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A simply-supported multi-walled carbon nanotube (MWCNT) is
considered. Its vibrations will be studied in a cylindrical coordi-
nate system. The elastic constants in Hooke's law depend on the
CNT wall diameter, which is why each wall has its own elastic con-
stants. CNT vibrations are described by the Sanders-Koiter shell
theory. To derive partial differential equations (PDE) describing
self-induced variations, a variational approach is used. The PDEs
of vibrations are derived with respect to three projections of dis-
placements. The model takes into account the Van der Waals forces
between CNT walls. The three projections of displacements are
expanded in basis functions. It was not possible to select the basis
functions satisfying both geometric and natural boundary condi-
tions. Therefore, selected are the basis functions that satisfy only
geometric boundary conditions. To obtain a linear dynamic system
with a finite number of degrees of freedom, the method of weighted
residuals is used. To derive the basic relations of the method of
weighted residuals, methods of variational calculus are used. The
vibrational eigenfrequencies of single-walled (SW) CNTs are ana-
lyzed depending on the number of waves in the circumferential
direction. With the number of waves in the circumferential direc-
tion from 2 to 4, the vibrational eigenfrequencies of CNTs are
minimal. These numbers are smaller than those for the vibrational
eigenfrequencies of engineering shells. Anisotropic models of trip-
ple-walled (TW) CNTs were investigated. In their eigenforms, there
is interaction between the basis functions and different numbers of
waves in the longitudinal direction. This phenomenon was not ob-
served in the isotropic CNT model. The appearance of such vibra-
tions is a consequence of structural anisotropy.

Keywords: nanotube, Sanders-Koiter shell model, Van der Waals
forces, nonlocal elasticity.
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Introduction

CNT vibrations are extremely important for many nanomechanical devices, such as charge detectors,
sensors, and devices for autoelectronic emission [1]. CNT vibrations are often observed during the processing
and obtaining of nanocomposites. Wave processes in CNT-based nanodevices are studied in detail in articles
[2, 3, 4]. CNT simulation approaches can be divided into two groups. The first group is a simulation based on
molecular dynamics [5, 6], which requires huge computer resources. The second group is the construction of
continuum models based on the mechanics of deformable solids. There are not many works that are devoted to
the construction of shell models of CNT vibrations. In [7], a linear shell model is used to describe the vibrations
of simply-supported CNTs. In [8], a model of linear CNT vibrations was obtained on the basis of the theory of
Flygge shells with account taken of nonlocal elasticity. In studying the geometrically nonlinear dynamic de-
formation of CNTs, rod models are mainly used. In [9], continuous nonlinear beam models are used to model
the nonlinear vibrations of MWCNTs. Nonlinear vibrations of the MWCNTSs embedded in an elastic medium
are considered in [10]. Nonlinear vibrations with large amplitudes of double-walled (DW) CNTs were studied
by the finite element method in [11]. Forced vibrations of DWCNTs are considered in [12].

In this article, an anisotropic shell model of vibrations of a MWCNT is constructed. This model is
based on the Sanders-Koiter shell theory. The interaction between the walls is described by Van der Waals
forces. A system of PDEs is derived, describing CNT vibrations. To obtain a dynamic system with a finite
number of degrees of freedom, the generalized Galerkin method is used. Properties of the linear vibrations of
MWCNTs are investigated.

Statement of the Problem and Equations of Linear Dy
Vibrations L

A MWCNT is considered, (Fig. 1). The number of CNT T
walls is equal. This MWCNT’s vibrations will be studied in the : i
cylindrical coordinate system (x, 0, z), Fig. 2. The figure shows | [ - A
one of CNT walls, which we will denote by the number i. o « .

The individual deformations of CNT walls are intercon- | | -}
nected due to Van der Waals forces. This deformation model is
explained by the fact that van der Waals forces are much smaller
than the covalent bonds of neighboring carbon atoms. The vibra-
tions of each CNT wall will be studied on the shell-model basis Fig.1. The outline of a MWCNT
[13]. We denote the three projections of the displacements of v 9
points of the middle surface of the ith wall by 1\
u; (x,6,1), V; (x,0.1), w; (x,0,7) (Fig. 2). Each CNT wall moves rela-
tive to the other walls. To describe wall elasticity, we use the x
nonlocal anisotropic Hooke's law [14, 15]. The elastic constants in \\ / u;
Hooke's law depend on the CNT wall diameter [16, 17]. Therefore,
each wall has its own elastic constants. Hooke's law for the ith wall
has the following form:

2 i N
Van der Waals
forces

[
2

Dy

Z, Wi

Fig. 2. Coordinates and unknowns

of a ith wall of the CNT
o) -u¥ol) = L) 0y v,
ot 0¥l = L) el +vio).

otV ol) = L6 vt + ). 0

2
where V*( )= 68 (2) + 1528 (9)2 ; GEQ ) Gge), cﬁjg are the stress tensor elements; 8&32 ) Sge), ngg are the strain tensor
X i

elements; | = ¢,a is the thin-film coefficient; R; is the radius of the middle surface of the ith nanotube; 4 is the
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thickness of each CNT wall; Y j(,f) are the anisotropic elastic constants of the ith wall. As follows from [16, 17],

the following relations hold: Yl(j) = Y3(f) = —Yz(é) = —Y3(é) .
The deformations S(Xix), sg’g, s(x’e) of the ith wall at a distance z from the middle surface are described as
follows:

() — (D) (0) () — (1) (i) (0) (i) (i)
€n = Ero T 2k, g9 =80T 2Ky, Vg = Vipo + 2K
where sy,)o, sg’%yi’go are the deformations of the middle surface of one of the CNT walls; kii), kéi), k% are

the changes in curvature and torsion of the middle surface.
As was shown in [13], CNTs are well described by the Sanders-Koiter theory. Then the elements of

the strain tensor, value k)(ci ),kéi),k)(c’é) , and projection of displacements satisfy the equations

=Sk, el =R gl =ty
T Ox R0 R © R0O  Ox
k)(f) _ —822wi kéi) _ %_%’ )(Cg) -0 o’w, +L(3 ov; _ Ou, ] ‘ )
ox R700 R’00 ROx00 2R;\ Ox RIOG
The variation of the potential energy of the ith CNT wall is presented in the following form:
o11= [T+ Mo+ Vot + 1)« i @

where A is the region of the middle surface of the shell; N )(CX), N(ge), N ;(ce)’ M )((Q,M ég),M )(Cg) are the specific
power factors and moments that are defined as follows:

0.5h
N = [ollaz=w V2N L+ vl + v el + v,
—0.5h
. OISh . . . . . . . .
NG = [olldz=w V2N + v 0el) + v el + v,
-0.5h
' 0.5h
8= Toldde =0+ 1060 bl + v
-0.5h
0.5h
MY = [zoldz=p0m 8+ x D+ x O+ x Dy
-0.5h
' 0.5h ' ' ' ' ' ' ' '
My = [zofldz=wV2ngg) + x Pk + x 0 + x k)
—0.5h
0.5h
8= Teotha = 5+ XORD XU+ X @
—0.5h
(i)7,2
N Y.'h
where X ,ﬁ;) =4
12

We introduce (2) into equation (3) and perform integration by parts. Then, as a result, we obtain the
following expression for the variation of potential energy:

8T1= .”[ry(j)(unvnwi)swi + F\Ei)(ui’vi’wi)Svi + bei)(ui,vi,wi)ﬁui ]RidXde+

) Odw;

+I 8u +B’ ul,vi,w[)ﬁvi+Bf)(ul,vl,w)8w M
Ox

} R.d6, )
0
where [15 =[1,20 — 1,z 5
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N ()
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The variation of the kinetic energy of the ith CNT wall takes the following form:

L 2Wi
8K = —ph” ( O+ Swi]Ridxde, (6)

where p is the material density. The virtual work of external surface forces is defined as follows:

W = ” Su +p 8v +q,0w, )R dxdo, @)

where py), pg),ql. are the projections of external forces on the (x, 0, z) axes. To derive the CNT motion
equations, we use the Hamilton principle
L
j (8K — ST+ 8W )dr =0 (8)
)
where ?, t, are some time values. We introduce (5, 6, 7) into equation (8) and obtain the following vibra-
tional equations of the ith CNT wall:
o, oNY anQ o[ NY4NE oy, au oM
h—-— - +— t— =D, )
ot Ox R.06 00 4R, 6x R,@G 2R; 06

o, aNg‘g_aNiQ_g{Nii)+Né’3[%_ Ou, H_N_ée)(%_vj NG ow, amg 3eMY _ ) {10
i y

o> R® ox ox] 4 \oax Roe)| R*Loe R ox R¥® 2Rox

2 \ Bw. (i) NG \ Bw:
pha ":i _E(N)((Q%j.i.%_ f N(gle)(%_vij _ 0 N)(C%)(aw Vij 0 (N’(‘le)%j_
ot Ox Ox R, R700 00 R.0x 00 R,00 Ox

294 (i) 244 (i) 25 1 (i)
_aMxx_aMGG _iaM)&:qi‘ (11)
ox* R8> R, 000x
We introduce relations (4) into (9, 10, 11) and obtain the following system of vibrational equations
of the ith CNT wall
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2
phA[a j L(ll)(%J_L(Zl)( aVi +£J_L(3l)( aui +%]+L(4i)(ui7vi’wi):A(p)(ci))-'- Fu(i)(ui’vhwi) (12)

or o RO R, RO ox
Ovi | _ pf 0\ _ pof Qv i) pf O Ovi)_ p) ), pl0
hA P L|-P L+—L|-P' —t+— =P u,,v;, i =Alp, +th iVisW; 13
P [az j ! (axj > Roetr )R (Rt o )T o) o) o) 13
O'w Wi, o[ 4, i) o0 0
hA +— |+ +— ' i Vi Wi =A i +le i Vi> i 14
p (81‘ J Q1( J QZ(R@O R] 05 (Rae 8] 03w, v, w,)= Alg;) (u,v;w,) (14

where A,Lﬁ'),L(z’),Lgi),Lg),F’l(i),Pz(i),Fg( , 4 ,Ql ,Q2 ,Q3 ,Q4 are linear differential operators, which have
the following form:

1 1% [
R, 00
YY)

P}”<->:R—86Yz,<>]+—[m<>] o)=L, j=1.23,

AO=0-w9 0. Bo=2ok ol

i 1 0 ' i i)y (i
Lgl)(ul Vqu) R 2ae(X1(3)k()+X§3)k()+X3(3)k;(ce))’

0 i) i) i) (i 3 0 i) i) i)
o X X Xk e (k) x k) + X k)

82
R?00°

Pél(i)(ui’vi’wi)z

+ X+ X0 e — D+ x )+ X k)
2 &
R, 000x

The CNT under consideration consists of the N walls that are interconnected by Van der Waals forces. Fol-
lowing [18], the projections of the van der Waals forces, g;, acting on the ith CNT wall are determined as follows:

2l x )+ X Eh).

