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UDC 504.06 A method for calculating the indicators of structural reliability of systems with a large
number of elements is presented. The method is based on the use of typical structural
CALCULATION schemes, reflecting the concept of connections between elements. It is shown how, by sup-

plementing and combining typical structures, one can create graphological structures to
OF INDICATORS perform calculations of reliability indicators. The approach can be used in the development
OF RELIABILITY of algorithms and software solutions on computer problems, based on assessments of the
OF TECHNICAL structural reliability of systems. Such tasks, in particular, include: assessing the safety of

nuclear units, planning their repairs, assessing the reliability of directional systems for
SYSTEMS transporting media, and estimating the residual resources of technical facilities. Various
BY THE TYPICAL private methods have been developed for their solution. However, it is not possible to stan-

STRUCTURAL dardize calculations of reliability indicators because of the diversity of systems and condi-
SCHEME tions of their operation. The presented approach is focused on the automation of calcula-

tions of indicators of structural reliability of a wide class of technical systems. It is based
METHOD on the proof of the existence of a calculation algorithm on a set of typical structural

schemes. It is assumed that the computer recognizes images of typical structures as part of

graphological images of systems. The content of the problem is as follows. A technical sys-
tem is given. It is required to build a graphological image and calculate the index of its
structural reliability. The proposed calculation method is based on the representation of the
Hennadii H. Krol graphological image of the system in the form of a composition of graphological images of
typical structures, the reliability indices of which are calculable. They are substituted by
individual elements with calculated values of the reliability index. Such substitutions make
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of Mechanical it possible to simplify the initial graphological image of the system by reducing the total
Engineering number of elements and calculate the system reliability indicator. The calculation and sub-
Problems of NASU, stitution procedure continues until the graphical image of the system has one typical struc-
2/10, Pozharsky str., Kharkiv, | fure for which we calculate the reliability index. The number of elements in the system is
61046, Ukraine unlimited, since the subsitution procedure is carried out sequentially until the formation of

one typical structure. A significant limitation in the application of the method to the calcu-
lation of the structural reliability of a wide range of complex technical systems is due to the
limitations of many typical structures. However, such a bank of typical structures can be
created and used in the development of appropriate design programs.
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Introduction

Calculations of the reliability of systems according to the reliability of the elements included in the
systems are referred to as the calculations of their structural reliability. They can be performed using the
various methods described in [1-6].

The existing basic methods for assessing the structural reliability of systems include the following
ones: a logical-probabilistic method, a discrete Markov process method, and a simulation modeling method.
They are complex, and their use with a large number of elements causes considerable difficulties. In this re-
gard, of interest are other methods that facilitate the solution of calculation problems.

Due to the diversity and scale of technical systems, there is no and, apparently, there will not be any
universal approach to the calculation of their structural reliability.

One of the approaches used in engineering hand calculations to assess the structural reliability of a
large system is shown in [7]. It consists in enlarging the elements of the structural scheme, the graphological
image (GI) of the system. When there are a lot of elements in the system, the calculations become lengthy. This
process becomes even more laborious if the calculations need to be made repeatedly with changing data.

This article describes a calculation method, partially developed in [8, 9], that uses the GI as a logical
model of the system failure condition.

In the future, to reduce notes, the value of the reliability index (RI) of the system will also be as-
signed to the system GI.
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The task, which is considered in the article, is as follows. A technical system is given. It is required
to build the system GI and calculate the RI of its structure.

The proposed calculation method is based on the representation of the system GI in the form of the
GI composition of special parts, which are substituted by separate elements with the calculated RI values.
The substitutions make it possible to simplify the initial system GI by reducing the total number of elements
and calculate its RI.

