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Introduction

When designing complex technical underground structures and communications, as well as parts and
components made of composite materials containing cylindrical cavities, it is necessary to have an under-
standing of the stress state that arises in these elements. For this purpose, it is necessary to have a method of
calculation that would allow us to obtain the result with the required accuracy.

The most developed topic is the one where the cavity is located transversely to the boundaries of a
plate or layer [1-4]. However, the methods, that the authors use, cannot be applied to the layer with a longi-
tudinal cavity or inclusion. For such cases, [5—7], based on the Fourier series decomposition method or the
image method, consider the stationary problems of wave diffraction and stress value determination.

For problems with multiple boundary surfaces, it is necessary to use the generalized Fourier method
[8], which is the basis of this paper.

On the basis of the generalized Fourier method, the problem for the half-space with a cylindrical
cavity or inclusion is solved in [9-13], for the cylinder with cylindrical inclusions, in [14], for the layer with
a cylindrical cavity or inclusion, in [15, 16], and for the layer with a longitudinal thick-walled tube, in [17].

The problem for the half-space with a longitudinal cylindrical cavity and a layer rigidly coupled to the
half-space has not been studied before, but it can be found in the calculation schemes, and therefore it is relevant.
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Problem Formulation
In a homogeneous elastic half-space, there is a circular cy-
lindrical cavity of radius R. A layer is perfectly coupled to the half- / 1 X,

space boundary (Fig. 1).
The cavity will be considered in the cylindrical coordinate \ \@\ \

system (p, ¢, z), the layer, in the Cartesian coordinate system (xi, \\

¥1, 21), the half-space, in the Cartesian coordinate system (xy, ¥, 22)

combined with the cavity coordinate system. The boundaries of the 0
layer are located at the distance y;=h; and y, =0, and the half-space, ’ \
at the distance y,=h,, with /,>R.

It is necessary to find a solution to the Lamé equation
AU, +(1-20,)'VdivU , =0,

Fig. 1. A half-space with a cylindrical
cavity and a layer

where j=1 corresponds to the layer and j=2, to the half-space. At the upper boundary of the layer y,=h, and at
the surface of the cavity p=R, are given the stresses

FU\(x,2),, 2, = B (6.2), BU(0,2)por = FR (0, 2),
where
Fho (x1 » 2 )= T()Z)El(l) + G(y el 4 T( )63( ! ,
Fl(o.z)= GLR @ 4 rgfo)ez( )+ rf,z)e3(2)
> (k)

;»J =1, 2,3 are the unit vectors of the Cartesian (k=1) and cylindrical (k=2) coordi-

ey

are known functions;

nate systems.
At the boundary between the layer and half-space, are given the conjugation conditions

Ul (XI’ZIX}']:O =U2 (XZ’ZZXVVZZhZ s (2)
FlUl(xl’leyl:O:FzUz(xz’ZszZ:hz ’ 3)
where U are the displacements in the layer; U , are the displacements in the half-space;
E.
=2G,; [ ndivU +iU +— (nxrotU ); G;=——"——; ¢o,, E; are Poisson's ratio and the
20 on © 2(+0; )’ °

modulus of elastlclty of the layer (j=1) or the half-space (j=2).

All the given vectors and functions will be considered to be rapidly decreasing to zero at long dis-
tances from the origin of coordinates along the z coordinate for the tube and along the x and z coordinates for
the boundaries of the layer.

Problem Solution
Choose the basic solutions to the Lamé equation for the given coordinate systems in the form [8]

L?ki(x9 v, Z,}\,,M): (d) i(Mﬂlx)iyy.
(P 0, z; 7»): (kp) ifz+me). .
(P ®.zAM)=N [(mgnk (mp) 7»Z+m(p)l k=123

I 4 I i I
N}‘”:xv;Ng‘” (o1l +9(y); N§d)=xrot(e3(l)-); N =V

Né”):%[V(p%j+4(c—l)(V—é§2)aiﬂ; NP :%rot(é(z)-); Y=yA +1?, —o< A, <00,
z
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where m is a member of the Fourier series; ¢ is Poisson's ratio; [, (x), K, (x) are the modified Bessel func-

tions; R, ., Si ., k=1, 2, 3 are, respectively, the inner and outer solutions to the Lamé equation for the cyl-
inder, u ,Ef), u ,£+) are the solutions to the Lamé equation for the layer.