N
= c;lw, —w;) (15)
j=1
_ 12 6 w2
where ¢, =~ 10010 py 112097 gt o (g o ) [ — X K,:(_Y“RfRf e is
y a4 3 y 9 y i (I_Kijcosze)m/z y Rj+Rl 2

the depth of the potential; ¢ is the parameter that determines the equilibrium; a is the C-C bond length; m is a posi-
tive integer.

Now we write a PDE system describing the geometrically nonlinear deformation of MWNTs. Equa-
tions of motion (12—14) should be applied to each of the embedded CNT walls. Then we write the equations
of motion for a MWCNT as

2,
phA[a j Lg[)(%j_lg)( o +£J_L(3i)( o, +%]+L(4i)(ui7vi’wi):Fu(i)(uhvi’wi)’

o ox RO R RO ox
2
phA o _Pl(i)(%j_f’z(i) ﬂ+ﬁ - ﬂ"'% =P (v w,) = F ;).
or’ Ox R00 R R00 Ox
*w ov ;
o 2 o 0 2o 00 2 0 4 2|00 Ml )
i=1, ... N. (16)

We emphasize that the connection between the CNT walls during vibrations is realized through Van
der Waals forces (15).
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We write vibrational equations (16) with respect to dimensionless variables and parameters
u. V. w. X R. R. .
.= .= =—L, M=—, T=f, O,=—"; o,=—; i=1,.,N
R, R, R, L L

i i i 1
(1)
11

hRZp’
Relations (4) in dimensionless form will take the following form:
R(V)= F0Et) R+ F0T8, . A(V)= TR+ PR + PTL,

]
|
|
<
|
X

where @) =

R(VQ)= TR + P+ PO, RITY)= TR+ RYRD + RURY.

~(i i 81’7 ~(i i 61‘71 ~ ~ i i aﬁz 8‘71
8)5,())=€Ec)0= a Eé()) 8((;,2)=£+W,~, %Ee),o=Y§g,o=%+%g,
2 2 2
where (V0 N0, §0)= (8O NO N©), Roy=(=092() 2=, L TO 5 B

r
@)

PR A
=1, N; j=123; ng.i):;(’;); i=1,..N; j,=23.
11

(i) (@)
w_Yi . so_Ys.
J Yl(ll) ’ J3 Yl(ll) ’

Dynamical system (16) in dimensionless form looks like this:

2~ ~ ~
A[S a j+Ql [ iaanJ-'-QZ (69 +W1J+Q3(i)(%+a‘%j_ y)(ﬁi’%’wi):K(Zii)-i-ﬁm(j)(ﬁi’%’wi)’ (17)

~<u

ot? 9 ' on
2~ ~ ~ ~ ~
K[a" aaZij_zl(i)(“"%_ig)(%+W"j‘zg{%+ai%J‘iY)(ai,vi,wi)= RO, 5.%).  (8)
T
2~ ~ ~
K(S"aavzi}é(i)(“%j_ﬁm(%+wj ’%()(aa_ue”‘ %J‘ﬁ4‘f)(ﬁi,vi,wi)= FO@,5.%). (19
T

We represent these three PDEs in the following operator form:
G (u,,v,,w,,/\(q,) vﬁ)) 0,G (u v, w,,FL( )) 0, G3(ﬁi,\"/'i,vT/i,ﬁv(i))= 0.
The dimensionless change in the curvature and torsion of the middle surface is defined as follows:

PO R =2 O f0 g0 = T g0 g O, +l(3 = a"J

"o T T 00 o092 "onee 2 E_%

The dimensionless Van der Waals forces acting on CNT walls take the following form:
N
qg; = zgij(siwi _Sjwj)’
j=1

/2

21018° ~¢;) 9009737 (13 . 16R’e 5.0

E} - v . €= :
L@ +8,) " 6(5,+8, ) "= ) |- kco«e}“/ 274"y, R,

where c = 85

_ 453,

Further, we consider a simply-supported MWCNT, which satisfies both the geometric boundary conditions

Wl =Wl L =7 =7, =0 (20)
and natural boundary conditions
ml =ml) =NY =AY =0 1)
n=0 n=1 n=0 n=l1
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Equations of Motion with a Finite Number of Degrees of Freedom

To study vibrations, the Galerkin method is used [19]. Then it is necessary to satisfy both geometric
(20) and natural boundary conditions (21). Taking into account relations (1), it is not possible to satisfy natural
boundary conditions (21). Therefore, the generalized Galerkin method [19] is used, which is often called the
method of weighted residuals [20]. We choose the expansions of displacements i,,V,,w; , satisfying only geo-

metric boundary conditions (20)

= Zl os(mmn) [qlm 7)cos(n6) +ql(‘,‘n°)( )sm(nﬂ)],

’2
v, =Y sin(mm)lgt ) (x)cos (10) + ¢ (t)sin(n6)].
m=1

= 3 sinloen)gt) e )eos() + 405 ()sin(r6)]. (22)

m=1

where g = [q(”"'),q(”’s),q(v"'),q("’s),q(w"'),q(w’x)] is the vector of generalized coordinates of dimension V.

