn(lg) and stress o, and are defined by the following formulas:
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1 i 1 1
PO () =g, —— N pO® _ , 8
0 (2)=7% 27th(1+1<)mz,{ o : . (8)

z—mL+iny, z—mL—iny,

1 i 1 1
PO (=g -  pO _ +
0 ( ) 2 0 27th(l+K)mZ,n mn . .

z—mL+iny, z—mL—iny,

i ) (0) mL—iny, mL+iny,
+ Z Pmn . 2 - . 21"
2Th(1+ %) 4 (z=mL+iny,)” (z—mL—iny,)

Here x=(3—v)/(14v); v is Poisson's ratio of the plate material; the prime symbol of the summation symbol
indicates that during summation the index m=n=0 is excluded.

We seek the functions Cbio) (z) and lPl(o)(z) in the form

1 t¢P0 1 t
oV ()=— &, 9O — gV, 9
() ij o (2)= MJL_Z (t_z)z}g (1)dr ©

where L,=[a, b]+[—-a, —b]; g(o) (x)= lz_udi [v+ (x,0)—v"~ (x,O)]; u is the shear modulus of the plate material.
+ K dx

The unknown function g”(x) and the potentials <I>(20) (z) and ‘PZ(O)(z) must be determined from the
boundary conditions (5) — (6). Imagine the boundary condition (6) in the form

P (1) + DY (1) —e*° kcbg“ (1) + 3" (r)]: -0 (1) - @ (1) + £™° hcp;m (1) + P (’c)J (10)
where (1) =®” (1) + PV (1), PV (1) =P (1) + ¥V (1) -

To solve the boundary value problem (10) (definitions of the potentials q)(zo)(z) and ‘I’Z(O)(z)), we use
N. I. Muskhelishvili's solution [16]. As a result, we have

1 1-¢2 z—t i
DO (=20 4 O (1ydr ———x
2 (@) 272 [1a-12) (1—tz)2 g 21th(1+ K)

Xz (0) (mL—iny,)(mL+iny,)—1 3 (mL+iny,)(mL—iny,)—1 b
(mL—inyO)[z(mL—inyo)—l]2 (mL+inyo)[z(mL+iny0)—1]2

m,n

iK 1 1
P(O) 11
" 21h(l+ %) mz;‘ { z[z(mL —iny,)— 1] z[z(mL +iny,)— l]} ()

o, @V o 1 2 t t’z—z—t 2u(z—t
vV (2) = &+ —2 z(Z) -— 2(Z)+ I P — 2 < 3) g (Ddr+
2z z z 2nzy |tz z(-r)  z(l-12)"  (-12)

A 3RO 1 B 1 N 1 _ 1
21th(1+ %)z "\ z(mL—iny,)—1 z(mL+iny,)—1 z(mL—iny,) (zmL+iny,)

In formulas (11), all the linear dimensions are related to the radius of the circular hole R.
Requiring that functions (7) with k=0 satisfy the boundary condition (6) on the crack faces, we ob-
tain a singular integral equation for g%(x)

Fa0)

& W+~ J' K(t,x)g @ (r)dt = F(x), (12)
7'CLI r—x
_ 2 3 2. 3.2
K(t.x) = x—t 2+L2+l 2t(x t)(x3 1)+2x X 22t+2t2)c X't ’
xt(l—w)”  x°t 2 x(1—1x) x“(1-tx)
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F(x)= £+ 2w,

Oy K+2 pO 1 S0 1
X)=—0 + P -
o (=0 * mth(l+K) {Zz - y{(x—mL)z +n2y§ z mn 70 (x+mL)* +n2y§

m=1 n=1 m,n=1

ZZP(O)” (x—mL)* —n* yo —(x*=m’}) +iip(0) (x+mL)? —nzyg —(x*=m’L})
Wh(l'*“() — [(x—mL) +n’ 2] m=1 n=1 [(x+mL)2 +nzy§]2
[0 = _ iP(O) n 2+i X
! 2L+ )k A ™ x°
y 2m*L? +n2y§ 1)[x2(3m2L —-n y0)+4xmL+1] 2K N
(m*L* +n’y; )[(xmL+l) +x2n2y§] (mxL+1)* +xn’y;

K 2.2 2

32 2
+(K_lj —4(m2L2+n2y§—1) [x (GBm*L* —n y0)+6x mL+3x]
[(xmL+l) +x°n yo]

