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UDC 539.3 This paper proposes an analytical-numerical approach to solving the spatial prob-

lem of the theory of elasticity for the layer with a circular cylindrical tube. A cylin-

INVESTIGATION firic.al‘ de}mjpiity ;hick‘-w?ll‘ed tube is loca{ed ins‘ide thil layer parall?l to its sj?y;?ce; an‘d
to it. It is necessary to investigate the stress-strain state of the elastic
OF THE STRESS bodion of bon

bodies of both the layer and tube. Stresses are given on the inner surface of the tube,

STRAIN STATE and displacements, on the boundaries of the layer. The solution to the spatial prob-

OF THE LAYER WITH lem oft t:ze tZleorytof eljcctstLZity/ ,is obtc;i.ned {ayt;lhe g?ledrqlizled Fozt;ie;; method wtltZ
respect to the system of Lamé's equations in the cylindrical coordinates associate
A LONGITUDINAL

with the tube and the Cartesian coordinates associated with the boundaries of the

CYLINDRICAL THICK- layer. Infinite systems of linear algebraic equations obtained as a result of satisfying
WALLED TUBE AND the boundary and conjugation conditions are solved by the truncation method. As a

result, displacements and stresses are obtained at various points of the elastic layer
THE DISPLACEMENTS

and elastic tube. Due to the selected truncation parameter for the given geometrical

GIVEN AT THE characteristics, the satisfaction of boundary conditions has been brought to 10°. An
BOUNDARIES analysis of the stress-strain state for the elastic body at different thicknesses of the

tube, as well as at different distances from the tube to the boundaries of the layer is
OF THE LAYER conducted. Graphs of normal and tangential stresses at the boundary of the tube and

layer, as well as normal stresses on the inner surface of the tube are presented.
Vitaliy Yu. Miroshnikov These stress graphs indicate that as the tube approaches the upper boundary of the
m0672628781 @ gmail.com layer, the stresses in the elastic bodies of both the layer and tube increase, and with
ORCID: 0000-0002-9491-0181 decreasing tube thickness, the stresses in the elastic body of the layer decrease,

growing in the elastic body of the tube. The proposed method can be used to calcu-

Kh.arklv. National ) late structures and parts, whose design schemes coincide with the formulation of the
University of Construction problem of this paper. The analysis of the stress state can be used to select the geo-
and Architecture, metrical parameters of the designed structure, and the stress graph at the boundary
40, Sumska str., Kharkiv, of the tube and layer can be used to analyze the strength of the joint.

61002, Ukraine
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Introduction

When designing composite structures and components whose calculation scheme is the layer with a

built-in longitudinal circular tube, it is necessary to have an idea of the stress-strain state of the layer and
tubes, as well as the stress in their joint. To achieve this, it is required that there be a method of calculation
that would give an opportunity to obtain the result with the necessary accuracy.
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In the majority of publications, a plate or layer with a transverse circular cavity or inclusion [1, 2] is con-
sidered. However, the methods used therein can not be applied to the layer with a longitudinal cavity or inclusion.

In [3-5], stationary problems of the wave diffraction and determination of stresses are considered for
the layer with a longitudinal cylindrical cavity or inclusion on the basis of the Fourier decomposition
method. The problem for the layer with a circular cavity perpendicular to the boundaries of the layer, which
is solved with the help of the method of superposition of general solutions, is considered in [6].

In [7], with the help of the image method, the boundary value problem of the diffraction of symmetric
normal waves of the longitudinal displacement for the layer with a cylindrical cavity or inclusion is solved.

In the work mentioned above, an analytic-numerical approach is used, which is based on the general-
ized Fourier method [8]. On the basis of this method, problems have been solved for a half-space with a cy-
lindrical cavity or inclusion [9-13], as well as for a cylinder with cylindrical inclusions [14].

Problem Formulation

In the elastic homogeneous layer, there is a circular cylindrical thick-walled tube with an external ra-
dius R; and internal radius R, (Fig. 1).

