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Introduction

Structures operated in certain conditions (high temperature, aggressive environment, etc.) may be sub-
ject to a double effect: corrosion and material damage. The first factor leads to a decrease in the cross-section of
a structure and, as a result, to an increase in the stresses of the structure. As for material damage, the appearance
of microcracks and voids in the material, as a result of inelastic deformation (creep), leads to a deterioration of
physical characteristics (for example, elastic modulus) and a sharp decrease in the stress values at which the
structure is destroyed. To take into account damage, L. M. Kachanov [1, 2] proposes a kinetic model of change
in material damage, with the model characterized by the parameter of continuity varying from 1 in the initial
state to 0 at the moment of destruction. Yu. N. Rabotnov [3] uses a similar equation for the kinetics of material
damage, in which the damage value ®, varying from O to 1, is adopted as a variable parameter. Other modifi-
cations of this model are made in the works of J. Lemetri and Ya. L. Cheboshi [4, 5]. Using the principle of
"separability”" and introducing the normalized time parameter, depending on stress, the above models (in the
case of one-dimensional tensile stresses) are modernized by V. P. Golub [6]. A new approach to determining
structural damage is illustrated by the example of static and cyclic loads. The original damage model is also
proposed by L. A. Sosnovsky and S. S. Shcherbakov [7]. Studies in this area are reviewed in [8, 9].

Problems of optimizing structures used in conditions of material damage are outlined by
A. G. Kostyuk [10-14].

Optimization of structural elements in corrosion conditions is considered in [15-19].

This article studies the field of the optimal design of structures, taking into account two factors: cor-
rosion and material damage, with bending elements of a rectangular cross-section used as an example.

Problem Formulation

Consider the optimization of rectangular cross-section bending elements operated in conditions of cor-
rosion and material damage. The optimality criterion is the minimum mass of the structure. The height of the
rectangular cross-section bending element is optimized along its length, using the principle of equal damage at
the final moment of the lifetime of the structure. The meaning of the principle will be explained below.
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As an equation of corrosion, the model of V. M. Dolinsky [20] is Az
taken, with the model taking into account the effect of stresses on the cor-
rosion wear of structures (Fig. 1y | | [T K 7
a |
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where o and {3 are constant coefficients; H and H are the initial and cur- | |, f----f---- —
rent heights of the rectangular cross-section; ¢ are the maximum

stresses in the current cross-section. B=const

It is assumed that the upper and lower edges of the cross-section Fig. 1. Current cross-section of a
are subject to corrosion, and to the same degree (by taking the maximum rectangular bending element
stresses as positive in modulus), as indicated by coefficient 2 in (1).

As a kinetic equation describing the change (from O to 1) of the material damage parameter ®, the
model of Yu. N. Rabotnov is adopted [3]
by
©_ (—Gm“j , @

d  "\1-®
where a v bk are constants.

Since material damage usually occurs at high temperatures, when determining stresses in a beam, we
will take into account the creep effect. We assume that the strain rate depends on stress as a power function,
i.e. we adopt the creep law in the form [3]

£=AG", 3)

where A; and n are constant at a given temperature value.

For n=1, we obtain the stress distribution in the elastic element, and for n — oo, in the element of an
ideally plastic material. In practice, the value of n usually does not exceed 12.

Taking into account the hypothesis of flat sections € = xz , from (3) we find

o=ke""" =k(iz)'", 4)

where k =1/ A]"; x is the rate of change of the neutral layer curvature.
Assuming the width of the rectangular cross-section is constant along the length of the beam and
equal to B, we write the expression for the bending moment in the cross-section x at an arbitrary time ¢

Un H/2 k()-c)l/nBHzﬂ/n
_ (s +1/n g _
M(x)—J-szA—k(x) *2B !z dz= 2 (o4 1/m)

From this k(x)"" = M2 (2+1/n)

BH2+l/n
Substituting this expression into (4), with z=H/2, we have
Mm
G ..=—>, 5
max = g )
where m=2(2+1/n).
In this case, with (5) taken into account, equations (1) and (2) have the forms
H__, 0c+BMn; , (6)
dt BH
Mm
do BH*
—=a . 7
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Solving Corrosion and Material Damage Equations
When comparing equations (6) and (7), one can conclude that the corrosion process does not depend
on material damage, while ®@(¢) does depend on corrosion. Therefore, the corrosion equation can be consid-

ered separately. When solving it, the effect of the stress state on the corrosion kinetics is taken into account.
We separate the variables in equation (6) and integrate both sides

Hy T
dH

J W-‘z"‘f d,

Hy 1+ > 0
BH o

where T is the lifetime of the structure.
After the integration, we have

20cT:HO—HT+‘/BMm arctg H, ﬂ—arctgHO Ba . ()
Bo. BmM BMm

To solve equation (7), we divide the variables and, substituting the expression dt from equation (6),
we integrate the two sides

1 b, Hy
(R L oy -

s 200 B 1, lebk _z(le n BMmj
Ba

Taking b,>1.5 (which is most often encountered in practice), after the integration, we have

1 a (MmO 1 1 i dH,
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Optimization Problem

As a result, we obtain two equations, (8) and (9), with two unknowns: H and H,. Solving them together
for each fixed value of x, from the principle of equal damage at the final moment of the lifetime of the structure
(when ®=1), we obtain the optimal distribution of bending element heights H(x) along its length, with the
distribution giving the minimum of the structure mass. The last statement is valid due to the dependence

V= j.A(x)dx = 2B.L[ H, (x)dx.