Main part

Let X be a system. The calculation of its structural reliability is based on its GI. However, the crea-
tion of the system GI is a non-formalized process. Therefore, two independent researchers can create in some
sense permissible, but different GIs of the same system. Since both the number of system elements and num-
ber of researchers are finite, then we can assume that for X there is a finite set of valid GI versions
S,,v=12..,¥ of this system. The values of the graphological image reliability index (GIRI)

S,,v=12,..,¥ must be the same, as in the acceptable models of the failure condition of the same system X

0S,)=0,, v=12,..,¥, (D
where S is any one GI from the set S,,v=12,..,%¥, and Q; is the value of its RI.
In terms of (1), the GI versions S,,v=12,...,¥ are equivalent, and let the GI S be their representa-
tive. To calculate the GIRI §, introduced are simple elements SE , generalized elements G , virtual connec-
tors, as well as typical basic GIs (BGIs) g,,8,855-8 -

Assumption 1. Taken as simple elements SE are such that, in the GIs under consideration, do not al-
low any division into components. These simple elements have either their RI values or calculation proce-
dures determined.

Examples of simple elements SE within the system GI can be such ones as a pump or pump bear-
ing, depending on the degree of the GI detailing.

Also, the SE -type elements include virtual connectors, which are intended for the organization of
the GI scheme. The RI of connectors are assigned values O or 1.

Assumption 2. Taken as generalized elements, denoted by G, are such that, in the GIs under consid-
eration, are formed by a set of SE -type elements and a set of BGIs.

Assumption 3. The BGIs g,,8,8,,...&, are graphological structures containing the minimum
number of simple elements that define the principle scheme of connections between them. BGIs have their
RI calculation procedures determined, for example, of failure probability (FP) or failure-free operation prob-
ability (FFOP) within the time [0,7].

GBIs can be represented on a piece of paper, on a computer screen, or other data carrier. With their
help, all the GI versions S, v =12,...,¥ can be created.

Considered as BGIs can be: g, — the GI displaying a single element; g, =(e, v e,) — the GI show-
ing an in-series connection of two elements; g, = (¢, Ae,) — the GI displaying a parallel connection of two
elements; g, — the GI displaying a structure that has a time reserve for restoration; redundant systems with
ideal and non-ideal switches, and other GIs.

Assumption 4. The basic elements of the type SE, generalized elements G, virtual connectors, and
the BGIs g,.g,,8,,.---8,, are used to create system GIs. In so doing, each element must have only one entry

into the system GI and any two elements must have only one connection with each other. A set of system GI
elements has a determined set of finite elements that complete the GI.
Consider the calculation of the basic graphological image reliability index (BGIRI) g, =(e, ve,).

As the RI R of the GI g,, we will choose the FFOP within the time [O,I]. Then, according to the well-
known formula [1], R(g,) =r(e,)-r(e,) , where r — is the FFOP of the elements e, e, within the time [O,t] .
If we add another element, say, e, , in series to g, then, let us assume that there is no newly formed

GI (e, ve, ve,) in the BGI list g,,8,8,,..--8,, - Then, according to assumption 3, there is no procedure for
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calculating the value of the RI R of the structure (e, Ve, Vve,). The situation can be changed by declaring
g, as a BGI element. Then we obtain a generalized element (generalized GI) from the in-series connection
of two elements: G, =(g, vVe;)=((¢, vVe,)Vve;). And for such a scheme, applicable is the RI calculation
formula R(G)) =r(g)) r(e;)=r(e ve,) r(e;)=r(e)-r(e,) rle;).

Since the BGIs g,,g,,8,.---8, have the existence of RI calculation algorithms postulated, then
taken as the elements g, and e, from the previous formula can be any BGI from g, g,,4,.....8,, - Then the
generalized element will get the form G, =(g, Vv g,,) and R(G))=r(g,)-r(g,), where r(g,), r(g,,) is the
FFOP of the BGI g, ,g, within the time [0,z].