We present the solution to the problem in the form

A
O, =Y [ [P 0w a0 ahme)+ OO0 (x5, vy, 232150, lpdi., 5)
k=1 —c0 —co0
- 3% o 3 o e
0= [ YBu)-Seulo0.znio)ihs 3 [ [(H0un) i (v 2oy Jauah, (6)
k=1 _co m=—c0 k=1 _oo —0o

where Sk (p.0.2:0), km(p o.M\, i (x y,Z;A,1), and uk (x, v,z 1) are the basic solutions given by

formulas (4); and the unknown functions H ,(( )(k,u), H; (k, u), H ,((2) (A,u), and By, (A) must be found from

boundary conditions (1) and conjugation conditions (2) and (3).
To relate the basic solutions in different coordinate systems, we use formulas [17]:

- for the transition from the solutions S

k.m

for the cylindrical coordinate system to the solutions for

the layer uk (at y>0) and uk (at vy <0)

'§k,m(p’(p>z;7\v):ﬂ I (DT~_.(:).@’ k:L 3’

) J Uy
(=i)" T % d 7
Sy (P, 230) = _; jm;"-[(im.u-ﬂ _22i + 4u(1 - o)l >JY_P;

where y=\2 4112, ok(x,u):%, m=0£142,... ;

— for the transition from the solutions ﬁ,g” and 12,57) for the layer to the solutions Rk.m for the cylin-

drical coordinate system

i (x,y,2)= i(z . )R, (=1, 3}
®)
M(x,y,z Z[ mep) R, +y-R,, +4n(l-o)R,,, )| .

where R, :;k’m(p’}\‘).ei(m(pﬁuz);
o0 =5y 100) 411,00 2,2 2. |
| p

by, 1)=¢, (46 -3)- 1, (hp)+ 1p 17 (hp)] + Ecp"'m(lé(kp)ﬁ(c_l)

Ap

a(m)}ammg(xp);

zs;,n(p,x){ap-zn(xp%m-i-z;(xp)},

e, E(P, e, are the unit vectors in the cylindrical coordinate system.
To satisfy the boundary conditions at the upper boundary of the layer y,=h,, we find the stress for (5)

and equate it to the given F, 0 (x,z) represented as the double Fourier integral. In this way, we get three equa-

tions (one for each projection) with six unknowns H ,El)(k,u), H ,El)(k,u).
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To satisfy the conjugation conditions, we substitute expressions (5) and (6) into (2), using the for-
mula of transition from the basic solutions S| «.m for the cylinder to the basic solutions u ) for the layer (7).
We carry out a similar operation for stresses (3).

Having obtained a system of nine infinite equations, we express from them H ,ﬁl)(k, ), H ,El)(k,u),

and H,(f)(k,u) through B, ().
The determinant A of this system has the form
64'Y9 63 ~e_37(h‘_h2) -cb(y)

A= T

)

where Y= % +u2 . ®(y) is a function that has a cumbersome appearance and, as a consequence, is omit-

ted. The study of ®(y) showed that, for y>0, it has only positive values and does not converge to zero, which

is why the equation system has a single solution.
To satisfy the boundary conditions on the surface of the cavity p=R, we, using the transition formulas

(+)

from the solutions u, ’to the solutions Rk,m [17, formula (8)] rewrite the right part (6) in the cylindrical coor-

dinate system. For the obtained vector, we find the stress and equate it to the given F ,? ((p, z) represented by the

integral and Fourier series. We substitute H ,({2)(7»,11) for the obtained relations through the functions B, , ().

As aresult, we obtain a set of three infinite systems of linear algebraic equations with respect to B, , ().

These systems have the properties of equations of the second kind and, as a consequence, a reduction
method can be applied to them [18]. The numerical studies have also shown that the determinant of the re-
duced system does not converge to zero at any m, for 0<m<12, and as a consequence, this system of equa-
tions has a single solution.

Having obtained the values of the functions B, , (L), we can find the values of the unknowns

H ,ﬁl)(k, n), # ,ﬁl)(k, w), H ,Ez)(k, 1) which we have previously represented through B, (A). This will identify
all unknown tasks.

Numerical Studies of the Stress State

The cylindrical cavity is located in the homogeneous isotropic half-space perfectly coupled to the
homogeneous isotropic layer. The physical properties of the layer (concrete B30) are the following: Poisson's
ratio 6, = 0.16 and the modulus of elasticity E,=3,250 kN/cm®. The physical properties of the half space
(aerated concrete) are the following: 6,=0.2, E,=160 kN/cm?. The radius of the cylindrical cavity R=10 cm.
The thickness of the layer ;=10 cm. The distance from the half-space boundary to the center of the cylindri-
cal cavity h,=15 cm.

At the upper boundary of the layer are given stresses from the action of technological equipment in

the form of waves along the z axis and along the x axis, G(h)(x,z)=—108-(z2+102)_2-(x2+102)_2,

y
(r) _ () (R) _ £(R) _ £(R) _
w =Ty p = Tpp =Tp =0.

The accuracy of boundary conditions depends on the order of the system m and the distance between
the boundary surfaces. For the proposed geometric characteristics, the accuracy of satisfying the boundary
conditions on the surface of the layer, depending on m, is shown in Table 1.