_dx mL+ x(m*L* +n yo) _9 1 4 1 B
[(me+1) +x2n2y§] (mxL+1)* +x*n’y; m*L* +n’y;

) 242 2.2 2 2
1 ZP<0>(2+L2J<2(H1 L +n"y, - 1)[ Bm’L* —n’y;)— 4xmL+1]+
X

2n(l+ %)k (m*L* +n* yo)[(xmL 1)’ +x2”2y§]2

m,n=1

+
(mxL—1)* +x*n’y] K [(xmL—l) +x2n2y§]3

e mL— x(mL+ny0)> 2{ 1 I 1 }}_50 _é&

[(me 1)* +xznzy§]2 (mxL—1)*+x’n Yo m2L2+n2y§ 2x* 2 x*

To construct a solution to the singular integral equation (12), we use the method of direct solution of
singular equations [17, 18]. Proceeding to the dimensionless variables, we represent the solution in the form

gy (1])
1—1]2
where g(()o) (m) 1s a bounded function, continuous on the segment [-1, 1]; it is replaced by the Lagrange in-

terpolation polynomial constructed through using the Chebyshev nodes.
Using the algebraization procedure [17, 18], the singular integral equation (12), with an additional
condition that ensures the uniqueness of displacements during the path-tracing of crack contours

g =

j g 0dr =0, jg“” (e =

reduces to the system of M linear algebraic equations to define the M unknowns (m=1, 2, ..., M)
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M

Y Aue® = £0M,)+ £0m,)
k=1

" (13)
> 6%m,)=0
k=1
1 1 e, 40"l
where m=1, 2, ..., M-1; Amk:ﬁ n8 ctg—= ( 2) L+ KoM, | g2 =¢"(t); M, =cosb,;
—zm_ln'n =cos0,; T, =M
m M > Hm m> Vk ko

To determine the unknown concentrated forces P'” , we use Hooke's law, according to which the mag-

mn

nitude of the concentrated force P” acting on each point of attachment from the side of the stringer will be

po = EA N0 s, (14)

2yn
where E; is the Young's modulus of the stringer material; A, is the cross section of the stringer; 2yyn is the

distance between the attachment points; Av’(fn) is the mutual displacement of the attachment points consid-

ered, with the displacement equal to the elongation of the corresponding stringer section.
Let us take the natural assumption in [19] that the displacement compatibility condition is satisfied,
i.e. the mutual elastic displacement of the points mL+i(ny,—ay) and mL—i(ny,—a,) in the elasticity theory

problem under consideration is equal to the mutual displacement of the attachment points Av”. Using the

mn *

Kolosov-Muskhelishvili formulas [16] and relations (7)—(9), (11), we find the mutual displacement of the
indicated points Av!”. In view of some cumbersomeness, these expressions are not given. Solving systems

(13) and (14), we determine the magnitudes of the concentrated forces PO the approximate values at the

mn >
nodal points g (t, ), and thus, the complex potentials of the zeroth-order approximation.

For the stress intensity factors in the vicinity of the crack tip at x=a in the zeroth-order approxima-
tion, we have

M
,,, 2m—1
KL = \alb=a) Y )" g, e =
m=1

in the vicinity of the crack tip x=b,

M
KO =rb-a)> (-1)"g"(t,)ctg a1,
—~ 4aM
According to the Kolosov-Muskhelishvili formulas and relations (7), the stress components in the re-
inforced plate are found in the zeroth-order approximation. Knowing the stress state in the zeroth-order ap-
proximation, we find the functions N and 7.
After finding the solution to the zeroth-order approximation, we proceed to solving the problem in
the first-order approximation. The boundary conditions of the problem for the first-order approximation are
written as

&0 (1) + & (1) — 2 i@ (1) + WO () |= N —iT (15)

D (x)+ DV (x)+x@V () + ¥V (1) =0  a<ll <b. (16)
We seek the solution to the boundary value problem (15) similarly to the zeroth-order approximation
in the form (7) for k=1, where the potentials &{"(z) and P (z)describe the stress and strain field under
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the action of a system of the concentrated forces Pﬂi;’, and are determined by formulas similar to (8), in
which o, should be set equal to zero and P,,(f,? should be replaced with P”S}f .

We seek the potentials &{"(z) and ¥ (z) in the form similar to (9), where the function g%
should be replaced with g(l)(x).

