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To obtain a stable solution to the inverse heat conduction problem
(IHCP), the article uses A. N. Tikhonov's method with an effective algo-
rithm for finding the regularization parameter. The required heat flux at
the boundary and the thermal contact resistance in the time coordinate
are approximated by Schoenberg splines of the third degree, with the
sum of the squares of the desired value, its first and second derivatives,
being used as a stabilizing functional. The object of this study is multi-
layer plates or shells, such as solid-fuel rocket engine bodies. To a first
approximation, the problem is considered in a one-dimensional non-
stationary linear formulation. The shell thickness-to-radius ratio will be
considered such that in the heat equation, the curvature of the shell can
be neglected and considered as a flat plate. This assumption was chosen
to simplify the presentation of the material, and it does not limit the ap-
plicability of the methodology under consideration for the case of axially
symmetrical shells, as well as for the case when a mathematical model is
converted from the rectangular coordinate system to the cylindrical one.
Three inverse problems are considered. In the first two, heat fluxes in a
composite body with the ideal and real thermal contacts are determined.
In the third IHCP, with the real thermal contact, thermal contact resis-
tance is determined. Heat fluxes in multi-layer bodies are represented as
linear combinations of Schoenberg splines of the third degree with un-
known coefficients, which are calculated by solving a system of linear
algebraic equations. This system is a consequence of the necessary con-
dition for the minimum functional based on the principle of the least
squares of the deviation of the temperature being simulated from the one
obtained as a result of a thermophysical experiment. To regularize the
solutions to the IHCP, in this functional, the stabilizing functional with
the regularization parameter, as a multiplicative factor, is used as the
summand to the sum of squares. This functional is the sum of the squares
of heat fluxes, their first and second derivatives with the corresponding
multipliers. These multipliers are selected according to the previously
known properties of the desired solution. The search for the regulariza-
tion parameter is carried out using the algorithm similar to the one for
searching for the root of a nonlinear equation.

Keywords: inverse heat conduction problem, heat flux, thermal contact
resistance, A. N. Tikhonov regularization method, functional, stabilizer,
regularization parameter, identification, approximation, Schoenberg
spline of the third degree.

Solving inverse heat conduction problems (IHCP) for identifying the parameters of mathematical
models is of particular importance to ensure the adequacy of these models in the presence of experimental
information on the thermal process being studied. The effectiveness of the decisions made in designing vari-
ous power equipment depends both on the depth and reliability of the knowledge of heat transfer phenomena
and on the adequacy of modeling various thermophysical processes. In order to create effective methods of
diagnosing and identifying such processes, experimental studies are carried out and study results are proc-
essed. These methods can be based on solutions to IHCPs for both homogeneous and composite media. Vir-
tually, in some cases, methods for solving IHCPs are the only means of obtaining the necessary information
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on the object under study. In this work, the boundary IHCP is reduced to determining heat fluxes on the sur-
face of a body from the temperature measurements at one or more internal points.
An THCP can be formalized as follows:

Alf(T, M 7)]=T°",

where f (T,M ,r) are the desired dependencies, which, in the general case, may depend on the temperature

T , spatial coordinates of the point M and time coordinate T; 7% is the temperature specified, which has
the form 7% =T (M ,T) and in most cases is known from the experiment (initial data); A is the operator that

associates the desired dependencies with the source data 7" . Such a problem, like any other IHCP, due to
the cause-effect relationship violation, is ill-conditioned according to Hadamard, which can cause instability
of the solution to be obtained.

To solve such an ill-conditioned problem, it is either reduced to a conditionally correct one, and no
regularization is carried out; or it remains ill-conditioned, but one of the regularization methods is used [1-

6]. If there is no thermophysical experiment, then 7" are obtained from the corresponding direct problem
solution with the addition of some random variable.