The structure G, =(g, Vv g,) can be supplemented with other BGIs, for example, like this:
G =g, vg)v(g,Vvg,) where g;,8,.8,,8; is the BGI from g,,g,,8,,.-.8y  i.¢. the generalized GI
G, is the GI g, with the generalized elements (g, v g;),(8,,V &,)-

However, the generalized elements (g, Vv g;),(g,, v ;) may be absent in the BGI list g, 8,858 -

Consequently, according to assumption 3, the RI calculation procedure is not determined for them. To overcome
this  difficulty, it is necessary to carry out the appropriate calculations, namely
R(G)=r(g, Vv &) (g, Vv &;)=r(g) r(g) r(g,) r(g;). Spreading this technique to a more general case,

we obtain the RI calculation formula for the generalized element G, formed by the in-series connections of BGIs
R(G)=rlg,v(OV..vOVvgOV..vOIxrg,vOVv.v(Oveg,(O)v..vl 2)
Since formula (2) contains the BGIs as components, each of them can be supplemented with other
BGIs. This procedure can be repeated many times: it is unlimited. For example, suppose that the BGI g, isa
component in (2). Supplement g, with the BGI g,. We get G, =g,V g, =(¢;ve,)V(E AE,). The sup-
plementation of formula (2) with the generalized element G, , preserves the calculability of the RI G, .
Similar reasoning, as above, leads to the formula for calculating the FP, within the time [O,t] , of the
generalized element G, reflecting the parallel connections of BGIs
0(G) =4ql(g AOA AN A LAOIXGLE,, A AACAG O ALAG], 3)
where g 1is the FP of the arguments within the time [0,t] in formula (3).
If the GI S contains the generalized GIs G, v G, or G, AG,, as well as their combinations, joined by
signs of disjunction v and conjunction A, then we calculate their RI as the RI of series-parallel structures.
Consider the calculation of the BGIRI g,. We represent it in the form of the formula:
2= 8,(A} v E; v AJ) A A) , where E is the working component represented by a simple element SE in the

GI of the system X ; the components; A;, A32 , A33 are simple elements of the GI of the system X that provide
the operation of E;. For g, , in assumption 1, postulated is the existence of an algorithm for calculating its RI.

However, the BGI g, within the GI of the system X can be supplemented with switches (P), fil-
ters (F), diagnostic devices (D), automation equipment (U). Then, the BSI g, will lose its BSI status and
become some generalized structure G;, which we will define as the dependence

G, =G,(AAVPVUVE,vFVvDVA)AA]). 4)

Accept that for GI (4), its RI calculation algorithm is not provided. However, due to the simplicity of
the connections (a series-parallel connection) between the elements, GI (4) obviously reduces to the BGI

2; = 8,(A} v E; v A}) A A)), and its RI, according to Assumption 3, is executable.
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Suppose that the working component E; of the BGI g, is the GI, for example, consisting of the GI
subsystems E; |, E;,,.... E

3,m >

which, in turn, consist of the GI subsystems Ej | ,.... Ey, s, Es 15 E

3,m,m *

Representing this for clarity in the chain of inclusions, we get

ED[E; D (Es 1, Ey s )LIEs s D(Es 1B pse ) e [Es Ly D (B s By ygseees By )] (5)
Assume that the subsystems of the last level of inclusion E;,,,...,Es, ;... E3 ), 15ees By, CONDSiSt OF
BGIs with simple elements and, accordingly, calculate their RI. Then the GIs E,,,E;,,...,E;,, are formed

from simple elements and, if they consist of BGIs, then we obtain the RI calculability E; |, E;,,...,E and

3m
then, respectively, the RI of the working component E;.

Similarly to g,, the BGI list g,, gs,...,&,, can also be supplemented with the GIs of subsystems with
different levels of mutual inclusion. At the same time, the BGIs g,, gs,...,g,, Will lose their basic status. Then
they will be used to form the generalized elements G,, G;,...,G,, . If the Rls of the included GIs of subsystems are
calculable, then this will lead to the BGIs g,, gs....,&,, With simple elements and the calculability of their Rls.

Thus, the supplementation of the BGIs g,,g,,8,,....&, With new elements or generalized elements
with decomposition into GI subsystems having calculable RIs will lead to new structures with calculable Rls.

The problems of calculating the structural reliability of large systems are discussed in other publica-
tions. In particular, the calculation by the method of probabilistic equivalentization is described in article
[10], and that by the Monte Carlo method, in article [11]. There are also other publications where the prob-
lem of calculating the structural reliability of systems is considered from different points of view and under
various conditions of a restrictive nature. However, the problem of automation of calculations is not given
due attention. In this regard, the following theorem will be useful.