T =0 on the surface of the cylindrical cavity, the stresses ©

Table 1. Error in satisfying boundary conditions

. . Results obtained, o,, kN/cm®
Surface for calculation Given p— =6 - =10 =12
On the layer boundary 1 0.98398| 0.98855| 0.99536| 0.99961 0.99991
On the cavity boundary 0.00412] 0.00062| 0.00011| 0.00004 10°
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A finite system of equations of order m=12 was solved. The calculations of the integrals were per-
formed using Filon's quadrature formulas (for the functions having e™d\ and ™ dn ) and Simpson's ones
(for other functions).

Fig. 2 shows the stresses (in kN/cm®) in the body of the half-space at z=0. Figure 2, a shows the

stresses on the surface of the cylindrical cavity from ¢=0 to =27, and Fig. 2, b, on the bridge between the
cylindrical cavity and the half-space boundary along the y axis.

The maximum stresses G,, occur on the cavity surface at ¢=0.63 and ¢=2.51 (Fig. 2, a).

As far as the bridge is concerned (Fig. 2, b), the stresses G, and G, on the surface of the cavity are

positive, and at the boundary of the half-space they converge to negative ones.

Fig. 3 shows the stresses (in kN/cm?) at the upper (Fig. 3, a) and lower (Fig. 3, b) boundaries of the
layer along the z axis in the plane x=0.

With the given stresses 6, (Fig. 3, a, line 1), the stresses 6, and G_ at the upper boundary of the
half-space, at z=0, acquire almost identical values. Further along the z axis, the stresses gradually decrease.
In addition, the stresses ©, at |z| 213 cm have positive values (Fig. 3, a, line 3).

At the lower boundary of the layer (Fig. 3, b), the stresses ¢, and o, gradually decrease, acquiring
only negative values.

The stresses o along the x-axis have almost the same appearance as along the z axis (Fig. 3, b,

line 3). The stresses along the x axis, unlike the stresses along the z axis (Fig. 3, b, line 2), decrease some-
what faster. Because of the slight deviations of the stress graph along the z axis (Fig. 3, b) from the stress
graph along the x axis, the latter is omitted.

28
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Fig. 2. Stresses in the half-space body:
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Fig. 3. Stresses in the layer body along the z-axis:

a — at the upper boundary; b — at the lower boundary; 1 - 6,;2-6,;3- O,
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Conclusions

An analytical-numerical method for solving the spatial problem of the elasticity theory for the half-
space with a longitudinal cavity and a coupled elastic layer has been developed using the generalized Fourier
method. The problem is reduced to a set of infinite systems of linear algebraic equations, which are solved
by the method of reduction to a finite system.

The graphs give a picture of the stress distribution at the upper surface of the layer, at the boundary
between the layer and half-space, as well as on the cavity surface.

The stresses ¢, and o, found at the boundary between the layer and half-space can be used to cal-

culate the coupling strength.

Compared with [5-7], the proposed method allows us to obtain an exact solution to the problem in
the spatial variant and, in comparison with [9—-17], take into account the new boundary surfaces by adding to
the boundary conditions the conditions of the layer and half-space coupling.

The numerical analysis of the stress-strain state of the given composite shows:

— the maximum stresses are concentrated both on the surface of the cylindrical cavity (Fig. 2, a) and
on the surface of the half-space (Fig. 2, b);

— the stresses G, on the surface of the layer have both positive and negative values.

The numerical studies of the algebraic system for the given composite make it possible to state that
its solution can be found with any degree of accuracy by the reduction method (Table 1). This is confirmed
by the high accuracy of satisfying the boundary conditions. For the geometric parameters of the problem
solved at m=12, the boundary conditions are satisfied with an accuracy of 10™. As the order m of the system
increases, the accuracy of the calculations will increase.

To check for validation, the materials of the layer and half-space were considered to be the same.
The combined material and geometric characteristics were adopted as in [10] and, further, in [11].

The comparative analysis of the stress state of the bridge between the cavity and half-space bound-
ary, at m=10, with the results in [10] is summarized in Table 2.

Table 2. Comparative analysis of the results obtained with the results in [10]

Data for comparison Results obtained, o,, kN/cm®
y=10 y=13.3 y=15 y=16,7 y=20
Results from [10] -0.00047 -0.31152 -0.52902 | -0.75062 -1.00080
Results from this paper -0.00047 -0.31153 -0.52889 | -0.75060 -1.00077

Table 2 shows that the error in the results is at the level of calculation accuracy (table 1). The com-
parative analysis with [11] has similar results.

Convergence with the known results and the high accuracy of boundary conditions testify to the reli-
ability of both the method and results obtained.

One of the disadvantages is that the method does not allow us to solve problems when the bounda-
ries of a body touch or intersect.