In expansion (22), conjugate forms of vibrations must be present. If they are not taken into account
in (22) and if such relations are introduced into PDEs (17-19), then conjugate forms will necessarily arise
due to the presence of terms with Yl(;) and Yz(é) in Hooke's law (1).

In the variation of potential energy (5), taken into account are natural boundary conditions, which are
represented by the second integral. These relations are used in the generalized Galerkin method [19]. We

introduce relations (5, 6, 7) into (8). In the resulting equation, we turn to dimensionless variables and pa-
rameters. Then we get the following relation:

H{GKZL,\Z,%,K(@) )Bu +G (ul,vl,wl,FM )Sv +G (ul,vl,wl,Fv )5w }dnd6+
Ai

T 5w, |
+| [alﬁgé‘)ﬁi — o0, M —W} d0=0, (23)
0 m J,

where A; is the dimensionless region of the middle surface of the ith CNT wall; [ ]i, = [ ]n=1 —[ ]n=0 .

Variational equation (23) yields the system of equations

~ . e 21 e 1
J‘J'Gl (ﬁz "71' ’ﬁ}i ’A(Zi[ )’ FVE/I) )Sin(mlnn) C.OS(n ) dedn (X’I(X’ ’/n’an‘ ( ) Cos(n/llnn) OS(n ) de = O’ rn’l = 1’- . ‘]3 s
. sin(n6) ! sin(n6) o

j j G, ))cos(mlnn){c‘os(ne)}de dn+a, T{N( )cos(mlnn)[cos(ne)}}l d0=0, m=1,.7,,

sin(n0) 0 sin(n6)

. 0
”63(@,@,wi,FV('))sin(mlnn){Cf)S(n )} d0dn=0, m =1,..J, (24)
A.

sin(n6)

Then, from relations (24), we obtain a linear dynamic system with a finite number of degrees of
freedom, which has the following matrix form:

M3+Kq+Kgzq=0, (25)

where M is the mass matrix; Kq is the product of the stiffness matrix and the vector of generalized coordi-
nates, which describes the linear terms in equations (24). We emphasize that these terms are obtained by tak-
ing double integrals in (24). The linear terms Kgq are obtained by taking the single integrals included in (24).
From system (25), an eigenvalue problem is easily derived for calculating the vibrational eigenfrequencies
and modes.

System (25) describes the linear vibrations of CNTs with an arbitrary number of walls.
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Numerical Vibrational Analysis of Single-walled CNTs
To verify the theory presented above, a numerical simulation of the eigenfrequencies of the linear vi-
brations of an isotropic CNT was carried out. A single-walled (SW) CNT with parameters [13] was considered:

Eh=360 N/m, D=0.85 eV, v=0.2, ph=0.7718-10° kg/m’, R=0.65 nm, where |  7apie 1. The eigenfrequencies

D is the cylindrical stiffness; Eh is the longitudinal stiffness; v is Poisson's of an isotropic SWCNT
ratio; ph is the mass per unit length. To calculate vibrational eigenfrequencies, LR, | o Hz[1] | o Hz
the problem of eigenvalues, which is derived from system (25), is solved. 05 S.i 89-10 [ 8. {93_ 107

The results of calculating vibrational eigenfrequencies are given in 1.0 4968102 | 4.972-107
Table 1. The first column of the table shows the quantity L/R;. The calcula- 50 1.042-102 | 1.043-107
tions were carried out for different CNT lengths. The second column presents | 10.0 3288107 | 3.290-10™
the first eigenfrequency published in [13]. In this article, the vibrations 50.0 | 1.468-10" | 1.469-10™

of CNT continuum shell models were studied using the Sanders-Koiter theory. The third column presents the first
eigenfrequency in Hz, obtained on the basis of the approach considered in Section 3. Thus, the first eigenfrequen-
cies obtained by the two methods are close.
Eigenfrequencies of a simply-supported anisotropic SWCNT are studied. This SWCNT is described
by the chiral indices, (n, m)=(15, 15). The SWCNT parameters were taken as follows:
K,=742 N/m, Ky=1.42 nN-nm, r,=0.142 nm, ph=0.7718-10° kg/m’, (26)
where K|, Ky are constant forces associated with the stretching of the carbon-carbon bond and the angular
curvature of bonds; r is the carbon-carbon bond length. The parameters of Hooke's law (1) Yij(.l) were calcu-

lated using the method proposed in [16, 17].

The results of calculating the eigenfrequencies of a simply-supported anisotropic SWCNT are pre-
sented in Fig. 3. Here, the eigenfrequencies for n=1 and n=2 expansions (22) are shown depending on the
parameter mR,/L. The solid line represents the eigenfrequencies obtained using the approach presented in
Section 3. The diamonds in Fig. 3 show the eigenfrequencies published in [14]. The proximity of the eigen-
frequencies obtained by the two different methods is the evidence that the eigenfrequencies calculated by us
are correct. As the parameter nR,/L increases, the eigenfrequencies increase.