Special Cases of the Solution
The obtained integral expression of material damage (9) can be simplified in two particular cases.
Thus, with bk=2, we have

3a,Mm H, H, \PMm BMm BMm
When b,=3, we get
B(BY 1 1 Baf1 1 Bo " Bol Bol
=—-—=t — || arctgH, | —— —arctg H, |—— (11)
2a, \ mM 3H; 3H;, PMm|\H, H, BMm BMm BMm

As an example, consider the optimization of a cantilever beam with a force F at the end (Fig. 2). In
this case, M=Fx.

Turning to dimensionless quantities and denoting 7. = 2T / BB?L ,E=x/L, x,=H,
m

Bo
BmFL

B
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/ 3
Xr=H; ba , D= 2B | BB , D/ = B | BB T » we have the following transformations
BmFL 3a, \ mFLo. 2a, \ mFLo

of equations (8), (10) and (11):
X
T*ZXO—XT+\/Earcth (12)
&+ XrXo L v
_& & (XT —Xo )\/E <
b= Z _X_o " \/E arctg E+xdo (13) Fig. 2. Design scheme
of the beam
11 11 -
Dl:S(T_Tj"‘g[———J—\/garCtg(XT Xo)\/g . (14)
3 \xr %o Xo  Xr S+ %Aro

We first focus on the solution to the problem in the case of b,=2. By subtracting equation (13) from
(12), we get

Xo Xr
From this
Xr =4~ A22 -&,
where
A2=(xo+£+D—T*j/2 (15)
0
By substituting expression (15), say, into (12), we have a transcendental equation with one unknown .

By setting 0<&<1, its solution can be found, for example, using one of the efficient algorithms of the random
search method [21].
In the case of bk=3, by adding (12) and (14), we get

&2(1 1} (1 1}
T.A+D=Yy~Yr+=| 5—— |+§ ———|
s ) ke %

By writing this expression relative to x , we have the following equation:

2 2
Xr +£T*+D1_Xo+é__i}(;+§x% _“;_:0.

3o Xo 3
To solve it, we apply the Ferrari method. Then X, = y—b, where b= (T* +D,=&/%, +& /3%, )/4;
y=\/t/2—\/—p—t/2—q/\/5; p=3c-3b*; q=4b> —6¢b; c=E/6; t=z-nr/3;
a=Y-a/24D. +3-q/2-D.;  D.=(p/3F +(q/2f:  p =0s-7)3; i =6c—6b%;

q, =210 12T—ns,13+1,; t,=—¢"; s,=p°—r; r=6chb> +e—3b*; e=—-E/3.

After the dependence between y, and y,, is found, by setting 0<E<I, equation (12) can be solved, as
in the previous case, using the random search method. As a result, in both cases (with b;=2 and b,=3), we
have the optimal height shape of a minimum-mass cantilever beam.

Numerical Results

As a numerical illustration, consider the following calculation options: with b,=2: T* =1, D =0.5 and

T*h=0.8, Db=0.4; with bk=3: T*C =1,D ]C=O.375 and T* d=0.8, D ; d=0.3. Conventionally, we assume that variants

b and d correspond to the elastic element (n=1, m=6), and variants a and ¢ correspond to the element of the
ideally plastic material (n— oo ; m=4). Therefore, I* /T* =D /D =T* /T* =D, /D, . The choice of the coeffi-
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cients D, in relation to the coefficients D in the respective variants can be carried out as follows. Since
D /D=3/4-B/a, then, taking B/a=1, we have D =0.5D.

The optimal outlines of the canti- Yo Tor
lever beam height y, () and its view at the 2.5 o |
moment of destruction (the final moment 24 — STh oy
R . =gy F— e 0
of the lifetime of the structure) X‘r( &)) for (e %%ﬂg\ o
all the variants are shown in Fig. 3. ! B e ;: ‘
YR == = == T -
Conclusions 0 S Y Y N . e 'izf; v
The problem of the optimal design v09 08 07 06 05 04 03 02 01,0 ‘
of rectangular cross-section bending ele- ’
ments operated in conditions of corrosion Fig. 3. Optimal shapes of the beam height and the height view at the
and material damage is set and solved. moment of destruction

As for the obtained results, then, as can be seen from Fig. 3, in all the optimal projects % (0)=0, a

1.(0)=T%*. The first equality indicates that there is no waste of material in the cross-section with zero stress.
In turn, the inequality to zero y,(0) can be explained by the fact that corrosion also acts in a non-stressed sec-
tion, and its value follows directly from equation (12) at y,=0 and E—0.