The tube will be considered in the cylindrical coordinate system (p, ¢, z), the boundary of the layer
in the Cartesian coordinate system (x, y, z), which is equally oriented and connected with the tube coordinate

system (Fig. 1). The upper boundary of the layer is located at the
distance y=h, and the lower one, at the distance y=— h . It is neces- \
sary to find a solution to the Lamé equation on condition that at the

boundaries of the layer, the displacements U . (x,z)‘ yeh = U ,?(x,z),

U ( )‘ y—ii = a,g(x,z) are given, on the inner surface of the tube, <\

the stresses FU 5 (o, z)‘sz2 =F ,? (¢,z), and at the boundary of the \ R;gz ) \
tube and layer, the conjugation conditions h

Ul(q”z)\p:R, = 02((P’Z)\p:Rl ) (1

FU | (o, z)‘p: R = FU ) (o, z)‘p: R 2 Fig. 1. Layer with a cylindrical tube

where U, is the displacement in the layer; U2 is the displacement in the tube;

FU = 2-6-[1—(25.(5ﬁ-diﬂ7 +%l7+ 1 iixrotU } is the stress operator;
U (x,2)=UMel) +uMel) +uel),
U,(;)(x,z): U)(C )el( ) +U£, )ez(l) +U£E)E3(l), (3)
F2(pr2) = oE? + 10 4

are known functions; E](.k), ( j= 1,2,3) are the unit vectors of the Cartesian (k=1) and cylindrical (k=2) coor-

dinate systems; ¢, G are elastic constants.
All the given vectors and functions will be considered fast falling to zero at great distances from the
origin of the z coordinate for the tube and the x and z coordinates for the boundaries of the layer.

Solving the Problem
Choose the basic solutions to the Lamé equation for the specified coordinate systems in the form [8]

il (xy, )= N
R, (p.0, 1) = N{"1, (Ap)e™=?); “
S, m(p ¢, z0)=N [(s1gn7u (]k|p) X”’”‘”];k =1,2,3;

ei(kz+px)i*{}' .
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4 1 i - 1
=5 Vil k(c 1)<>+kv( v); N3<d)zxmt(63m.); meTV;

1 0 ~() 0
Nﬁ”)=X{V(pa—pJ+4(c—1)(v—e§2)a—ZH;N§f’)—xr0t( L) y=R i, o< hp <o,

where o is the Poisson factor; I,,(x), K,,(x) are the modified Bessel functions; Rk m> Sim» k=1, 2, 3 are,

respectively, the internal and external solutions to the Lamé equation for the cylinder; u ,ﬁ ), u ,ﬁ *) are the so-

lutions to the Lamé equation for the layer.
The solution to the problem will be presented in the form

ZJ szm kmp(P’Z M)+
S (5)
)i (e, v,z )+ H, ()i (v, y, 50 0)Mud,

2&

k=1

8‘—~

Z km p (P’Z 7\’) km (}\’)S;km (p’ (P’ Z’k)d}\” (6)

%"—;8

2P, 0,2 X) uk (x,y,z;?»,u) and ﬁ,g_)(x,y,z;k,u) are the basic solutions given by

/\

where, Skm(p ¢.zA), R

formulas (4), and the unknown functions H, (A,u), H, (A1), B, (), A.,,(A), and ;\km (L) must be found

from the boundary conditions (3) and conjugation conditions (1) and (2).
To switch between the coordinate systems (Fig. 1), we use formulas

— for the transition from the solutions § «.m Of the cylindrical coordinate system to the solutions for

the layer uk (at y>0) and uk (at y<0)

gk,m(P,(P,z;k)=ﬂJ.m;" ﬁ,ﬁi) d;L k=1, 3;

2 —oo
()" 7 % d @
Sy (P 0. 2:0) = _; _[ ';"-Him-u—vjﬁf”—k i+ 4p(1-o)ilF ))Y—L;

where y=122 + 12, mﬁ,@:%, m=04122,... ;