Problem Formulation
The thermal process in a two-layer plate with the real contact between the layers was described by
the following system of equations:

CIE;—szlng];,O<x<Lp sz—zzng,lﬁﬁb ©>0, M
xlz—zzo, x=0, ng—Z=Q(r), x=L,7>0, @
T(x0)=T,, @

T(x;,v) =T, 1, =kAt, j=Ln, k=1,m, ©)

where Q(‘c) is the required heat flux; x is the spatial coordinate; T is the time; A,,C,, i =1,2 are the thermal
conductivity and mass heat capacity for each layer, respectively; L is the thickness of the two-layer plate; L,
is the thickness of the first layer; 7' is the temperature; 7;, is the initial temperature; X, j =1,_n are the spa-
tial coordinates of thermometer points; R(t)>0 is the thermal contact resistance (with the ideal thermal
contact R =0); At is the time interval between measurements; m is the number of measurements; »n is the
number of measurement points; Tﬁ’,‘f, j :I,_n, k :l,_m, are the temperatures obtained as a result of the

thermophysical experiment with the error that is characterized by a random variable distributed according to

the normal law with zero mathematical expectation and the dispersion .
Because of the absence of any thermophysical experiment, data (5) were obtained from the solution
to the model direct problem (1)—(4) with the known heat flux Q(7t).

Regularization Algorithm for Solving IHCPs and the Influence Function Method
A. N. Tikhonov's regularization algorithm [5] for solving the linear IHCP (1)—(5) reduces to mini-
mizing the functional

J=Y 31T, 1) - TP P +aQ(Q], (6)

i=1 k=1
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where o is the regularization parameter; Q[Q] is the stabilizing functional; T'(x;,t,) and 7;5" are the tem-
perature being simulated and the temperature from the hermophysical experiment at the thermometry points
x; at the time instances T, .

If the required function Q(’C) is represented as

T): ZQQ,j(pQ,j(T)7 (7
j=1

where @, j(r), J=1n, is some finite basis over the entire temperature measurement interval, and g, ; are

the desired coefficients, then, using the principle of superposition, the solution 7'(x,t) can be written as

T(x,0)=T(x, r)+qu Ti(x70)., (®)

j=1

where f(x, T) is the solution to the boundary value problem (1)—(4) with an inhomogeneous initial condition
(4) and homogeneous boundary conditions (2), and T} (x,'c) is the solution to the boundary value problem

(1)—(4) with a homogeneous initial condition and the boundary conditions of the form
A, _E)T 0, 0, A, _E)T (1), L 0
= xX= 1), xX=4L, T>0.
o o e

Substituting expression (8) into functional (6) and taking as the stabilizing functional

To ng 2 To ng 2 To ng 2
Q0]= 0y, j[qu 0. ,(r)} di+ oy, | {Z do. P, ,(r)] dv+w,, j{Z do. /9. ,(r)] dr, )

0l Jj=! 0| Jj=1 ol Jj=t
by differentiating (9) with the required coefficients g, ;, we can obtain a system of linear equations

(A+0B)g=C, (10

where A is the symmetric matrix with the elements

a; —iZT (x,,7)T; (%7, ) (11)

=1 k=1
B is the symmetric matrix with the elements

b;=w,, J.(PQ,I'(T) Do, (T) dt+w, I¢/Q i (T) (P/Q, j (T) dt+w,, J.(P,é,i (T) (P/é, j (T) dt
0 0 0

C is the vector of the right-hand side of the system of linear equations (10)

n m

37 (51 [ ~Tlx,ow,) (12)
=1 k=1

9o, (r), j=1, n, are Schoenberg splines of the third degree B, (r)

The system of linear equations (10) includes the regularization parameter o, which is determined in
the same way as in [1, 7+10]. It is believed that the regularization parameter is chosen correctly, providing,
for the solution obtained according to the iterative scheme proposed above, fulfilled is the following two-

sided inequality:
(1-y2/N )o? <8? <[1+/2/N)o?, (13)

where N is the total number of thermometric measurements; &° is the standard deviation of the model solu-
tion from the exact solution. The search algorithm for the regularization parameter o is based on some itera-
tive process of finding the root of a nonlinear equation.
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Figs. 1 and 2 show the temperature graphs at the point L, (contact of the plate layers) and at the

boundary L with the ideal thermal contact between the layers, and Fig. 3, the identified heat flux at the
boundary L.