Theorem. Let there be given a system X and its GI S. If the GI § is composed of the BGIs
80-81> 82 &y With simple elements or of generalized GIs G,,G,, G;....,G,, with calculable Rls, then the
RI of the system X is calculable.

Evidence. Let the GIRI Q; () be the FP within the time (0,7) .

If the GI S consists of a single BGI g, g,,8,,....8, composed of simple elements of the SE -type,
then, according to assumption 1, the GIRI § is calculable and equal to Q; () within the time (0,f) .

Let the GI S be formed from several BGIs and there be a BGI g, in it (the in-series connection of
two elements). Calculate its RI. Let it be the FP ql(l)(t) within the time (0,¢) . In the GI S, we substitute the
BGI g, by the BGI g, with the RI ¢(”(¢). Then, instead of the GI S, we will get a new GO S . In this
case, the GIRI S will retain its former FP value of (Q(S) = Q(Sl(l)) = Q; (¢)) within the time (0,7) .

The GI S can have several BGIs g,. We find the BGI g, within the GI S”, and calculate its RL
Suppose, it will be ¢\*(¢). In S{" substitute the GI g, , by the GI g, with the RI ¢/*(r). We will get a new
GI Sfl) instead of the GI Sl(l) , for which Q(sz)) = Q; (t) within the time (0,7) . We will repeat this proce-
dure until, the next GI ka) , suppose it will be the GI ka) , contains no BGI g, .

Suppose that the GI S* has g, -type BGIs with simple elements. Calculate its RI, suppose it will be
¢’ (t) . In the GI S substitute the BGI g, by the BGI g, with the RI ¢\"(r). After substitution, instead
of the GI S, we will receive a new GI, which we will denote by GO S{", and for which the FP
Q(SM) = Q4 (#) within the time (0,).

We will repeat these procedures until the transformed GI S contains the BGIs g, and g,. We will
denote the transformed GO S by Si*’, for which the RT Q(S{")) = O (¢) within time (0,7) .
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Let the GI Sék) contain the BGI g;. According to assumption 3, the BGIRI g, is calculable. We as-
sume that it is equal to the FP qgl) (t) within the time (0,¢) . In the GI S;k) , substitute the BGI g, by the BGI
g, with the RI ¢{"(¢) . After substitution, instead of the GI S} we will receive a new GI, which we will

denote by GO S{", for which the FP Q(S{"”)=Q,(¢) within the time (0,7). If the GI S{" contains more of

the BGI g, then, continuing this process of its exclusion, we will receive the GI 53(2), 53(3) ,...,Sék), whose

FP Q(8{”)=Q(S) =...= Q(S{") = Q; (¢) within the time (0,7) .
Modifications of the GI 5", S5 ,...,S{*" could lead to the appearance of BGIs g, and / org,, as

well as, possibly, other BGIs. Then, as above, repeating the actions with these BGIs, we will obtain the BGI,
suppose it will be Sf;) , which will contain only one BGI g, with the calculated value of the GIRI S : the FP

Sy’ (1) = Q0s(1).
Similarly, we can obtain the calculability of the GIRI S for the BGI g,, g5,....&,, as part of the GI §.
If the GI S contains the generalized GIs G,,G,, G;,...,G,, or their combinations with the calculable

RIs, joined by disjunction and conjunction signs, then their RI is calculable. Indeed, after calculating the
GIRI G,,G,, G;,...,G,, and substituting them by the corresponding GIs g,, the generalized GIs become

BGI structures with simple elements for which the RI calculability is postulated.
The theorem is proved.

Conclusion

The purpose of writing this article is to justify one of the possible ways to obtain estimates of the in-
dicators of the structural reliability of technical systems containing a large number of schemes with a large
number of elements. The use of the universal graphoanalytical fault tree method, based on the full probabil-
ity theorem, causes considerable difficulties from both the development of the algorithm and program, and
the training of users.

The content of the article is directed at the development of algorithms and programs for calculating
the reliability indicators of thermal power facilities, such as nuclear power plants, thermal power plants, di-
rected systems for transporting water, oil, gas and other carriers, as well as for solving practical safety prob-
lems, planning repairs, ensuring the efficiency of system operation.

