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UDC 539.3 We study the forced oscillations of a cantilevered flat shell of constant curvature.
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Introduction

Shell designs are widely used in aerospace engineering, power engineering, mechanical engineering,
construction, and nanotechnology. These structures have high rigidity with a relatively small mass, which is
important for engineers. A lot of research is devoted to the oscillations of such structures. A detailed review
of the work carried out in this area is presented in [1-3].

In this article, a non-linear model of the forced oscillations of a kinematically excited flat shell during
geometrically non-linear deformation is constructed. To study resonant forced oscillations, a numerical ap-
proach is developed. The approach includes a solution to the two-point boundary value problem for non-linear
ordinary differential equations and a method of continuation of solutions. With this approach, the bifurcation
behavior of resonant oscillations is investigated, as well as saddle-nodal bifurcations, period-doubling bifurca-
tions, and Neymark-Sacker bifurcations are discovered. It is shown that, as a result of some of these bifurca-
tions, chaotic oscillations are formed, which are studied numerically. Order-chaos transitions are discovered.

Problem Statement and Basis Equations
We investigate the forced oscillations of a cantilever cylindrical panel (flat shell) (Fig. 1). The radius of
curvature of the shell middle surface is constant. We associate the shell with a curvilinear coordinate system X,

0, z. The axis x is directed along the generating shell perpendicular to its embedment; the axis 0 is directed in
the circumferential direction of the shell; the axis z is perpendicular to the middle surface of the shell. The side
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x=0 is clamped, and all the other sides are free. The forced oscil-
lations of the shell are excited by a kinematic embedding motion.
The clamped side moves like this:

n(t):nocoscot, (1)
where 1 is the amplitude of embedment oscillations, o is the fre-
quency of these oscillations. We denote the projections of middle
surface displacements along the x, 0, z axes by u(x, 0, 1), v (x, 6, ),
w(x, 0, 7). These displacement projections are the main unknowns of
the problem. If the amplitude of the kinematic excitation of the em-
bedment 1 is small, then the oscillations of the shell will be linear.

Fig. 1. Flat shell

If we increase 1), we can achieve such a value of this parameter that the radial displacements w (x, 6, 1) are

comparable with the shell thickness /4. Then a geometrically non-linear deformation will be observed. In this
case, the deformations are small, and the movements are moderate. Since the deformations are small, then
the components of stress and strain tensors satisfy Hooke's law.

To describe geometrically non-linear deformation, we use the non-linear theory of Donella shells [3]
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where €,,,¢€,,,€,, are the elements of the strain tensor of the shell middle surface; &, k,, k; are the changes

in the middle surface curvature. The potential energy of the shell is represented as [3]:
ab

ab
Eh 1- D 1-
= WM{SIZI +€5, +2UE, €5, +Tuef2}d9dx+3££{kf +k; +2ukk, +T”k32}d9dx+ 3)

a

b
D 1-
+E.”{811k1 + €5k, + gk, + pEp K, +Tu812k3}d9dx ,
00

where D = En A E, u—are Young's modulus and Poisson’s ratio; a, b are the side lengths of the flat shell.
2‘1 U '

We write the kinetic energy of the shell in the form
ab

T=p—;’jj((W+n)2+u2+v2)dedx, (4)
00

where p is the density of the shell material.

To find the eigen frequencies and forms of the linear oscillations of the shell, we will use the
Rayleigh-Ritz method, which requires satisfying only the kinematic boundary conditions. In this case, when
the solution converges, the force boundary conditions are automatically satisfied [2]. When the Rayleigh-
Ritz method is used, on the three free sides, only the ignorable force boundary conditions are set. The geo-
metric boundary conditions on the clamped side of the shell take the following form:

ow

Model of Non-linear Oscillations
Consider the shell oscillations during geometrically non-linear deformation. Then the projections of
displacements can be represented as expansions in their eigenforms of oscillations as follows:
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w(x,0,)= zlEak (e, (x,0); ul(x0,1)= Z‘:k+N v(x,0,1)= Z:‘:/mvﬁN2 V,(x6), (6)

where N, = N, + N, + N; is the number of degrees of freedom of the structure; E=[§,,...,§,, ] is the vector

of the generalized coordinates of the structure; (Wk, u,, Vk) is the eigenform of linear oscillations. To calcu-

late the eigenforms of linear oscillations, the Rayleigh-Ritz method is used. Therefore, with a good approxi-
mation of solutions, the eigenforms included in expansion (6) satisfy both geometric and force boundary
conditions. Decompositions (6) are introduced into kinetic energy (4). As a result, with (2) taken into ac-
count, the kinetic energy takes a quadratic form with respect to generalized velocities and 1 in the form (1):