The results are obtained for the following values of the dimensionless parameters of the problem:
m=100, At=0.01, n=2, x,=L, x,=L, C;=1, C,=1, A, =1, A,=50, L=1, L, =05, T, =1, n, =23,

6=0.1, 0y, =1, 0y, =0, w,, =10.
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Fig. 1. Temperature at the point of the ideal thermal contact:
1 —is obtained from the solution to the model problem; 2 — is the result of the thermophysical experiment with noise
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Fig. 2. Temperature at the boundary of the plate with the required heat flux:
1 —is obtained from the solution to the model problem; 2 — is the result of the thermophysical experiment with noise
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Fig. 3. Heat flux graphs in the problem with the ideal thermal contact:
1 — refers to the specified heat flux in solving the model problem; 2 — refers to the identified heat flux
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For the thermal process with the real thermal contact, the temperature graphs both at the point of the
real contact and at the plate boundary are shown in Figs. 4 and 5, and the identified heat flux obtained ac-
cording to the above approach, at the boundary L, in Fig. 6.

The graphs presented in Fig. 6 are obtained with the same dimensionless parameters as for the ideal
contact. In this case, thermometry was performed at space points x, = L, (the point in the first layer) and

x,=L.
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Fig. 4. Temperature at the point of the real thermal contact:

1 —is obtained from the solution to the model problem; 2 — is the result of the thermophysical experiment with noise
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Fig. 5. Temperature at the boundary of the plate with the required heat flux in the problem with the real heat

contact:

1 —is obtained from the solution to the model problem; 2 — is the result of the thermophysical experiment with noise
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Fig. 6. Heat flux graphs at the plate boundary in the problem with the real heat contact:

1 — refers to the heat flux specified in solving the model problem; 2 — refers to the identified heat flux
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The third IHCP was the inverse non-stationary boundary value heat conduction problem (1-5), in
which, according to the data of the thermophysical experiment, it is necessary to determine both the heat flux
Q(t) and the thermal contact resistance R(t). Since thermometry points are present in both layers, this prob-
lem was divided into two connected external inverse boundary value problems for the first and second layers.

The heat flux Q(r) at the outer boundary (L) was presented in form (7), and the heat flux at the con-

tact boundary Q, (1), in the form

8T R
}\41 g = QR (T) = z qRJ(PR,j (T), xX= Ll’
Jj=1

where @p j(’l?), J=1ng is some finite basis over the entire temperature measurement interval, g ; j=1,ng
are the required coefficients.
If the vector q of the dimension Ny + Ny is written in the form q = (qQ,l""’qQ,nQ sdR1s DR, ),

then, due to the linearity of the problem, using the principle of superposition, the temperature field for the
first layer can be represented as
ﬂQ +nR

TxD=TxD+ Y q,T;(x0),

Jj=ng+l1
where f(x, T) is the solution to the boundary value problem (1-4) with an inhomogeneous initial condition
(4) and homogeneous boundary conditions, and {Tj (x, T)};i"Q :f'* is the solution to the boundary value problem
=ny

(1-4) with a homogeneous initial condition and an inhomogeneous boundary condition of the second kind

a7, a7, ,
lla_x =Qp j—n, (V) kla—x* =0, j=ny+Ln,+ng, 71>0.
x=L,-0 x=0

The temperature field for the second layer can be written as follows:
ng+ng

TxD=T(xD+ Y q,T;(x0),

j=1
where f(x,r) is the same solution to the boundary value problem (1-4) as for the first layer, and T; (x,7),

J=Ln,+ng is the solution to the boundary value problem (1-4) with a homogeneous initial condition and

inhomogeneous boundary conditions of the second kind

aT; aT; -
M—=H =90, A= =0, j=lny, T>0;
ax x=L x=L;+0
J7T; a7, —
275 = Qg j-n, (D 7»28— =0, j=ny+Lny+ng, T>0.
X x=L;+0 X x=L