Currently, a large number of formulas, methods and calculation procedures for calculating the reli-
ability indicators of widely used small-scale technical systems and their equipment have been developed,
which led to the consideration of the method of typical structures in the article. The experimental computer
verification of this approach has shown its effectiveness in several aspects: speed of data preparation, ease of
use, a wide field for development and application.
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Po3paxyHok noka3HukiB HafifHOCTI TEXHIYHUX CHCTEM METOAOM THIIOBMX CTPYKTYPHHX CXeM
3eBin JL. L., Kpoas I'. T'.

[HcTHTYT IpOOIIeM MamHOOYAYBaHHs iM. A.M. Ilinropaoro HAH Ykpainu,
61046, Ykpaina, M. Xapkis, Byin. [Toxxapcekoro, 2/10

Haseoeno memood, po3podaenuii 0151 pO3pAXYHKIE NOKAZHUKIE CIPYKIYPHOT HAOIUHOCIE CUCTEM 3 8ETUKUM HUC-
oM enemenmis. Memoo pynmyemuca Ha 6UKOPUCIAHHT IUNOGUX CIMPYKIMYPHUX CXeM, Wo 8I00Usaroms npuHyunosy cxe-
My 36'3Ki6 Midic enemenmamu. Tlokazano, sk WIAXOM NONOBHEHHS MA 00'COHAHHS MUNOBUX CIPYKIMYD MOICHA CIMBOPIO-
eamu 2pagonociuni cmpyKkmypu 01 GUKOHAHHSL PO3PAXYHKI6 NOKA3HUKIE HalditiHocmi. [1i0xio modice 6ymu 6uKopucmarnuil
nio uac po3pobku ancopummis i npoepam poss’szanns a EOM 3adauy, wo 6a3yiomucs Ha OYiHKax cCmpyKmypHoi HaoiiHo-
cmi cucmem. J{o wucia maxux 3a0ay, 30Kpema, Hanexcamnv: OYiHKY Oe3nexu amomHux ONIOKI8, NIAHY8AHHA iX peMOHMIS,
OYIHKU HAOTUHOCMI CPAMOBAHUX CUCEM MPAHCIIOPIYBAHHA cepe008UlY, OYIHKU 3aTULKOBUX PeCypCie mexXHiuHuxX o0 'c-
xkmis. J[ns ix po3s’szanms po3pobaeni pizni okpemi memoou. QOHax CManoapmu3syeamu po3paxyHKu NOKA3HUKIE HAOIUHO-
CMI HEMOJICIUBO Uepe3 PIZHOMAHIMHICMb cucmem i ymMos ixHvbozco Gyuxyionysanus. I[lodanuti nioxio opienmoganuii Ha
asmomamu3ayiio po3paxyHKie NOKA3HUKI6 CIMPYKMYPHOT HAOTUHOCIE WUPOKO20 KAACY MeXHiuHux cucmem. Bin bazyemuvcs
Ha 00KA3i ICHYBAHHA AN2OPUMMY PO3PAXYHKY HA MHONMCUHI TMUNOBUX CIPYKMYPHUX cXeM. Boonouac nepedbayacmucs, wo
Ha EOM posnisnasani 06pasu munosux cmpykmyp 6 ckiadi epagonozivnux obpasie cucmem. 3micm 3adaui nonseac 6
makomy. € mexniuna cucmema. Ilompiono nobydyseamu epagonociunuii 06pas i po3paxyeamu NOKA3HUK il cmMpyKmypHoi
Haoinocmi. Memoo po3paxyHKy, wo nponoHyemMvCs, IPYHMYEMbCA HA 300padiceni epaghonociunozo obpasy cucmemu y
68U KOMNO3UYIT 2paghonocivHUX 00pA3i6 MUNOGUX CIPYKIMYD, NOKAZHUKU HAOIUHOCMI SIKUX 004uUctiosanvhi. Bonu 3a-
MIHIOIOMbCSA OKPEMUMU eeMEHMAMU 3 OOYUCTEHUMU 3HAYEHHAMU NOKA3HUKA HAOIUHOCMI. 3aMiHU 0aiomb MOJMCIUBICTIb
cnpocmumuy ROYamKo8Ull 2pagonociunull obpas cucmemuy 3a paxyHoK CKOPOUEHHS 3A2albHO20 YUCILA eleMeHmi8 i obuuc-
JUMU NOKA3HUK Halditinocmi cucmemu. Ilpoyedypa oduucienns i 3aminu mpusae 0omu, nOKU 6 2paghonociyHoMy 0opasi
cucmemu He 3aAUUUMbCA 00HA MUNOBA CIMPYKMYPA, 01 AKOI NOKA3HUK Haditinocmi obuuctiosanvhul. Kinoxkicms eneme-
HMiG 6 cucmemi HiYUM He 0OMedICeHA, OCKITbKU Npoyedypa 3amiH 30ILCHIOEMbCA NOCTIO08HO 00 CIBOPEHHS 0OHIET muno-
60i cmpykmypu. Icmomme 06MmedHceHHs 8 3ACMOCY8ANHHI MeMOOy 00 PO3PAXYHKY CHPYKIMYPHOI HAOIUHOCMI WUPOKO2O cne-
KMpa CKAAOHUX MEXHIYHUX CUCTEM 00YMOBNIEHO 0OMENCEHICIIO MHOMNCUNY MUnosux cmpykmyp. Oonax maxuii Oanx mu-
HOBUX CIMPYKIYP MOdice OYmu CmeopeHutl i GUKOPUCTNOBY8AMUCS Ni0 Yac po3poOKu GiONOGIOHUX POZPAXYHKOBUX NPOSPAM.