T= T(E,l, o E, ~,»M) - We will introduce decompositions (6) into potential energy (3). Then the potential en-

ergy contains quadratic, cubic, and fourth-degree terms with respect to the generalized coordinates. The po-
tential energy is represented as: [[= 1‘[(&1, v &y ). Now we work out the Lagrange equations of motion for

the construction. In matrix form, these equations will take the following form:
M(l)('j(w) + C(l’l)q(w) + C(Ll)q(u) + C(1’3)q(v) + C(1’4)(q(w))q(w) + C(l’s)(q(u))q(w) + C(l’ﬁ)(q(v))q(w) +
+ C(1’7)(q(w),q(w))(1(w) + F(l)ﬁ =0,

M) 4 CEIg) 4 22 4 230 4 29(g(w))g™ =0, 7
M) 4 OGO 4 g0 1 g0 4 o9 (g (w)g™ =0,

where q =, oo EJNI )" ‘I(u) = (E.tNlH’ e E.'N1+N2 ), q(V) = (EJN1+N2+1’ e E.le IR G S A A A G
c® 2), c® 3), c® 1), C(S’Z), C®¥ are the submatrices of structural rigidity; M(l), M(z), M® are the submatrices of
the mass of the structure; C(l"')(q(w)),C(l’s)(q(u)),C(1’6)(q(v)),C(Z"')(q(W)),C(3’4)(q(w)) are the matrix func-

tions whose elements are the linear functions of the corresponding generalized coordinates; C(1’7)(q(w),q(w))

is the matrix function whose elements are the quadratic form of the generalized coordinates.

For thin shells, the frequencies of longitudinal and torsional oscillations are much higher than those
of bending ones. Therefore, in the second and third matrix equations of system (7), we neglect the inertial
terms. Then the second and third matrix equations of system (7) can be rewritten as:

¢ =aWq™ 4 g0 ;g = a@lg™ + (g™ g™ | )

where o, a®? are constant matrices; B(l)(q(w)), B(z)(q(w)) are the matrices whose elements are the linear func-
tions of the generalized coordinates. Equation (8) is introduced into the first matrix equation of system (7).
Then, as a result, we get

M(l)ij(w) + Rq(w) + K(l)q(w) + K(Z)(q(w)h(w) + K(3)(q(w),q(w))q(w) + F(l)f] =0, 9)

where M(l), R, K™ are constant matrices; K(Z)(q(w)) is the matrix whose elements are the linear functions

of the generalized coordinates.
In the future, we will introduce a vector of dimensionless variables and parameters
S

y=(y1,...,le); yl:g; i=1,..,N;; T=0¢, (10)

where o, is the first eigen frequency of linear oscillations. Dynamic system (9) with respect to dimensionless
variables and parameters (10) will take the following form:

MYy + Ry + KWy + K@(y)y + Ky, y)y = FVq, dcos(@r), (11)
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where MY = MW :R= ! R; KW= ! 5 K(l); K(Z)(y)= ! 7 K(Z)(q(w)); K(3)(Ya)’)= 7 K(3)(q(w)aq(w)) ’
ma, ma; may
Al(l) = lFl(l); O=—:; M,= m; m is the shell mass.
m , h

Suppose that periodic oscillations are found in system (11), which are represented as: y(¢)=y(t+7),

where T = 2n is the oscillation period. We study the stability of the periodic motions found. To analyze the
(O}

stability of periodic oscillations, we rewrite dynamic system (9) with respect to the phase coordinates
p = (y,¥) in vector form as follows:

p=f(p.t). (12)
Now, near the periodic motion p.(t)=(p.;p.), we introduce a vector of small perturbations &(r).
Then the vector &(¢) satisfies the following system of equations in variations [4]:

&=Df(p.(r)1), (13)

where Df (p.(¢),7) is the Jacobi matrix of the vector function f(p.(z),r). From the solutions to equations (13),
a quadratic fundamental matrix ®(¢) is constructed. This matrix satisfies the following matrix initial condi-
tion: ®(t)=E, where Eis the identity matrix. The matrix ®(T)is called a monodromy matrix, and its ei-
genvalues are called multipliers p [4]
Det|®(T)—- pE]= 0.
Using the multiplier values, we estimate the stability of a periodic motion and its bifurcation.
When constructing non-linear dynamical system (9), we use the eigenforms of linear oscillations,

which are represented in decomposition (6). To calculate them, the Rayleigh-Ritz method [5] is used. We
represent the linear oscillations of the shell in the form

u=U(x,0)cos(wr), v=V(x0)cos(wr), w=W(x6)cos(wr), 14)

where U(x,0),V(x,0), W(x,0) are the functions to be defined. They are decomposed into basis functions as

follows:
Ny Ny N3
W(x0)=> Aw, (x8) U(x6)= ZAk+N1uk (x,0) V(x0)= ZAk+Nl N, (x,0), (15)
k=1 k=1 k=1

where u, (x,0), Ve (x,0), W, (x,0) are the basis functions satisfying geometric boundary conditions (5);
A, ..., Ay are the constants to be calculated; N = N, + N, + N, . Decompositions (15) are introduced in (14).

B-splines are used as basis functions [6, 7]. The effectiveness of this approach is shown in [6]. Then decom-
position (15) can be represented as

M +3M,+3 M +3M,+3 M +3M,+3
z Zak Wi, (4,0); U(x,0)= z z al) . (x.0); V(x,0)= z za};; Vi, (1.0).  (16)
k=1 ky=1 k=1 ky=1 k=1 ky=1

where Wik, (x,0)=x"B, (M—le +k — 2)33 % +k, - 2} ;
a

i (x0)=v,, (x,9)=x&(M—le+kl —2)33(@%2 —2);
12 12 a b
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0,]-= <¢=-2
025(0+2),|-2<0=-1
-0.75¢° -1.50*+1,]-1<0<0
0.75¢° -1.50° +1,J0< ¢ 1
—025¢0°+1.5¢> =30+ 2[l<p <2
0,2<p <

M,+3 is the number of splines in the 0 direction; M,+3 is the number of splines in the x direction; B, (0) is

the third order Schonberg spline. We represent the unknown parameters of decomposition (16) as

a= (‘H(ff), - ag:}3_3’M2+3, a1(,u1), - ”1(,V), ) =(a,, ..., ay ). These parameters describe the forms of eigen oscil-

lations, which are found from the eigenvalue problem (K —o’M )aT =0, where K, M are the mass and stiff-

ness matrices.

Numerical Analysis of Forced Periodic Oscillations

We study the shell made of grade 10 steel. The shell parameters were taken as follows:
E=2,06-10"" Pa; p=7,856-10° kg/m’; a=0,2 m; b=0,24 m; pn=0,3; h=3-10" m; R=0,26 m.

The linear oscillations of this shell were studied experimentally. The methodology of the experiment
and the results of the analysis of the linear oscillations are presented in article [8].

To study the oscillations of the flat shell, we use the Rayleigh-Ritz method. Consider the conver-
gence of eigen frequencies. To do this, we will perform calculations for a different number of basis functions
in decomposition (15). The results of the analysis of the eigen frequencies are presented in Table 1. The
heading of the table shows the number of terms in decomposition (15), for which the eigen frequencies were
calculated. The numbers of the first ten eigen frequencies are given in the first column. In the second, third,
and fourth ones, the eigen frequencies are shown at N,=N,=N;=5; N =N,=N;=7 and

N, =N, = N, =8, respectively. The calculation results obtained by using the ANSYS software package are

presented in the fifth column of the table. So, there is a convergence of the results obtained, that is, the re-
sults obtained by the Rayleigh-Ritz method and the data obtained by using the ANSYS software package are
close. The sixth column of the table shows the first five eigen frequencies obtained experimentally, the sev-
enth one, the relative difference of the eigen frequencies, 6, obtained both experimentally and by using the
ANSYS software package. The relative difference of the eigen frequencies, 9, is valid.