We study the dependence of the vibrational eigenfrequencies of a simply-supported anisotropic SWCNT
with parameters (26) on the number of waves in the circumferential direction of n expansion (22). The results of
this analysis are shown in Fig. 4. It shows the dependence of the eigenfrequencies ®; on the number of waves in
the circumferential direction. The calculations are presented for three parameter values nR,/L: 1, 2.5; 4. For the
parameter values nR,/L=1; 2.5; 4, the minimum eigenfrequencies are observed at n=3; n=3; n=4, respectively.

As follows from [13], in isotropic CNT shell models, the minimum eigenfrequencies are observed at
n=1 or n=2. In the shell considered here, the minimum eigenfrequencies are observed at somewhat larger n.

3.51m, THz »;, THz %]zél
301 307 \_/
2.5 2.5
R, _
2.04 2.0 71—2.5
_ ] TR _
1.5 1.5 =1
1.0 1.04
0.54 Ry 0.54
L
O O T T T T T
0.5 1.0 15 20 25 30 35 40 1 2 3 4 5 n
Fig. 3. The first eigenfrequencies at n=I and n=2 Fig. 4. The dependence of vibrational eigenfrequencies

on the number of waves in the circumferential direction n
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Numerical Vibrational Analysis of MWCNTSs Table 2. The eigenfrequencies
Let us consider the results of calculating the eigenfrequencies of of a TWCNT
the linear vibrations of isotropic tripple-walled (TW) CNTs. The pa- n | my | o, THz | ;, THz [15]
rameters of these CNTs are as follows: F=5.5 TPa; h=0.066 nm; v=0.19; 1] 1 ] 0.0360 0.0360
ph=0.772-10°kg/m*, R=5nm; R,=5.34nm; R:=5.68 nm; L=10R;; 1] 2 |0ll6l 0.1161
a=0.142 nm; 6=0.3407 nm; €=2.968 meV, where E is Young's modulus. 1] 3 | 02069 0.2069
The results of calculating the eigenfrequencies of linear oscilla- 2] 1 |00139 0.0149
tions on the basis of an anisotropic model are shown in the second col- ; g 88;21 88;22
umn of Table 2. The first two columns of the table show the number of : -
waves in the circumferential direction n and the number m, of the only Table 3. The eigenfrequencies
nonzero harmonic in expansion (22), respectively. The results of calcu- of an anisotropic TWCNT
lating the vibrational eigenfrequencies of this isotropic TWCNT (see o;, THz o;, THz
the third column of the table) were published in [21, 22]. So, the results M N at g 1==J3=3 | at J,=J,=J5=4
of the calculations carried out by different methods are close. 1 0.21180 0.21180
We study the vibrations of the TWCNT with the chiral indices || 1 | 2 0.66310 0.66310
(5, 5); (10, 10); (15, 15), which was considered in [23]. The parameters 3 1.14900 1.14900
of this CNT have the following values: R;=0.339 nm; R,=0.678 nm; 1 0.57870 0.57870
Ry=1.016 nm; L=9R;; a=0.142 nm; 6=0.3407 nm; £=2.968 meV. 22| 06480 0.64830
The matrix Y of Hooke's law (1) is calculated on the basis of 3 0.83260 0.83250
the molecular approach presented in [16, 17]. For each CNT wall, the 1 1.06100 1.06100
matrix Y has its own values. To calculate the eigenfrequencies, the 312 1.08173 1.08173
approach proposed in Section 3 is used. The results of calculating the 3 113830 113830
. . . . 1 1.53050 1.53050
eigenfrequencies are presented in Table 3. The first column of the ta- 42 54750 54750
ble shows the number of waves in the circumferential direction # in 3 1: 58270 1: 58270
expansion (22). The second column shows the numbers of standing

waves in the longitudinal direction m, which make a significant contribution to the decomposition of vibrational
eigenmodes (22). The third column shows the first three eigenfrequencies obtained with the following parame-
ters of expansion (22): J,=J,=J5=3.

To analyze the convergence of the obtained eigenfrequencies [12, 13], they were calculated for a lar-
ger number of terms in expansion (22). The results of calculating the eigenfrequencies are shown in the
fourth column of Table 3 at J,=J,=J5=4. So, the calculation results presented in the third and fourth columns
are close, which indicates their convergence.

As follows from the results given in Table 3, only one longitudinal half-wave with the number m,
prevails in its vibrational eigenmode (22). So, there is no interaction between the vibrational modes pre-
sented in expansion (22). This is due to the fact that the parameters included in Hooke's law (1) satisfy the
equation Yé” = Yz(é) = Y3(f) = Y3(£) =0. As follows from the further numerical analysis, at I/lgi),Yz(é) other than
zero, there is an interaction between the vibrational modes in expansion (22).

Note that in all the eigenforms presented in Table 3, all three CNT walls vibrate in phase, i.e., they
do not move in opposite radial directions.

The results of calculating the first three eigenfrequencies of a TWCNT are presented in Fig. 5. As
follows from Fig. 5, a, with an increase in n starting from 1, the first eigenfrequency is constantly growing.
The minimum value of the second and third eugenfrequencies is observed at n=2.

