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UDC 624.074.4:681.3 This paper considers the application of the random search method for the optimal

design of both axially-compressed smooth cylindrical ideal thin-walled shells and a
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the objective function is the minimum weight of the shell. As constraints imposed on
OF SMOOTH SHELLS

the region of permissible solutions, the following constraints are adopted: on the
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and wall thickness of a shell). With the optimal design of a shell with initial imper-
INTO ACCOUNT fections, the statement of the mathematical programming problem remains the
INITIAL same as for an ideal shell, with only local buckling constraint changing. The aim of
IMPERFECTIONS this paper is both to study the zone of influence of the optimum shell weight on the

value of compressive force and to determine the range of the external compressive

loads at which the general and local buckling shell constraints are decisive. A nu-

Heorhii V. Filatov merical experiment was carried out. Dependences of the weight, wall thickness,
gvmfilatov@gmail.com radius of the middle surface, and the ratio of the middle surface radius to the wall
ORCID: 0000-0003-4526-1557 thickness on the magnitude of the compressive load both for an ideal shell and a
Ukrainian State University shell with initial imperfections were investigated. As a result of the numerical ex-
of Chemical Technology, periment, it was established that the presence of initial imperfections in an axially-
8, Haharina St., Dnipro compressed smooth cylindrical shell leads to an increase in its weight compared to
4’900 s Ukrainé ’ that of an ideal shell. The weight does not increase over the entire range of com-
’ pressive loads, but only with the loads at which both local and general buckling
constraints are decisive. If the optimal solution pertains to the strength constraint,
which is typical for large compressive loads, there is no influence of initial imper-
fections on the optimal design. The weight of an ideal shell and that of a shell with
initial imperfections in the optimal design turn out to be the same.
Keywords: thin-walled cylindrical shell, initial imperfections, optimal design,
random search.
Introduction

Thin-walled constructions in the form of shells are used in many branches of engineering and con-

struction. The variety of types of shell structures, different loading and operating conditions, the complexity
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of stress and strain state analysis led to the creation of both specific techniques and computational methods,
often mathematically quite complex and therefore almost unavailable to wide circles of engineers.

Even more complicated is the computation of optimally designed shells. With the development of
mathematical programming methods, it became possible to find the optimal parameters of shells. However,
not all mathematical programming methods successfully cope with this task. Whenever shell-type structures
are designed, physical, technological, operational, and geometric constraints are usually imposed onto them.
These constraints are usually written as inequalities. Thus, in the space of optimization parameters, there is a
certain stationary region within which the optimal solution is located. As noted above, problems of this type
are successfully solved only by modern non-linear programming methods, in particular, computer-aided ran-
dom search methods [1].

In addition, in the optimal design of compressed reinforced cylindrical shells, critical stresses become a
function of not only the casing and reinforcement parameters, but also the number of circumferential and me-
ridional half-waves, which are formed when buckling is lost. The number of half-waves, in turn, also depends
on variable shell parameters. Therefore, the search area becomes unsteady. The constraints that are imposed on
the non-stationary region "breathe". To solve this problem, special algorithms are needed that take into account
the specifics of the problem. Such algorithms exist, and are given in the specialized literature [2, 3].

Parametric Optimization of Cylindrical Shells Without Initial Imperfections

Let us consider a smooth isotropic circular cylindrical shell of a given length L simply-supported at
the ends and loaded with an axial compressive load N (Fig. 1). The characteristics of the shell material are
known: E is the elastic modulus, o, is the yield strength, v is the specific gravity, and p is Poisson's ratio. It is
required to find such values of the wall thickness & and radius R of the middle surface of the shell R on this
continuous set of parameter values that at a given load N the shell has a minimum weight G.

The problem formulated above mathematically reduces to finding the W
minimum value of the weight function A
G =2myLRS (D
at fulfilling the constraints M«U_LU
2
2nES SN o | =
V31—
3 3
" EOR
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Condition (2) is the constraint on the critical load of the local buckling of | Fig. 1. The design scheme
an ideal circular cylindrical shell; condition (3) is the constraint on the critical of a shell

load of the buckling of the shell axis; condition (4) is the strength condition and, finally, condition (5) con-
strains the dimensions and wall thickness of the shell.
Using the notations
TE
r
2nE ©

——; x;=0, Xx,=R
2
V3d-p?)

and substituting them into equations (1) to (5), we obtain the following non-linear programming problem: to
find non-negative values of x; and x, which minimize the function:
P =Axx, (7

A=2nyL; B= C =2n0,;

D=
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and satisfy the constraints

Dxi >N; Bxx;>N; Cxx,> N} 8)

min max , min max
X SxS<x s X SxS<x

The initial data for solving the problem were taken as fol-
lows: FE=8.16-10'MPa; o,=162MPa; p=0.3; v=78.55kN/m’;
L=3 m. Shell loads: N=1000 kN and N=10 kN. Geometric restric-
tions: 0.01<6<2.0 cm; 1<R<100 cm.