Table 1. Eigen frequencies of shell oscillations

Eigen frequencies | N\=N,=N;=5 | Nj=N,=N;=7 | N\=N,=N;=8 | ANSYS | Experiment o
o, Hz 154.76 152.83 152.76 152.38 140.00 0.08
,, Hz 246.47 242.67 242.56 246.49 231.00 0.06
3, Hz 528.60 499.24 498.82 487.61 445.00 0.09
w4, Hz 624.48 602.42 600.93 600.76 545.00 0.1
s, Hz 750.96 719.35 718.80 714.15 714.00 2.1-10*
06, Hz 1345.94 1209.47 1178.90 1153.30 — —
o7, Hz 1386.65 1298.25 1287.23 1281.90 — —
og, Hz 1457.81 1303.60 1303.03 1295.60 — —
@9, Hz 1728.89 1429.28 1428.60 1419.80 — —
®10, Hz 2047.07 1659.62 1616.69 1584.30 - -

As follows from Table 1, the shell under consideration is extremely rich in internal resonances that
satisfy the following relations:
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30 091,29 2 097,22 2101, 2% =101, 2% = 0.93: 2% = 1.006; 26 = 0.91; 22 = 0.98, % = 0.91
0, 0 s W 0, 0y 0, g 0y
The internal resonances significantly affect the non-linear deformation of the structure [9].
Consider the non-linear oscillations of the flat cantilever shell under the conditions of the kinematic
excitation of the embedment. In the numerical calculations of the non-linear oscillations, the amplitudes of

the disturbing action were taken as follows: ), =0,01. The matrix R in (11) was reduced to the form:

R= diag(oc, oc,...,oc); o = 0.01. Later, the forced non-linear steady-state oscillations near the second funda-
mental resonance were studied numerically ®= ®, + o, where o — is the detuning parameter, which is a small

value. In decomposition (6), we take into account the first five eigen modes of oscillations.

To study the resonant periodic oscillations, two-point boundary value problem (12) was solved for a
system of ordinary differential equations by the shooting method. To calculate the periodic oscillations in a
wide range of the perturbation frequency, ®, we used the parameter continuation method. The combined use
of the shooting method and the parameter continuation method to study periodic non-linear oscillations are
presented in monograph [9]. To analyze the stability of periodic oscillations, multipliers were calculated.

In the numerical analysis of the steady-state oscillations near the second main resonance, it was
found that the generalized coordinates y; and y, are passive coordinates, and have practically no effect on the
system dynamics. The passive coordinates are understood as generalized coordinates with small amplitudes
that have little effect on the system dynamics [9]. Therefore, the non-linear dynamics of the system with
three degrees of freedom y,, y;, ys will be investigated further. The amplitude-frequency characteristic of
resonant periodic oscillations is shown in Fig. 2. Here, the scale of the generalized coordinate y, is plotted
along the ordinate axis, which is indicated by A, and the frequency of the disturbing action ® is plotted
along the abscissa. The solid line shows steady-state oscillations, while the dotted line shows unsteady ones.

Now consider the bifurcation behavior of periodic oscillations, which is shown in Fig. 2. Here are
observed saddle-node bifurcations, period-doubling bifurcations, and Neymark-Sacker bifurcations, which
are denoted by SN, PD and NS, respectively. The significance of these bifurcations for the occurrence of
subharmonic, almost periodic, and chaotic oscillations are highlighted in monograph [9].

At the points of period-doubling bifurcations, second-order subharmonic oscillations arise. Such os-
cillations are indicated in Figure 3 by bold lines. The steady-state subharmonic oscillations are indicated by
the solid line, and the unsteady ones, by the dashed line.
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Fig. 2. Amplitude-frequency characteristic of resonant oscillations
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Fig. 3. Amplitude-frequency characteristic of subharmonic oscillations:
a—m[1.0; 1.46]; b - w[1.46; 3.1]

Numerical Simulation of Chaotic Oscillations

As follows from Fig. 2, in the region of the main resonance ®e [1.41; 1.72], there are no steady peri-
odic oscillations. Therefore, in this frequency range we will investigate other types of steady-state motions.
To do this, we integrate the system of equations (12) for different values of the frequency of the disturbing
action @ by the Runge-Kutta method with a variable pitch. As the initial conditions for the numerical inte-
gration, we use the initial conditions for non-steady-state periodic oscillations, which are shown in Fig. 2.
The results of the numerical integration in the time interval te [O;IOOOT] are considered as a transition

process, and are not taken into account in the analysis. Analyzed are the results of the numerical integration
at T>10007 .
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Fig.4. Poincaré sections of steady-state oscillations at the following frequencies of the disturbing action:
a— ®=1.38070; b — ®=1.4476; c — ®=1.4525;d - ®=1.50018; e — B =1.66095

To study the steady-state oscillations, Poincaré sections, spectra of Lyapunov characteristic expo-
nents, and spectral densities were analyzed, with the stroboscopic phase portrait used as Poincaré sections.
The numerical methods for calculating the above three characteristics are covered in monograph [7].