Then, following the reasoning given above, it is possible to obtain a system of linear equations (10)
with the A matrix elements in form (11), with the C vector elements in form (12) and with the B matrix
elements in the form

by =wg J.(PQ,i () G, (x)dr+ W I(p,Q,i (x) 0. (x)dr+ g » I(P;,i (v) oy (D)dr. i.j=1. o>
0 0 0

b; =g I(pR,i (T) Or,; (T) dt+ g, I(P,R,i (T) (P,R,j (T) dt+ oy , I(P,I,?,i (T) (P,I’?,j (T) dt, i, j=ny+1,n,+ng.
0 0 0
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By selecting the regularization parameter o so that as a result of solving the system of linear equa-
tions (10), condition (13) is satisfied, it is possible to determine the thermal contact resistance at this bound-
ary from the restored heat flux and temperatures at the contact boundary (Fig. 7).

Figs. 7-9 show temperature graphs on the left and right of the contact boundary as well as on the
outer plate boundary.
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Fig. 7. Temperature at the contact boundary in the first medium:
1 —is obtained from the solution to the model problem; 2 — is the result of the thermophysical experiment with noise
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Fig. 8. Temperature at the contact boundary in the second medium:
1 —is obtained from the solution to the model problem; 2 — is the result of the thermophysical experiment with noise
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Fig. 9. Temperature at the boundary of the plate with the required heat flux:
1 —is obtained from the solution to the model problem; 2 — is the result of the thermophysical experiment with noise

The identified heat fluxes are given at the outer plate boundary (Fig. 10) and at the boundary of the
thermal contact (Fig. 11); and the reciprocal of the thermal contact resistance is shown in Fig. 12.
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The results are obtained for the following values of dimensionless parameters
n=3, x=L-0,x,=L+0, x;=L, C,=1, C, =1, AM=LA,=2,L=1, L;=0.5, T, =1,n, =23,

g =23, m=100, 6=0.01,0,,=1, 0y, =0, 0y, =10, @p, =1, @, =0, ®,, =10, AT=0.01, R=1.
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Fig. 10. Heat flux graphs at the plate boundary:
1 —refers to the heat flux specified in solving the model problem; 2 — is identified
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Fig. 11. Heat flow graphs at the contact boundary:
1 — refers to the heat flux specified in solving the model problem; 2 — is identified
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Fig. 12. Graphs of the thermal contact resistance reciprocal:
1 — refers to the resistance specified in solving the model problem; 2 — refers to the resistance identified

Conclusions

The described approach for the joint use of Tikhonov's regularization algorithm with the influence
function method allows us to identify complex dependencies of heat fluxes with a certain error in the results
of a thermophysical experiment. Its advantages include: weak sensitivity to measurement errors; possibility
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of using experimental information from one or several sensors; applicability for heterogeneous environ-
ments; possibility of simultaneous restoration of the heat flux on different parts of the surface of a structural
element; simplicity of programming and the ability to parallelize the computing process, which meets mod-
ern requirements for methods and algorithms for solving direct and inverse problems.

The graphs presented in the article demonstrate stable solutions to the inverse problems of thermal
conductivity for heterogeneous layers with both the ideal and real thermal contacts. The solid lines in Fig. 1,
2,4,5,7, 8, and 9 represent both the temperature obtained by solving the model direct problem and the tem-
perature identified by solving the inverse problem, since these two curves practically coincide in the graphs.

Analyzing the deviation of the identified temperature from the temperature obtained by solving the
direct problem, we can conclude that they are in good agreement. As for the heat fluxes, the error of their
identification is noticeable, and more significant at the ends of the time interval.