— for the transition from the solutions ﬁ,ﬁ” and ﬁ,g_) for the layer to the solutions I?k,m of the cylin-

drical coordinate system

=

i (x,y,2)= Z(i )" Ry (=1, 3}

®)
x v, Z Z [l ; H) m Y éz,m + 4“(1 - G)R&m )] )

m=—oo

m= gk,m (. 2)- etmorh),

k
hlp.1)=2, 'I;(%p)+i~1n(kp)'(5¢xip+ézj;

by (0 =2, - [45-3)- 1, (0p)+ 1p 1 (hp) ]+ 24 m[l,: (hp)+ 4(‘;;” I, (xp)j +e.ipl,(Ap)
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Ea,n(p,x)}[ap-zn(xp%%@-i-m(m)},

e, are the unit vectors in the cylindrical coordinate system.

Ep, Eq,,
To satisfy the boundary conditions at the boundaries of the layer, y=h and yz—ﬁ , using the transi-
tion formulas (7), we rewrite the vectors §k,m in (5) in the Cartesian coordinate system through using the

) and i ,£+), respectively. We then equate the resulting vectors (at y=h and at y=— h ) to the

basic solutions
given vectors U v (x,z) and U ,g (x,z), represented by the double Fourier integral.
The resulting system of 6 equations has the determinant
4oe7 oy’ -(ezx ~1)x* -G*-sh? x)
2

where x = y(h+ﬁ), 6=3-4c.
From the obtained equations we obtain the functions H, (7\.,;4) and H i (k, u) through B, , ().

To take into account the conjugation conditions (1), we decompose the basic solutions ﬁ,ﬁi) in (5) by

means of (8), turning them into the solutions R, ,, . We then equate p=R, therein. This will satisfy condition (1).
To take into account the conjugation conditions (2), we obtain the vectors FU yand F U , from solution

(6) and the solution decomposed through # ,ﬁi) (5). We then equate p=R, therein. This will satisfy condition (2).
These two conditions give 6 equations, connecting all the unknowns in equations (5), (6).
Another three equations are given by the condition on the inner surface of the tube. To satisfy the
boundary conditions on this surface, we apply the stress operator to the right-hand side of (6), and equate (at

p=R,) to F 9 ((p, z) given by both the integral and Fourier series.
From this system of nine equations, we will exclude the functions H, (A,u) and H ‘ (7\., u) previously
obtained through B, ,, (k) Having gotten rid of the series m and integrals A, we obtain a system of nine infi-

nite systems of linear algebraic equations for identifying the unknowns A, , (k), Xk’m (k), and B, (k)

To the obtained infinite systems of equations, we will apply the truncation method. The numerical
studies have shown that the determinant of the truncated system does not turn to zero at any m, for 0<m<10,
which is why this system of equations has a unique solution.

Having solved this system, we will find the unknowns A, (), A'k!m (L), and By, ().
We will substitute the functions B, (k) obtained from the infinite system of equations into

H,(\,u) and H,(A,p). This will identify all unknown tasks.

Numerical Studies of Stressed State

We have a layer with a longitudinal cylindrical tube (Fig. 1). Both the layer and tube are made of
isotropic materials: for the layer, Poisson's coefficient ,=0.38, the modulus of elasticity E;=1700 N/mm®;
for the tube, Poisson's coefficient 6,=0.21, the modulus of elasticity £,=200 000 N/mm?. The outer radius of
the tube R;=10 mm. The internal one was calculated in two variants, namely R,=6 mm and R,=8 mm. The

thickness of the layer & + /1 =60 mm. The distance from the upper boundary of the layer to the center of the
tube was calculated in two variants, namely #=30 mm and /=20 mm.