Consider the polychiral DWCNT whose electronic structure is discussed in [24]. Its chiral indices
are: (9, 6) (15, 10). This CNT has the following wall radii: R;=0.5119 nm; R,=0.8532 nm; R,—R;=0.34 nm.
The matrix Y of Hooke's law (1) was calculated on the basis of the molecular approach that was proposed in
[16, 17]. The results of calculating the matrix Y for the two walls are presented in Table 4. The remaining
CNT parameters were taken as follows: L=9R,; a=0.142 nm; 6=0.3407 nm; £=2.968 meV.

To calculate the eigenfrequencies, the approach presented in Section 3 was used. An analysis was
made of the convergence of eigenfrequencies. Then, in expansions (22), the quantity J,=/,=J/; changes. The
influence of the quantity J; on the values of eigenfrequencies was investigated. The results of this analysis
are given in Table 5. The first column of this table shows the number of terms in expansion (22).
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Fig. 5. The dependence of eigenfrequencies on the number of waves in the circumferential direction:
a — the first and second eigenfrequencies; b — the third eigenfrequency

The second column shows the numbers of waves in Table 4. The anisotropic elastic constants

the circumferential direction. The third, fourth, and fifth col- of the polychiral DWCNT

umns show the first three vibrational eigenfrequencies in THz. Chiral

As follows from this table, at J,=J,=/5=3 and 4 the eigen fre- indices Y, Ya, ER X

quencies coincide, which indicates the convergence of results. 368.150 | 60.240 -0.387 |1
Now consider the properties of the eigenfrequencies 9, 6) 60.240 | 368.150 0.387 |2

obtained. The first eigenfrequency ®, increases with the -0.387 0.387 | 152.000 | 3

number n of waves in the circumferential direction. The 369.090 | 59.300 -0.139 | 1

minimum value of the second and third eigenfrequencies is (15,10) | 59.300 | 369.090 0.139 |2

observed at n=2. With increasing n, the spectrum of the ei- 0.139 0.139 | 154.190 |3

genfrequencies (®;, ®,, ®3) becomes tight. At n=1 and n=2 Table 5. The convergence analysis

the spectrum of the eigenfrequencies is not tight, whereas at of eigenfrequencies

n=3 and n=4 it becomes tighter. Ji=l=J; | n | ©, THz | ®,, THz | ®;, THz
The results of the analysis of the eigenforms that corre- 2 0.2679 | 0.8396 —

1102679 | 0.8396 1.4750
0.2679 | 0.8396 1.4750
0.4650 | 0.5874 -
2104650 | 0.5874 0.8637
0.4650 | 0.5874 0.8637
1.1670 1.2010 -
3 1 1.1670 1.2010 1.2840
1.1670 1.2010 1.2840
1.8700 1.8950 1.9460
1.8700 1.8950 1.9460

spond to the eigenfrequencies (Table 5) are systematized in Ta-
ble 6. The first column of the table shows the number of waves
in the circumferential direction n. In the second column, the

numbers of vibrational eigenforms, N, are presented. In the
third one, the numbers of nonzero vibrational eigenmodes, m,,
that are present in expansion (22). With the number of waves in
the circumferential direction n=1 and n=2, the vibrational ei-
genmodes (22) are represented as single-mode expansions. We
emphasize that the number of a nonzero mode equals the num-
ber of the vibrational eigenmode. At n=3 and n=4 in the expan-
sion of vibrational eigenmodes (22), several vibrational eigen-
modes are present, which is shown in Table 6. Such an interac-

4

E NI NI E SN ASSTR ) o VST S IE N O]

Table 6. The modes of vibrations (22)
involved in eigenforms

tion between the vibrational modes is explained by the nonzero n N Mg
values of the parameters Kg),Yz(é) in Hooke's law (1). | é é
Thus, if all the elements of the matrix Y of Hooke's 3 3
law (1) are nonzero, then, in expansion (22), there is an inter- 1 1
action between the modes at linear vibrations. 2 2 2
Conclusion ? 1 ?2
This article provides a model of free CNT vibrations, 3 2 1;2;3
which is expressed by a system of ordinary differential equations. 3 2:3
To derive this dynamical system, we use a PDF system de- 1 1;2
scribing the deformation of MWCNTs and the method of 4 2 1;2;3
weighted residuals. Thanks to the use of this method, the basis 3 2;3
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functions over which the vibrations are expanded do not have to satisfy all the boundary conditions of the prob-
lem. It is these basis functions that are used in this paper. The mathematical model takes into account the CNT
chirality, which is described by the anisotropic elastic constants of the model. Moreover, the nonlocal elasticity
and Van der Waals forces between the CNT walls are taken into account in the model obtained.

The vibrational eigenfrequencies of SWCNTs are analyzed depending on the number of waves in the
circumferential direction n. With the number of waves in the circumferential direction from 2 to 4, the mini-
mum vibrational eigenfrequencies of CNTs are observed. These numbers are smaller than those for the vi-
brational eigenfrequencies of engineering shells.

References

1. Gibson, R. F., Ayorinde, E. O., & Wen, Y.-F. (2007). Vibrations of carbon nanotubes and their composites: A review.
Composites Sci. and Technology, vol. 67, iss. 1, pp. 1-28. https://doi.org/10.1016/j.compscitech.2006.03.031.

2. Sirtori, C. (2002). Applied physics: Bridge for the terahertz gap. Nature, no. 417, pp. 132-133.
https://doi.org/10.1038/417132b.