Knrouoei cnosa: ancopumm, cucmema, cmpykmypHa HAOIIHICIMb, MUROBL CXeMU.
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As is known, thin plates with holes are one of the most common structural ele-
ments. To increase their reliability and service life, it is of interest to find such
a hole contour that ensures the minimum circumferential stress thereon, and
also prevents the growth of possible cracks in the plate. This article deals with
the problem of minimizing the stress state on the contour of a hole in an un-
bounded isotropic stringer plate weakened by two rectilinear cracks. Crack
faces are considered to be free of stress. Determined is the optimal hole con-
tour, at which no crack growth occurs, and the maximum circumferential
stress thereon is minimal. The minimax criterion is used. The parameter char-
acterizing the stress state in the vicinity of crack tips, according to the Irwin-
Oroan theory of quasi-brittle fracture, is the stress intensity factor. The plate
undergoes uniform stretching at infinity along the stringers. It is believed that
the plate and the stringers are made of various elastic materials. The action of
the stringers is replaced by the unknown equivalent concentrated forces ap-
plied at the points of their attachment to the plate. To determine these forces,
Hooke's law is used. Applying the small parameter method, the theory of ana-
Iytic functions and the method of direct solution to singular equations, we con-
structed a closed system of algebraic equations. This system depends on the
mechanical and geometrical parameters of the plate and stringers, ensures the
on-hole contour stress state minimization and equality of stress intensity fac-
tors to zero in the vicinity of crack tips. The minimization problem is reduced
to a linear programming problem. The simplex method is applied.
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One of the most common structural elements is thin plates. Frequently, such plates have technological
holes. Since the holes are stress concentrators and can lead to premature failure, the problem of minimizing the
stress state on the hole contour is of great interest [1-15]. Article [1], based on the finite element method (FEM),
develops an iterative method to optimize the hole contour to simultaneously minimize the tangential stresses in
several areas around the hole boundary. It shows that such an optimal hole contour can significantly reduce peak
stress in all the areas around the hole boundary, compared to typical non-optimal circular holes. Article [2] de-
scribes a piecewise-smooth optimal contour that minimizes local stresses under remote shear for a single, stress-
free hole in an elastic plate, with the methods of conformal mapping and genetic algorithm used. It shows nu-
merically that the hole contour found provides a shear stress by 30% lower than the stress concentration factor
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