At the upper boundary of the layer, the displacements U (h)(x,z)=—108 '(ZZ +10? )_2 '(xQ +10° )_2,

y

UMW =u"=0 are given; at the lower boundary of the layer, the displacements U )(f )= U ) U ) =0; on

x 4 y b4

(0) —7lp) — 2P — )

the inner surface of the tube, the stresses G pfp o
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A finite system of equations of order m=10 was solved. The calculations of integrals were performed
using Filon's quadrature formulas (for oscillating functions) and Simpson's quadrature formulas (for non-
oscillating functions). The accuracy of the implementation of the boundary conditions for the indicated val-
ues of geometric parameters was 107,

At the upper boundary of the layer, at z=0, the maximum stress is the following: at /=30 mm,
Ry=6 mm, G,=-246.42N/mm’; at h=20 mm, R,=6 mm, ©,=-283.29 N/mm’; at h=30 mm, R,=8 mm

C,= 24471 N/mmz; at h=20 mm, R,=8 mm, C,= -272.25 N/mm’. This indicates that with the approach of
the cylindrical tube to the boundary of the layer, the stresses G, on the surface of the layer increase, and with
a decrease in the thickness of the tube, these stresses decrease.

Fig. 2 shows the stresses (in N/mm?) at the boundary of the tube and layer in the plane z=0 in the elastic
body of the layer. The stresses 0, , G, at 3n/4<@<m/4 and T, at ¢>7 have small values, so on the graph they are

not shown. The stress graph G has the same form as the stress graph G,,, and differs little in values.
The stresses ©,, G, at the boundary of the tube and layer (Fig. 2, a, b) increase with the approach of

the tube to the upper boundary of the layer (line 1 goes into line 2, line 3 goes into line 4). As the thickness
of the tube decreases, the stresses decrease (line 1 goes into line 3, line 2 goes into line 4). The tangential

stresses T,, at the boundary of the tube and layer (Fig. 2, ¢) are almost independent of the thickness of the

pz
tube (on the graph, lines 1 and 3, and lines 2 and 4 coincide), while with the tube approaching the upper
boundary of the layer, these stresses increase (line 1 goes into line 2).

Fig. 3 shows the stresses (in

2 nfd 2 3nl4 nld a2 3nl4 0 4 u2 34 £
N/mm”) at the boundary of the tube 0 N~ 3 A 0 ) 40
and layer in the plane z=0 in the | - % = 7] 20 \.\\L ,ﬂ gg 2/ |\
elastic body of the tube. They differ 0% 1! i ) 1’ f 10 /o \
significantly from the stresses in the ::g \ A -40 0 N 1 N
elastic body of the layer because of | i \ ‘t -10 \N~"/
the difference in the materials of | 4o N\ /2 60 \ / 2 g NS
which the layer and tube are made. 140 80 :40

With the approach of the a b c

tube to the upper boundary of the
layer or with a decrease in the Fig. 2. Stresses at the boundary of the tube and layer

(in the elastic body of the layer):
a—Gp;b—Gq,;c—‘sz;

thickness of the tube, the stresses
G, on the outer surface of the tube
1 —at /=30 mm, R,=6 mm; 2 — at /=20 mm, R,=6 mm;

Fig. 3, a) i .
(Fig. 3, a) increase 3 —at /=30 mm, R,=8 mm; 4 — at /=20 mm, R,=8 mm

The stresses G, in the upper

. f ; it ; T / f |
part of the tube (Flg 3, b, (P=O7I) i 0 /4 n/2 3n/4 © 5nld 6mid Tn/4 2r o 0 n/4 ni2 3n/4 = Snl46n/d4 Tn/d 2n

change with the same principle as the 200 :_:\\ i "_\ j—% 200 i -
stresses O, . In the lower part of the 202 W,}V == . Aol V| el
tube, with a decrease in its thickness, 400 2 -.“-:-:-;; 900 ?\.‘1‘:,' ¥ 3
the stresses ©, decrease (line 1 goes 600 2 |\
into line 3, line 2 goes into line 4). -800 it 00 YA

Fig. 4 shows the stresses | 0% -600
6, and o, (in N/mm?) on the inner a b
surface of the tube in the plane z=0. Fig. 3. Stresses at the boundary of the tube and layer