3. Jeon, T. & Kim, K. (2002). Terahertz conductivity of anisotropic single walled carbon nanotube films. Appl.
Physics Letters, no. 80, pp. 3403-3405. https://doi.org/10.1063/1.1476713.

4. Yoon, J., Ru, C. Q., & Mioduchowski, A. (2003). Sound wave propagation in multiwall carbon nanotubes. J.
Appl. Physics, no. 93, pp. 4801-4806. https://doi.org/10.1063/1.1559932.

5. lijima, S., Brabec, C., Maiti, A., & Bernholc, J. (1996). Structural flexibility of carbon nanotubes. J. Chemical
Physics, no. 104, pp. 2089-2092. https://doi.org/10.1063/1.470966.

6. Yakobson, B. 1., Campbell, M. P., Brabec, C. J., & Bernholc, J. (1997). High strain rate fracture and C-chain un-
raveling in carbon nanotubes. Computer Material Sci., vol. 8, iss. 4, pp. 241-248. https://doi.org/10.1016/S0927-
0256(97)00047-5.

7. Wang, C. Y. & Zhang, L. C. (2008). An elastic shell model for characterizing single-walled carbon nanotubes.
Nanotechnology, no. 19. 195704. https://doi.org/10.1088/0957-4484/19/19/195704.

8. Wang, Q. & Varadan, V. K. (2007). Application of nonlocal elastic shell theory in wave propagation analysis of
carbon nanotubes. Smart Material Structure, no. 16, pp. 178—190. https://doi.org/10.1088/0964-1726/16/1/022.

9. Fu, Y. M., Hong, J. W., & Wang, X. Q. (2006). Analysis of nonlinear vibration for embedded carbon nanotubes.
J. Sound and Vibration, vol. 296, iss. 4-5, pp. 746-756. https://doi.org/10.1016/j.jsv.2006.02.024.

10. Ansari, R. & Hemmatnezhad, M. (2001). Nonlinear vibrations of embedded multi-walled carbon nanotubes us-
ing a variational approach. Mathematical and Computer Modeling, vol. 53, iss. 5-6, pp. 927-938.
https://doi.org/10.1016/j.mcm.2010.10.029.

11. Ansari, R. & Hemmatnezhad, M. (2012). Nonlinear finite element analysis for vibrations of double-walled car-
bon nanotubes. Nonlinear Dynamics, no. 67, pp. 373-383. https://doi.org/10.1007/s11071-011-9985-6.

12. Hajnayeb, A. & Khadem, S. E. (2012). Analysis of nonlinear vibrations of double-walled carbon nanotubes con-
veying fluid. J. Sound and Vibration, vol. 331, iss. 10, pp. 2443-2456. https://doi.org/10.1016/]j.jsv.2012.01.008.

13. Avramov, K. V. (2018). Nonlinear vibrations characteristics of single-walled carbon nanotubes via nonlocal
elasticity. Intern. J. Nonlinear Mech., vol. 107, pp. 149—160. https://doi.org/10.1016/j.ijnonlinmec.2018.08.017.

14. Fazelzadeh, S. A. & Ghavanloo, E. (2012). Nonlocal anisotropic elastic shell model for vibrations of single-
walled carbon nanotubes with arbitrary chirality. Composite Structures, vol. 94, iss. 3, pp. 1016-1022.
https://doi.org/10.1016/j.compstruct.2011.10.014.

15. Ghavanloo, E. & Fazelzadeh, S. A. (2012). Vibration characteristics of single-walled carbon nanotubes based on an
anisotropic elastic shell model including chirality effect. Appl. Math. Modelling, vol. 36, iss. 10, pp. 4988-5000.
https://doi.org/10.1016/j.apm.2011.12.036.

16. Chang, T. (2010). A molecular based anisotropic shell model for single-walled carbon nanotubes. J. Mech. and
Physics Solids, vol. 58, iss. 9, pp. 1422-1433. https://doi.org/10.1016/j.jmps.2010.05.004.

17. Chang, T., Geng, J., & Guo, X. (2006). Prediction of chirality- and size-dependent elastic properties of single-walled
carbon nanotubes via a molecular mechanics model. Proc. Royal Society A, vol. 462, iss. 2072, pp. 2523-2540.
https://doi.org/10.1098/rspa.2006.1682.

18.He, X. Q., Kitipornchai, S., Wang, C. M., Xiang, Y., & Zhou, Q. (2010). A nonlinear Van Der Waals force
model for multiwalled carbon nanotubes modeled by a nested system of cylindrical shells. ASME J. Appl. Mech.,
vol.77, iss. 6, 061006 (6 p.). https://doi.org/10.1115/1.4001859.

19. Washizu, K. (1975). Variational methods in elasticity and plasticity. Oxford, United Kingdom: Pergamon Press, 420 p.

20. Zienkiewicz, O. (1983). Finite elements and approximation. New York: John Wiley & Sons, 350 p.

21.He, X. Q., Kitipornchai, S., & Liew, K. M. (2005). Buckling analysis of multi-walled carbon nanotubes: A con-
tinuum model accounting for Van der Waals interaction. J Mech. Phys. Solids, vol. 53, iss. 2, pp. 303-326.
https://doi.org/10.1016/j.jmps.2004.08.003.