We find the functions cp(z“(z) and lpz(l)(z) from the boundary condition (15), again using
N. I. Muskhelishvili's method

V()= () + Y ayz ™. V(@)= )+ by

k=0 k=0
Here, ®{"(z), ¥ (z) are determined by formulas similar to (11), where o, should be put equal to zero,

P should be replaced with P, and g”(x) should be replaced with g""’(x). The coefficients ay and by are

mn

found by the formulas

a'=Co,R"  (n=1,2,...), a=0,  b,,=(2n-1)R%a,, ,—R™a_,,., (n>2),
by=0, b, =—C,R?, N—iT =) Cye .
k=—oc0

For the concentrated P.) we have
2y0n WlVl
where the mutual displacement Ay is determined similarly to the zeroth-order approximation.

Requiring that functions (7) with k=1 satisfy the boundary condition (16) on the crack faces in the
first-order approximation, we obtain, after some transformations, a singular integral equation with respect to
the function g(l)(x):

o _
Pmn

g ()

8 W gy~ jK(z e @0)dr = FO (). (17)
Tch r—x

As in the zeroth-order approximation, using the algebraization procedure [17, 18], we reduce the
singular integral equation (17), with an additional condition that ensures uniqueness of displacements during
the path-tracing of crack contours in the first-order approximation

b —b
[2d war =0, [ 28" @ar =

—a

to the system M linear algebraic equations to define the M unknowns g(“ (t,) (m=1,2,....M)

M
D A =f"m)+£"M,)
k=1

M
> e’m,)=0
k=1

where m=1, 2,..., M — 1; g,EU zg(”(’ck)-
In the first-order approximation, for the stress intensity factors in the vicinity of the crack tip at x=a we have

Az . 2m—1
K =\nb-a)> (D" gV (1,)tg TV
m=1

in the vicinity of the crack tip x=b we have

u " 2m—1
K =\rb-a)> (-1)"gV(t,)ctg TR
m=1
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The resulting systems of equations of the first-order approximation are not yet closed, since the right-
hand sides of these systems include the coefficients d,; of the expansion of the function H(0) in the Fourier series.

To construct the missing equations, we use the boundary condition (1) with additional con-
straints (2). Using the solution obtained, we find o, in the surface layer of the contour Lo(r=p(0)) to the near-
est first-order values with respect to the small parameter ¢

(0)( 0)

c,=c" (e)\ +¢ HO) 2+ 6V (e)}

r=R
We find the maximum value of the function 6,(0,d,;) on the contour L,
maxo,(0,.d,,),
where 0, is the solution to the equation
do,(®)

do
To construct the missing equations that allow us to determine the coefficients dy,, we require that the
maximum circumferential stress o, on the hole contour (1) be minimized under the constraints

S g0, rega, )]tg

m=1

=0.

Li=o, Z( D"[e® ) +eg ) ]etg 2" - -0,

max o, < [(S]«
Here [o] is the permissible circumferential stress determined experimentally.

It is necessary to make use of the function H(6) in such a way as to ensure the minimization of the
maximum stress 6, (minimax criterion). It is necessary to find such values of the coefficients d,, that satisfy
the obtained system of equations and minimize the linear function maxo, (the objective function).

Since the stresses 6(0,dy;) (control performance index) and maxo, linearly depend on the required
coefficients dy, the problem under consideration reduces to a linear programming problem. In the problem
set, the simplex algorithm method turned out to be the most effective.

The calculations were carried out for the following values of free parameters: a/L was equal to 0.01;
yo/L was equal to 0.25. It was believed that the stringers were made of composite Al-steel, the plate, of
B95alloy; E was equal to 7.1-10* MPa; E, was equal to 11.5-10* MPa. The number of the stringers and at-
tachment points was assumed to be 14, the value of M was equal to 72. The value of M could be different,
but not less than 20, since that was the minimum value for good convergence of the numerical solution to

singular integral equations [17, 18]. For simplicity, we took: A,/yph=1. The results of the calculations of the
expansion coefficients of the unknown function H (6) are given below.

Fourier coefficients for the optimal contour

dy dy ds dg dyo dpp diy
0.1079 0.0869 0.0558 0.0368 0.0231 0.0014 0.0005

Conclusions

Thus, the problem of minimizing the stress state on the contour of the hole in the stringer plate with
two rectilinear cracks is solved. A closed system of algebraic equations is constructed. This system allows us
to find the optimal shape of the hole contour for the stringer plate weakened by two rectilinear cracks, de-
pending on the geometric and mechanical characteristics of the plate and stringers.