The stresses S, (Fig. 4, a) (in the elastic body of the tube):

a-0y;b-0_;

along the whole radius, in compari-
son with those on the outer surface
of the tube, have opposite sign val-

1 —at /=30 mm, R,=6 mm; 2 — at /=20 mm, R,=6 mm;
3 —at /=30 mm, R,=8 mm; 4 — at /=20 mm, R,=8 mm

48 ISSN 0131-2928. Ilpobaemu mawunobyoysanns, 2019, T. 22, Ne 2



DYNAMICS AND STRENGTH OF MACHINES

ues. The stresses o, (Fig.4,b), in

comparison with those on the outer
surface, in the upper part of the tube,
have opposite sign values, and in the
lower part of the tube increase with a
decrease in the thickness of the tube
or the approach of the tube to the
upper boundary.

With the approach of the
tube to the upper boundary of the
layer, or with a decrease in the
thickness of the tube, the stresses
0, and G, increase.

Fig. 5 shows the stresses

. 2
G,. O and To: (in N/mm®) along

0>
the z axis at the boundary of the tube
and layer (in the elastic body of the
layer) at ¢=nt/2. The stress graph G,
has the same form as the stress graph
G, and differs little in values.
Figs.5,a and 5,b clearly
show that with the approach of the
tube to the upper boundary of the

layer, the stresses c, and C, along

the z axis, in addition to negative
values, also have positive values.
The stresses T, at the boundary of

the tube and layer (Fig.5) do not
depend on the thickness of the tube
(line 3 coincides with line 1, line 4
coincides with line 2).

Fig. 6 shows the stresses G,

and o, (in N/mm?) along the z axis at
the boundary of the tube and layer (in
the elastic body of the tube) at p=m/2.
Fig. 6, a clearly shows that
the stresses G, at the boundary of

the tube and layer in the elastic body
of the tube, regardless of the distance
from the tube to the upper boundary
of the layer, constantly have negative
values. The stresses G along the z

axis (Fig. 6, b), irrespective of both

500 w4 wfZ2 3ri4 n S5nl4 6nfd Trid 2n

0 rml4 nl2 3n/4 = 5n/4Bnid Inld 2n

800 = -
600 e 200 o e
AR 150 TR . -~
o N 2T 100 N LN
200 7 \\E ; /j; n 0 Aé-.\ j/ ;\,i;, |
0 , : 7 3N
0 b S ‘ ' = w;a\?-f ! X
2 IN 3 "'4’4;_2 WY 50 F g 1 P
-400 " - "‘ ri 5 100 | 2.
600 =" P’ -150
a 0

Fig. 4. Stresses on the inner surface of the tube:
a=0y; b-G,;

1 —at /=30 mm, R,=6 mm; 2 — at /=20 mm, R,=6 mm;
3 —at /=30 mm, R,=8 mm; 4 — at /=20 mm, R,=8 mm

40 20 0 20 40 40 20 O 20 40 40 20 O 20 40
20 » 20 » 40 >
0 c;{w 2 z z z
-20 AY L%. 0 “‘\V\ T # 20 A
40 i -20 3 f 1
-60 \“1 -'I' \&4 i 0 \
80 \”4/ 40 4 T
-100 WA ‘ V 20
120 \ f\ 2 -60 v \J
140 80 i 40 2
a b C

Fig. 5. Stresses along the 7 axis at the boundary of the tube and layer
(in the elastic body of the layer):
a—Gp;b—Gq,;c—‘sz;

1 —at /=30 mm, R,=6 mm; 2 — at /=20 mm, R,=6 mm;

3 —at /=30 mm, R,=8 mm; 4 — at /=20 mm, R,=8 mm

200-40 20 0 20 40 100-40 20 ) 20 40
. 1 z 0 h_‘_‘; _ 1 }'dz
200 "\:-“,_hz ",'»7’ 100 .F\N\f f?f
-400 \a T 0 “/
V| -300 N
-600 A\ 400 2 L
-800 g -500 4
1000 -500
a b

Fig. 6. Stresses along the z-axis at the boundary of the tube and layer
(in the elastic body of the tube):
a-0g; b-G_;
1 —at /=30 mm, R,=6 mm; 2 — at /=20 mm, R,=6 mm;
3 —at h=30 mm, R,=8 mm; 4 — at /=20 mm, R,=8 mm

the distance of the tube to the upper boundary of the layer and the thickness of the tube, in addition to negative
values, also have positive ones that slowly decrease along the z axis.