The results of the calculation of the spectrum of Lyapunov characteristic indicators A,;i=1,2,... at
different frequencies of the disturbing load are presented in Table 2. Now we study the properties of steady-
state oscillations with a quasistatic change in the frequency of the disturbing action ®.

Table 2. Spectrum of characteristic Lyapunov indicators

o) M A A3 A
1.4476 -4.1095-107 -5.9160-107 -5.9180-10~ -0.2110
1.4525 1.0280-10° -5.8000-10 -3.2750-10 -0.1560
1.4727 2.8590-107 -7.0614-107 -7.5651-10” -0.1299
1.5000 2.3270-107 -1.6240-10° -2.2050-10 -0.1622
1.5600 2.6240-107 1.5800-10° -2.7470-10” -0.1512
1.6600 1.0280-10™ -3.1860-10° -3.2350-10° -3.328-10°

As follows from the numerical simulation results, at ®=1.38070, almost periodic oscillations are ob-
served in the dynamic system. The Poincaré sections of these movements are shown in Fig. 4. In these and sub-
sequent figures, 4000 points will be shown in Poincaré sections. Fig. 4, a shows the section of an invariant to-
rus. With an increase in the frequency of the disturbing action, the system exhibits a synchronization phenome-
non on the invariant torus, that is, on this torus, in the phase space, there are high-order subharmonic oscilla-
tions. Fig. 4, b shows Poincaré sections of subharmonic oscillations of the 17th order. In this case, the maxi-
mum characteristic index is negative (Table 2). With a further increase in the frequency of the disturbing effect,
chaotic oscillations are observed. The formation of chaotic oscillations after the synchronization on the invari-
ant torus is called the order-chaos transition, which is described in monograph [9]. The Poincaré sections of
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chaotic oscillations at ®@=1.4525; ®=1.50018; ®=1.66095 are shown in Figs. 4, ¢, d, and e. The results of the
calculation of the spectrum of Lyapunov characteristic indicators of such oscillations are shown in Table 2. As
follows from this table, the maximum characteristic indicators are positive, which indicates the chaotic nature
of oscillations. Fig. 5 shows the spectral densities of chaotic oscillations at ®@=1.50018. As follows from the
calculation results, the spectral densities contain three delta amplitudes. A continuous spectrum is observed
near one of these amplitudes (majorant), which indicates the chaotic nature of steady-state oscillations.

T

20.4 B

13.6 - =

Amplitude

6.8 - B

0.0 A JM S U A ]

‘ r .
0.00 0.02 0.04 0.06 0.08
Frequency

Fig.5. Spectral density of chaotic oscillations at ®=1.50018

Conclusions

A model of forced non-linear oscillations of kinematically excited flat shells during geometrically
non-linear deformation is obtained. In this paper, a non-linear dynamic system with three degrees of freedom
is obtained using the method of given forms. The system describes the second fundamental resonance of
forced oscillations. In the area of the main second resonance, saddle-node bifurcations, period- doubling bi-
furcations, and Neimark-Sacker bifurcations are observed, which lead to the formation of almost periodic
and chaotic oscillations. The almost periodic and chaotic oscillations observed in the region of the second
main resonance are investigated. An order-chaos transition has been detected with a quasi-static change in
the frequency of the disturbing action.
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Xa0TH4Hi KOJIMBaHHS KiHEMaTHYHO 30ypeHOi 101010l 000JJ0HKHM TP FeOMeTPUYHO HeliHIiTHOMY
negopmyBaHHi

K. B. ABpamos, K. ®. Yeniko, O. @. [loinryk

Iacturyt npobiem mMammHoOyyBanHs iM. A. M. Iliaropaoro HAH Ykpainu,
61046, Ykpaina, M. Xapkis, Byi1. [Toxxapcekoro, 2/10