By comparing optimal projects a and c, respectively, with projects b and d, one can come to the con-
clusion that taking creep into account gives an increase in the initial mass of cantilever beams by an average
of 15%. At the same time, the magnitude of the stress, at which failure occurs, also increases as shown by the

parameter y_(&).
A change in the value of b, (with equal values of T*) slightly affects the optimal shape (). How-

ever, it significantly affects the magnitude of the stress at the moment of destruction, and the higher by, the
higher the stress.

The proposed approach can be used to solve similar problems of the optimal design of structures op-
erating in conditions of corrosion and material damage with the use of both analytical solutions and numeri-
cal methods.
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OnTuMajbHe MPOEKTYBAHHSI eJIeMeHTIB, 1[0 3THHAIOTHCS, B YMOBaX KOPO3ii i MOMIKOIKYBaHOCTI
Marepiany

M. M. ®pigman

KpuBopizbkuii Mmetamypriiinuii iHcTUTYT HartionanpHOT MeTalTypriifHoi akajaemii Y kpaiau,
50006, Yxpaina, /IxinpornerpoBckka 001., M. Kpuswii Pir, By:n. Crenana Tinery, 5

bazamo sionogioanvrux enemenmie 6yOigenvHUX | MAUUHOOYOIGHUX KOHCMPYKYIU NIO 4ac C60€l excnayamayii
nepedysaioms 6 CKIAOHUX yMOBAX pobomu (6Ucoka memnepamypa, azpecuste cepedosuiye mowjo). ¥ ybomy sunaoxy 6o-
HU MOJHCYMb OYMU CXUIbHI 00 NOOBIIHO20 eeKkmy: Kopo3ii | noukodxcenHs mamepiany. Koposis npuzgooums 00 3meH-
WieHHs1 nepepisy KOHCMPYKYIL, yepe3 wo 6 Hill 30ibUyIombCs HANPYJtCceHHs. Y c8010 uepey, NowKoOICeHicms mamepiany
CYNPOBOOACYEMBCS NOSABOIO 8 HHOMY MIKPOMPIWUH | NOPOJICHEY, 8 pe3yabmami HenpyicHoi deghopmayii (nogzyyocmi), wo
npU3800UMb 00 NOZIPUEHHS 11020 DI3UUHUX XAPAKMEPUCIUK (HANPUKAAO0, MOOYS NPYIHCHOCHIL) | PI3KO20 3HUNCEHHS BEU-
YUH HANPYJICeHb, 3a SIKUX BI00Y8AEMbCsL PYUHYBAHH KOHCMPYKYIL. Y yitl pobomi po3enioaemovcst Onmumizayis enemMenmis
NPAMOKYMHO20 nepepisy. wjo 32UHAIOMbCA Ma eKCNIyamylomvCs 6 YMOBaX, AKI CHpUsioms NOAGL AK KOPO3ii, max i NOwKo-
OdrcenHio mamepiany. Ax pisnanns kopo3sii npuiivacmoca mooenv B. M. Jlonuncekoeo, wo 6paxosye 6niue Hanpyicensb Ha
KOPO3IUHULL 3HOC KOHCMPYKYIU. AK KinemuuHe PiGHAHHS, WO ONUCYE 3MIHY NOWKOONCEH L MAMeEPIay, UKOPUCHIOBYEMbCS
moodenv FO. M. Pabomnosa. Kpumepiem onmumanbHOCMi CyHCUMb MIHIMYM Macu KOHCmpYKyii. Onmumizyemscs sucoma
32UHATLHO20 NPSIMOKYIMHOZ0 eleMEeHMa 3a 1020 O0BIHCUHOIO 3 BUKOPUCHIAHHAM NPUHYUNY PIBHONOULKOOICYBAHOCNI 8 KiH-
Yeutli MOMEHM HCUMMsL KOHCMPYKYIL. 3anpononosanull 8 pobomi nioxio mogice Oymu UKOPUCIAHUTL IO YAC PO36 A3AHHS
AHANOSIUHUX 3a0aY¥ ONMUMATBLHO20 NPOEKMYBAHHS KOHCMPYKYIll, WO Npayioioms 8 yMo8ax KOpo3ii i NOUKOONCeHHs Md-
mepiany, 3 UKOPUCMAHHAM 51K AHATIIMUYHUX PO36 513Ki6, MAK I YUCTIO8UX MemOoOls.

Kniouogi cnosa: xoposis, anmukopo3iini NOKpUmms, onmumizayis.
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