Fig. 7 shows the stresses 6, and G (in N/mm?®) along the z axis on the inner surface of the tube at

O=m/2.
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The stresses Gq) on the inner .40 20 0 20 40 40 -20 0 20 40
. 800 » 250 >
surface of the tube along the z axis AR z H
(Fig. 7, a), regardless of the thick- | 600 200 R
ness of the tube and distance from 400 ;"3
the tube to the upper boundary of the 200 ST
layer, are constantly of positive S 2 3%
y y of p ez /T“""“\* .
value. The stresses G_ on the same s

surface (Fig. 7, b), with a decrease in | -200
the thickness of the tube, not only a b
increase in value and have the ex-

: Fig. 7. Stresses along the 7 axis on the inner surface of the tube:
pressed negative values, but also

3 a-0g; b-G_;
slowly decrease along the z axis.
1 —at =30 mm, R,=6 mm; 2 — at /=20 mm, R,=6 mm;
Conclusions 3 —at h=30 mm, R,=8 mm; 4 — at /=20 mm, R,=8 mm

With the help of the generalized Fourier method, we developed an analytic-numerical method for
calculating the spatial mixed problem of the theory of elasticity (with the conditions of the first and second
basic problems at the boundaries) for the layer with a longitudinal, thick-walled tube therein. The problem is
reduced to a system of infinite systems of linear algebraic equations.

The equation is solved by the method of reduction to a finite system.

The graphs given present the distribution of stresses on the surfaces of the layer and tube, depending
on both the thickness of the tube and distance between the upper boundary of the layer and center of the tube.
As a result, the influence of these geometric conditions on the stress-strain state of the layer and tube on the
invariable elastic material constants is analyzed.

The stresses G,,, T, obtained at the boundary of the tube and layer can be used to calculate the

strength of the joint.

In comparison with works [3-7], the proposed method allows us to obtain the exact solution to the
problem in the spatial variant, and, in comparison with [9-15], take into account new boundary surfaces,
with the tube and layer junction conditions added to the boundary conditions.

The numerical analysis of the stress-strain state of the layer and the tube therein shows that:

— with the approach of the tube to the upper boundary of the layer, the stresses in the elastic bodies
of the layer and tube increase;

— with a decrease in the thickness of the tube, the stresses in the elastic body of the layer decrease,
while those in the elastic body of the tube increase;

— with a decrease in the thickness of the tube, the normal stresses along the z-axis at the boundary of
the tube and layer (in the elastic body of the layer), in addition to negative values, also have positive values.

The numerical studies of the algebraic system for the layer with a longitudinal tube give us an oppor-
tunity to assert that its solution can be found with any degree of accuracy by the method of reduction. This is
confirmed by the high accuracy of the implementation of the boundary conditions. For the geometric pa-
rameters of the solved problem at m=10, the boundary conditions are performed with an accuracy of 107
With increasing order of the system, the accuracy of calculations will increase.

To verify the validity of the method, the tube was replaced with a cavity, the lower boundary of the
layer was moved a great distance (thus modeling the cavity in a half-space), and in this formulation the re-
sults were compared with work [15]. After this, the upper boundary of the layer was moved a great distance
(which modeled the cavity in space and coincided with the statement of the problem [16]. Convergence with
known results and a high accuracy of the implementation of boundary conditions indicate the reliability of
the method and the results obtained.

The resulting graphs can be used to evaluate the stress state in constructions with similar conditions.

However, it should be noted that the method does not allow the problem to be solved when the
boundaries of elastic bodies touch or intersect.