The studies and results presented in the article were carried out within the framework of budget
theme I1I-66-15.
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Y cmammi ons ompumannsi cmitikozo posg'sizanns obeprernoi 3aoaui mennonpogionocmi (O3T) 3acmocogyembcst
memoo pezynapuzayii A. M. Tuxonoea 3 epexmueHuM anzopummom noutyky pezyisipusyrouo2o napamempa. Lllyxani men-
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JI08UL NOMIK HA epaHuyi ma mepMiuHull KOHMAKMHUL ONip 3d 4Ac08010 KOOPOUHAMOW ANPOKCUMYIOMbCA CHAAUHAMU
Ivonbepea mpemvoeo cmynens. Ak cmabinizyouuii QQYHKYIOHAN 8UKOPUCMOBYEMbCA CYMA K8AOPAMie WyKaHoi eeaudu-
Hu, it nepuwioi ma opyeoi noxionux. Ak 06'ekm 00ciONceHHs PO32AA0AIOMbCSL ba2amowaposi naacmunu abo 06oI0HKU, 00
SAKUX MOXCHA 8iOHeCMU | KOpNyc MEepOonanusHUX paKemHux 08UeyHie. Y nepuiomy Habaudxcenti 3a0a4a po32isiodemucs 6
00HOBUMIPHIL HecmayionapHill aiHitHii nocmanosyi. CniggionowenHs moswunu 00010HKU 00 il padiyca 6ydemo esaxica-
My MaxKum, wo 8 Pi6HAHHI MenIoNPOBIOHOCHI KPUBU3HOIO 0OONOHKU MOXMCHA 3HEXMY8amu i po3enaoamu ii AK NjiocKy nia-
cmuny. Take npunywennss 6uOpano Onsi CNPouweH s GUKIA0EHH Mamepiany i He 00Medcye 3aCmMOCOBHOCH BUKIAOEHOT
MemMOOUKY 8 pasi 0Cbo8oI cumempii 000IOHKU, a MAKOMXC NI0 YAC NepeKiady MamemamuiHoi Mooeni 3 NPIMOKYMHOI 6
yuninOpuury cucmemy koopounam. Poszensioatomscs mpu obepreni 3a0aui. Y nepuiux 080X 8U3HAUAOMbCS MENI06L No-
MOKU 8 CKIAO0eHOMY Mini 3 I0eanbHuM i peaivHum mennosum koumaxmom. ¥ mpemii O3T 3a peanvnoco mennosozo Ko-
MAKmy 8UHAYAEMbCSL MEPMIYHUL KOHmaKmHuuti onip. Tennogi nomoku 6 6a2amowaposux minax po3eisioamocs y eUeis-
Oi niniuHux KomOinayiu cnaainie [llvonbepea mpemvozo cmynens 3 HegiOOMUMU Koe@iyicHmamu, sKi 00UUCTIOIMbCS
WAXOM PO36 A3AHHS CUCMeMU JIHIUHUX aneeOpaiunux pieHsanb. Lla cucmema € HACTIOKOM HEOOXIOHOL YMOBU MIHIMYMY
@yukyionana, 8 0OCHOBY AKO20 NOKAAOEHO NPUHYUN HAUMEHUUX K8AOpamie GiOXunieHHs MOOeIbO8AHOI meMnepamypu 6io
memnepamypu, OMmpumanoi 8 pe3yibmami menioQizuunoco excnepumenmy. s peayaapuzayii poss’asxie O3T euxopuc-
MOBYEMbCSL CIMAOINIZYIOUUL YHKYIOHAT 3 NAPAMEMPOM PeSyIapuU3ayii Kk MyabmMuniiKamueHum MHONCHUKOM. Bin serse
00010 cymy K8ao0pamie menyiosux NOMoKie, ix nepuiux i Opyeux noxXioHux 3 8i0nN0GIOHUMU MHONCHUKaMU. LI MHOJICHUKU
B8UOUPAIOMbCA 32I0HO i3 3a30a71e2i0b 8i0OMUMU GIACMUBOCIAMU WYKAHO20 po38’a3Ky. Tlowyk pezynapusyrouozo napame-
Mpa 30IUCHIOEMbCSL 30 OONOMOZ0I0 AN2OPUMMY, AHANOIUHO20 AN2OPUMMY NOULYKY KOPEHsL HEMTHITIHO20 PIGHAHMSL.

Knrouoei cnosa: obeprena 3a0ava menionpogionocmi, menyiosuil NOmixk, MmepMiuHull KOHMAKMHULL ONIp, Memoo
peaynapusayii A. M. TuxoHosa, @yHkyionan, cmabinizamop, napamemp peeyiapusayii, 0enmuikayis, anpoxcumayis,
cnaaiin LIvonbepea mpemvoco cmynens.
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