The study presented should be continued for other optimization criteria (equal strength, etc.) and
other types of plates that are widely used, for example, perforated ones weakened by several holes, etc.
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Minimi3zanist HanmPy:;KeHOro CTAaHy CTPUHTEPHOI MVIACTUHHU 3 OTBOPOM ii MPAMOJIIHIHHUMHU TPilMHAMHU
Mip-Canim-3age M. B.

InctutyT MatemaTrky i Mexaniku HAH AsepOaiimxany,
AszepGaiikan, AZ1141, baky, Byn. b. Baxa63ane, 9

Ak 6i00MO, MOHKI NIACMUHU 3 OMBOPAMU € OOHUM 3 WUPOKO NOUUPEHUX eleMenmie KOHCmPYKYil. [l niosuwenns
HAOIHOCMI i MEPMIHY CIYIHCOU CIMAHOBUMb THIMEPEC 3HAXOONCEHHSI MAKO20 KOHMYPY OMEopy, AKull 3abe3neuyc MiHiMatbHe
OKDYHCHE HANPYIHCEHHA HA KOHMYPi OME0PY, A MAKONHC NEPEUKOOHCAE POCTTY MOHCIUBUX MPIWUH Y naacmuni. Y yiti cmammi
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PO320AEMbCSL 300a4a MIHIMI3AYTT HANPYHCEHO20 CIAHY HA KOHMYPI OMEOPY 8 HeOOMENCEHI I30MPONHIll CMpUuHeepHill nia-
CMuHi, 0cnabaeniti 06oMa NPAMONIHIHUMU mpiwunamu. Bepeeu mpiwun 8sasxicaiomvcs 8itbHuMu 6i0 HasanmaiceHv. Busna-
4AEMbCA ONMUMATLHA YOPMA OMBOPY, MAKA, WO 3POCMAHHA MPiWuH He 8I00Y8AcmbCa, d MAKCUMATbHE OKDYICHE HANpY-
JHCEHHs1 HA KOHMYPT MiHIMAaTbHe. Bukopucmogyemscsa MiHiMakcHuti Kpumepiil. 3a napamemp, wjo Xapakmepusye Hanpy*CeHuti
CMar 6 OKoJi 8epuiUl MpiuH, GionosioHo 0o meopii keasikpuxkoeo pylinysanns Ipsina-Oposana npuimaemocsa KoegiyicHm
inmencugrnocmi Hanpyoicenv. Tlacmuna nio0acmvcs Ha HECKIHYEHHOCME 0OHOPIOHOMY PO3MSACYBAHHIO Y3008IiC CIPUHEEDIS.
Besaoicacmbcs, wo nracmuna i cmpuneepu UKOHAHI 3 PISHUX BPYICHUX mamepianis. [lis cmpuneepie 3aMiHIEMbCs HeBI0OMU-
MU eKGIBANEHMHUMU 30CEPEOIHCEHUMY CUNAMU, NPUKTAOEHUMU 8 TOYKAX IXHbO20 3'€OHAHHA 3 NIACMUHOI0. [{1sl ix GU3HAYEHHS
suxopucmogyemucs 3axon I yka. 3acmocysaguiu Memoo maniozo napamempad, meopiro aHAmuuHuX QyHKYil i Memoo npsamo-
20 PO36’A3aHHS CUH2YIAPHUX PIBHSHY, 0Y1a NOOYO08AHA 3aAMKHYMA CUCeMA An2eOPAiYHUX PIBHAHb, WO 3a0e3neuye 8 3a1edlc-
HOCMI 810 MEXAHIYHUX | 2e0MEMPUYHUX NAPAMEMPIE NIACIUHU MA CMPUH2EPI6 MIHIMI3AYII0 HANPYICEHO20 CIAHY HA KOHMYPI
0meopy i piGHICMb HYJIH0 KOepiyicHmie IHMeHCUBHOCME HANPYICeHb 8 OKOIL sepuiun mpiwut. [locmaenena 3a0aua minimizayii
3800UMbCSL 00 3a0aUi HIUHO20 NPOSPAMYBAHHSL. 3ACMOCOBAHO MEMOO CUMNIIEKCHO2O ANeOPUMMY.

Kntouogi cnoea: cmpurneepra niacmuna, MiHIMI3ayis HANPYi#CeHo20 CMAHy, MPIUHU, ONMUMATLHA Gopma 0meo-
PV, MIHIMAKCHUU Kpumepi.
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