A further development of this direction is possible in increasing the number of cylindrical cavities
and tubes or in calculating the problem with other boundary conditions.
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JMHAMIKA TA MILIHICTb MAIIINH

3anpononosano ananimuxo-uucioguil nioxio 00 po3e’si3anHs NPOCMOPOBoI 3a0aui meopii NPysCHoCmi 015 wapy
3 KpY208o0 yuninopuunoro mpyooro. Luninopuuna noposichs moscmocminHa mpyoa po3maulo8ana ecepeouti wapy na-
PANenvbHO 1020 NOBEPXHAM MA HCOPCMKO 3 HUM cKpiniena. Heobxiono oocrioumu uanpysiceno-oe@opmosanuii cmam
npyschux min wapy ma mpyou. Ha enympiwniti nogepxui mpyou 3a0aui HanpysceHiss, Ha MeNcax mapy — nepemiujents.
Pos6’si30x npocmoposoi’ 3a0aui meopii npysHcHOCHI OMPUMAHO Y3a2aibHeHuM Memodom Dyp’e cmocosHo cucmemu pig-
HAKb Jlame 6 YUNIHOPUHUHUX KOOPOUHAmMAx, Noe s3anux iz mpyoor, ma 8 0eKapmosux KOOpOUHAMAX, NO8 A3aHUX i3 Me-
arcamu wapy. Heckinuenni cucmemu niHitiHux aneeOpaivHux pigHsHb, SKi OMPUMAHI 8 pe3yibmami 3a0060bHIHHSL SPAHUY-
HUX YMO8 Ma YMO8 CHOLYHEHHS, PO38 A3AHO MemoOOM 3pi3anHs. B pezynomami ompumani nepeminjenns ma HanpyjiceHHs
8 PIZHUX MOUKAX NPYICHO20 WApy ma npysicHoi mpyou. 3ae0sxu nidiopanomy napamempy 3pi3anHs O 3a0aHUX 2eomem-
PUYHUX XAPAKMEPUCIUK GUKOHAHHS SPAHUYHUX yM06 006edeno 0o 107. Ilposedeno ananiz nanpysceno-oegpopmosanozo
CMAHy mina 3a PisHUX MOSWUH mpyou, a MaKoxc 3a PisHux giocmanetl 6io mpyou 0o meosic wapy. Ilooani epagixu Hopma-
JIHUX Ma OOMUYHUX HARPYICEHb HA MeXCi mpyou ma wapy, a makolic HOPMAIbHI HANPYICEHHS HA 6HYMPIUWHIT NOBEPXHI
mpybu. Brasaui epaghiku nanpyoicens ceiovams npo me, wo y paszi HAOaudICenHs mpyou 00 8epxuboi Medwuci wapy Hanpy-
JICeHHs 8 MiNi wapy ma 8 miii mpyou 3p0Cmaiomo, y pasi sSMEeHUIeHHs MOGWUHU MPYOU HANPYIHCEHHS 8 MITL Wapy 3MeH-
wyromucs, a 8 mii mpyou 3pocmaioms. 3anponoHOBaAHU MeMoO MOHCe BUKOPUCMOBYBAMUCH OISl PO3PAXYHKY KOHCIMPYK-
yill ma demaneti, pO3PAXYHKOBI CXeMu SKUX CRIGNAadaioms 3 NOCMAaHoeKoio 3adaui oanoi pobomu. Hasedenuii ananiz na-
NPYIHCEHO20 CIAHY MOdice Oymu BUKOpUCMAanuil 01 niobopy 2eoMempuyHUX nApamempie KOHCMPYKYii, Wo npoexmyeman-
csl, a epaix HanpyceHb Ha MexCci mpyou ma wapy — 015l AHANI3Y MiYHOCHI 3’ €OHANHHAL.

Knrouoei cnosa: moscmocminna mpyoa 6 wiapi, pisHsanus Jlame, ysaeanvreruti memoo @yp’e.
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