24 ISSN 0131-2928. Journal of Mechanical Engineering, 2020, vol. 23, no. 1



JMHAMIKA TA MILIHICTb MAIIWH

22.Strozzi, M. & Pellicano, F. (2017). Linear vibrations of triple-walled carbon nanotubes. Mathematics and
Mechanics of Solids, vol. 23, iss. 11, pp. 1456—1481. https://doi.org/10.1177/1081286517727331.

23. Liew, K. M., He, X. Q., & Wong, C. H. (2004). On the study of elastic and plastic properties of multi-walled carbon
nanotubes under axial tension using molecular dynamics simulation. Acta Materialia, vol. 52, iss. 9, pp. 2521-2527.
https://doi.org/10.1016/j.actamat.2004.01.043.

24. Lambin, Ph., Meunier, V., & Rubio, A. (2000). Electronic structure of polychiral carbon nanotubes. Physical re-
view B, vol. 62, iss. 8, pp. 5129-5135. https://doi.org/10.1103/PhysRevB.62.5129.

Received 13 February 2020

HeJjiokajibHa aHi30TPONHA 000JI0HKOBAa Mo eJIb JiHIHHUX KOJIMBaHb 0araTOCTIHHMX BYTJIeIleBUX
HAHOTPYOOK

'K.B. ABpamMoB, ’B. H. Kadunbexona, K. K. CeiiTka3zeHOBa, z A. C. Mup3adJies, ’B.M. IMeuepcbkuii

! [ncturyT npo6iem MaumHOGY xyBaHHs iM. A. M. ITizroproro HAH Vkpaism,
61046, Ykpaina, M. Xapkis, Byi. [Toxxapcekoro, 2/10

*TliBnenno-KasaxcTaHChKuil nepykaBHuMi yHiBepenTeT iMeni MyxTapa Ayesoa
160012, Kazaxcran, M. [1TumkeHt, np. Tayke-xana, 5

Posenadacmvca 6azamocminna wapHipno-obnepma eyzneyeea naompybxa. Ii konueanns 6yoymo eusuamucs 6
yuninopuyHiu cucmemi koopouram. Ilpysicni cmani 6 3axoui I'yka 3anesxicams 6i0 dlamempa CMIHKU 8y2ieye8oi HaHOmpYy-
oxu. Tomy Kodrcha cminka mae coi npysicHi cmani. Konusanns cminox HAHOMPYOOK ORUCYIOMbCSE 0O0IOHKOBOI0 MeOPIEio
Canoepca-Koimepa. /[ns eugedenHs pigHsaHb 6 YACMUHHUX NOXIOHUX, WO ONUCYIOMb AGMOKOTUBAHHS, 3ACMOCOBYEMbCSL
sapiayiunul nioxio. PiGHAHHS KOAUBAHb 8 YACMUHHUX NOXIOHUX 8UB00SIMbCSL WOO0 MPbOX NPOeKYill nepemiujerv. Y mooe-
i epaxogyiomucsi cunu Ban-0ep-Baanvca misie cminkamu Hanompyoku. Tpu npoekyii nepemiujerv poskiadaromscs 3a
bazucnumu @yuxyismu. Bubpamu 6azuchi ynkyii, wo 3a008016HAIOMb 0OHOUACHO 2€OMEMPUYHT i NPUPOOHI SPAHUYHT
ymogu, He goanocs. Tomy eubuparomocs basucui ynKyii, Wo 3a00601bHAIOMb MINLKU 2eOMEMPUYHI 2PAHUYHE yMosu. /s
00epPIHCAHHSA NIHIIHOT OUHAMIYHOL cucmemu 3i CKIHYeHHUM YUCTIOM CIMYNEHI8 c80600U 3ACMOCOBYEMbC MEMOO 38ANCEHUX
Heg's130K. [[1st 6UBeOeHHs OCHOGHUX CNIBGIOHOWEHL MEMOOY 36ANCCHUX HEBSI30K 3ACMOCO8YIOMbC MEMOOU 6apiayitino2o
yucnenns. IIpoeedeHo ananiz 61ACHUX 4ACMOm KOIUBAHb OOHOCIIHHUX BY2IeyesUux HaHOMPYOOK 6 3aNeNCHOCI IO Hucia
X6Ub 8 00600080MY HANPAMKY. 3a HUCIA X6UTb 8 00800060MY HANPAMKY 6I0 2 00 4 cnocmepiearomobcst MIHIMATLHI 61ACHE
uacmomu Koaueanb Hanompyook. Li uucna menuti, Hide O GIACHUX YACMOM KOAUBAHL MAWUHOOYOieHux 00010HOK. [loc-
JHOXCYBANUC MPLOXCMIHHI AHI30MPONHI MOOei HaHompyOoK. ¥V enachux gopmax cnocmepizacmocsi 63a€Mo0is mioc 6a-
SUCHUMU YHKYIAMU 3 PISHUM YUCTIOM X6UTb 8 NO3008AHCHLOMY HANPAMKY. Llboco saeuwa ne cnocmepizanocs 6 i30mponHiil
MmoOeni nanompyoku. [losea makux KOIUEAHb € HACTIOKOM AHI30MPONIT KOHCIMPYKYIL.

Kniouosi cnosa: nanompyoka, obononkoea meopis Canoepca—Koimepa, cuiu Ban-oep-Baanvca, neroxaivna
NpYJACHICD.
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