A further development of this area of research is possible with increasing the number of cylindrical
cavities or calculating the problem with other boundary conditions.
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JocJtizkeHHsI HATIPYKEHOr 0 CTAHY KOMIIO3UTY y BUIJISIII IIAPY Ta MIBOPOCTOPY 3 MOB3/10BKHLOIO
NUWITHAPUYHOIO MOPOKHUHOIO, 32 32JAHUX HA IPAHUYHUX MOBEPXHSIX HANIPY3KeHb

B. 10. MipouHikos
XapKiBCHKHH HAITIOHATIBHUM YHIBEPCUTET OYIiBHUIITBA Ta ApXIiTEKTYPH,
61002, Ykpaina, M. XapkiB, Bys1. Cymceka, 40

3anpononosarno anarimuko-yuci08ull nioxio 00 po3e6’a3anHA NPOCMOPOBOL 3a0a4i meopii NPyI’CHOCME OISl NIBRPOC-
MOPY, HCOPCHIKO 3HENTEHO20 3 Wapom. B nienpocmopi, napanenvHo 11020 medcam, posmauniosana HeCKIHIeHHA KpY206a YUliH-
Opuuna nopocruna. Ilisnpocmip ma wap — 0OHOPIOHI i30mMponHi Mamepianu, 6iOMIHHI 00uH 6i0 00Ho20. Heobxiono docni-
QUMY HANPYHCEHO-0eQOPMOBAHUL CMAH NPYICHUX Min wiapy ma nienpocmopy. Ha nosepxui noposcnunyu ma Ha 6epxHiii me-
aci wapy 3a0ani nanpyscenns. Ha nnockiti nosepxni konmaxmy wapy ma nienpocmopy SUHUKAIONb YMOBU CHPSNCCHHS.
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Po38’s130k npocmopogoi’ 3a0aui meopii npysCcHOCME OMPUMAHO Y3a2antbHeHum Memodom DPyp’e cmoco6HO cucmemu PiGHsHb
Jlame 6 YuniHOpUUHUX KOOPOUHAMAX, NO8 A3AHUX 13 NOPOHCHUHOIO, MA 0eKAPMOBUX KOOPOUHAMAX, NO8 A3AHUX i3 Wapom ma
nienpocmopom. Heckinuenni cucmemu THIIHUX AeeOpaiyHUX PieHsAHb, SKI OMPUMAHI 8 Pe3VTbmami 3a0080TbHAHHS SPaAHUY-
HUX MO8 Ma YMO8 CNPSNHCEHHS, PO36 A3AHO MemoOoM 3pi3ants. B pe3ynbmami ompumani nepemiujeHHs ma HanpyscenHs 8
PISHUX MOUKAX APYIICHO20 WIAPY MA RPYICHOL0 NIGRPOCMOPY. Bukonanus epanuymux ymos dosedero 0o 107 3a paxynox nioi-
bparoeo napamempa 3pi3aHHa Ol 3A0aHUX 2eoMemPUYHUX Xapakmepucmuk. IIpoeedeno ananiz HanpyxceHo-0epopmosaroeo
CMamy wapy ma nignpocmopy 3a 3a0aHUX Qi3UYHUX ma 2eomempudHux napamempis. Ilooani epagiku Hanpysicensb Ha MedxCi
wapy ma nienpocmopy, Ha NOBEPXHI NOPOMCHUHU MA 6EPXHILL MEJCE Wapy, d MAaKOM4C HA NEPELUULIKY MIdC NOPOICHUHOIO Ma
Medicero nignpocmopy. 3aznaueni epagixu HanpyslceHb NOKA3VIOMy, Wo HAUOIbUL HANPYHCEHHS. KOHYEHMPYIOMbCS Ha N0Gep-
XHI YUTHOPUYHOT NOPOICHUHY MA HA NOBEPXHI NIBNPOCMOPY. 3anponoHOBANUTE MEMOO MOICE BUKOPUCTOBYBAMUCH O PO3-
PAxyHKy Oemainel, niO3eMHUX CHOpYO ma KOMYHIKAYIl, PO3PAXYHKOGL CXeMu SIKUX GION0Gioams NOCmaHosyl 3a0ayi 0aHol
pobomu. HaseOenutl ananiz HanpysiceHo2o cmawny mooice Oymu SUKOPUCMArULL OJisi NIOOOPY 2eoMempUYHUX Napamempie Ha
cmaoii npoeKmy8anisl, a Spapix HANPyIHceHb HA MENCT Wapy ma NiNPOCmMopy — OJisk AHAI3Y MIYHOCMIE 3" €OHAHHSL.

Kntouogi cnoea: yuninopuuha nOPoO’CHUHA 8 NIBNPOCMOPI, KOMNO3UMm, pieHaHHA Jlame, yMOBU CHpAXzCeHHs, V3a-
eanvhenuli memoo Dyp'e.
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