Jlocnioscyromsbcst UMYULeHi KOIUBAHHS KOHCOIbHOIL N0a020i 00010HKU nocmitinol kpueusnu. Lfi pyxu 36y0icy-
I0MbCs KIHeMAMUYHUM NePiOOUYHUM PYXOM 3aujemienHs. [ onucy 2eomMempuyto HeaiHiluHo20 0eqhopMyB8anHs BUKOPUC-
MOBYEMbCSL HENIHIliHA meopis 0bononox Jouenna. /[ nodyoosu HemiHiuHOT OUHAMIYHOT cucmemu 3i CKIHYeHHUM YUCTIOM
cmynemie c60600u 3acmoco8yemvcsi Memoo 3a0anux gopm. OCKinbKy GIACHI YaCMOmu NO3008XHCHIX i KPYMUTbHUX KOJIU-
6aHb 3HAUHO GUUYE 32UHANLHUX, MO THEPYIUHI CUTU 8 NO300BIHCHLOMY | KDYMUTIbHOMY HANPAMAX He 8paxosyiombuca. Tomy
y3az2anvbHeri KOOpOUHamu nO3008HCHIX | KDYMUTbHUX KOIUBAHb SUPANCAIOMbCA Yepe3 32uHanbHi. Omace, Oompumana Heii-
HIlIHG OUHAMIYHA CUCMEMA WOOO0 32UHATLHUX Y3A2AIbHEHUX KOOPOUHAM. [{lia PO3PAXYHKY BIACHUX (OPM JIHIUHUX KOJU-
6aHb, 30 AKUMU PO3KIAOAEMbCS HEMIHIUHA OUHAMIYHA 3a0ayd, suKopucmogyemocs memoo Penes-Pimya. Tooi 3adoeonnb-
HAIOMbCAL ULle KIHeMAMUYHE 2PAHuYHi YMOGU. 3a 30iCHOCME PO368° 3Ky CUN0GI 2DAHUYHI YMOBU GUKOHYIOMbCS AGMOMA-
muuno. /st 00CiodHcen st 30ICHOCMI 6IACHUX YACIOM NPOBOOUTUCS, POIPAXYHKU 3 PISHUM YUCTOM O6a3UCHUX QyHKyil. K
basucni ¢yuxyii euxopucmani B-cnaaiinu. IIpoeedeno nopieHaHHs 3 eKCNepUMeHMarbHUMU OQHUMU AHATIZY GIACHUX YdC-
mom, onyoniKogaHuMu asmopamu pauiute. /s Yucr068020 aHAN3y HELIHIHUX NEPIOOUHUX KOIUBAHb PO36 A3AHA OBOMO-
YK0Ba Kpatlosa 3a0aua 05 36UMAHUX OUpepeHyianbHux pieHsaHb Memooom npucmpinku. Cmitkicms nepioouyHux pyxie i
ix bihyprayii oyineno 3a serunuHamu Myabmuniixamopis. /s docriodicenns 0ighyprayit nepioOutHux Koausaub 3acmo-
COBAHO Memo0 NPOO0BICEHHs PO38 A3KY No napamempy. B obnacmi ocnognozo pesonancy euseieno ciono-ey3nosi oigyp-
Kayii, oighyprayii noogoenms nepiody ma 6ighyprayii Herimapxa-Cakepa. /[ 00CiodicenHss cmanux matiice nepiooudHux
i XaOMuUYHUX KOIUBAHb PO3PAX08AHO nepemunu Ilyankape, cnekmpu XapaxmepucmuyHux noKasHuxie JIanynoea i cnekm-
panvhi winonocmi. Ax nepemunu Ilyankape guxopucmano cmpobockoniunuil pazosusi nopmpem. J[ociiodceno 61acmueo-
cmi cmanux KOIUaHs 3a KeaziCmamu4Hol 3MiHu vacmomu 36y0xcytouoi Oii.

Knrouosi cnosa: neninitini nepiooudti KOIUBAHHs NOA020L 000IOHKU, CIMILIKICIb KOMUBAHb, Matdice NepioOUyHi Ko-
JIUBAHHS, XAOTNUYHI KOTUBAHHS.
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