Problem (7)—(8) was solved by using the random search al-
gorithm with coordinate-wise self-learning with forgetting [1]. The
descent was carried out from two points with coordinates: x;=2 cm,
x=100cm and x;=1.5cm, x,=50cm. With a axial load of
N=1000 kN on the shell, the values of the optimal parameters § and
R turned out to be different, but the value of the objective function
was the same (G=1459.4 N). The analysis of the solution to the prob-
lem showed that at a large external load for a given shell length in
the example, dominant for such a shell is the strength condition,
which graphically, over a sufficiently significant length segment,
coincides with the level line of the objective function. In Fig. 2, on
the level line of the weight function, which corresponds to a value of
G=1459.4 N, distinguished is the interval of possible optimal solu-
tions for 6 and R, which deliver the minimum objective function (7).
In solving the problem that was formulated in [4], where the parame-
ters 0 and R were found for the optimal shell loaded with a longitu-
dinal load of N=1000 kN, the interval of identical minimum values
of the objective function was determined analytically by using the
Lagrange multiplier method. The minimum value of the objective
function was G=1459.4 N, which completely coincides with the so-
lution obtained by the random search method.

The shell loaded with a longitudinal compressive load of
N=10kN has the only optimal solution G=15.5N, at 6=0.018 cm
and R=5.72 cm (according to [4]). The search results are shown in
Table 1. The search path is shown in Fig. 3. It can be seen from
Table 1 that the problem solution results presented in work [4] and
obtained with the algorithm with coordinate-wise self-learning with
forgetting coincide completely.
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Fig. 2. Illustration for the optimal design
of a shell with a large compressive load
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Fig. 3. The search path for the optimal
solution for a shell with a low value
of compressive load

Table 1. Results of the optimal design of an ideal cylindrical shell

Method Shell | Weight G, N | Wall thickness 3, cm | Radius R, cm
of Lagrange Multipliers [4] Ideal 15.5 0.018 5.72
of Coordinate-wise Self-learning with Forgetting | Ideal 15.5 0.018 5.72

Influence of Initial Imperfections on the Optimal Parameters of a Smooth Cylindrical Shell

The modern theory of designing smooth shells has various methods for estimating the minimum
critical loads. Among them are classical approaches [5] based on the use of the Euler static criterion with the
account taken of the homogeneous momentless subcritical state of a shell, as well as non-linear approaches
that take into account both the inhomogeneity and momentness of the subcritical state [6, 7]. Extensive use
has been made of methods of calculating thin-walled shells with initial imperfections. These methods use

both classical approaches [8] and non-linear methods [9].

Consider a cylindrical smooth isotropic circular cylindrical shell of a given length L, the shell being
simply-supported at the ends, loaded with an axial compressive load P, and having initial imperfections. The
characteristics of the shell material are known: E is the elastic modulus, o; is the yield strength, v is the spe-
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cific gravity, and p is Poisson's ratio. It is required to find such values of the wall thickness o and radius R of
the middle surface of the shell that at a given load N it would have a minimum weight G. It is known that in
the presence of imperfections, the values of critical axial compression forces change significantly, the change
being the greater, the greater the ratio R/S. In this regard, the following question is of considerable interest:
how, all else being equal, the optimal (in the weight sense) parameter values are affected by the shell surface.
In other words, it is necessary to find such parameters d and R that would deliver the minimum of the weight
function of the shell with initial imperfections. The formulated problem in many respects coincides with the
previous one. The only difference is in the expression for the critical load of local buckling. Given the influ-
ence of initial imperfections, this expression has the form [10]

1 1

5 1 1

_2mES (1+k£j2—(k£j2 >N, ©)
V31-p?) 0

where the coefficient k takes into account the quality of the shell surface and, as shown in [10], at k=0.005,

the curve constructed in coordinates N (critical force) R/S is the lower enveloping curve for the numerous

experiments that were conducted by different authors.

Introducing notation (6), we obtain the non-linear programming problem: to find non-negative val-
ues of x; and x, that minimize the function

@ = Ax,x, (10)

in satisfying the constraints

2 2
Dx? [1+kﬁj —[kﬁj >N; Bxx2N; Cxx,>N;

X X

(1)

M < x < ™ o < x, <

To assess the influence of initial imperfections on the optimal design and to establish the weight ef-
ficiency zone of an ideal shell with respect to a shell with initial imperfections, we performed weight optimi-
zation of an axially-compressed smooth cylindrical shell without initial imperfections (ideal shell). The re-
sults of solving this problem are given in Table 2.

The formulated problem (10)—(11) was solved using the continuous learning algorithm with a direc-
tor cone [1] at the following initial data: N=10kN; E=8.16-10" MPa; ©,=162 MPa; u=0.3; L=3 m;
y=78.55 kN/m’; k=0.005; 0.01<8<1.5, 1<R<50 cm.

As a starting point, the point with coordinates x;=1.5 cm ; x,=50 cm was chosen. The initial step value
equaled a=0.4, with subsequent crushing. The cone opening angle was accepted equal to 0.5 rad and halved in
tracking a new direction near the border of the search area. The results of the solution are given in Table 2.

Table 2. Results of the optimal design of the ideal cylindrical shell and the shell with initial imperfections

Method Shell Weight G, N | Wall thickness 9, cm | Radius R, cm
Guide cone Ideal 15.60 0.0181 5.820
Guide cone | With initially imperfections 20.64 0.0276 5.042

As expected, the weight of an optimal shell with initial imperfections was greater than that of an
ideal shell.

The influence of initial imperfections on the optimal design was investigated in a wider range of
changes in compressive loads. To solve this problem, a random search algorithm with a density-controlled
sampling distribution was used [11].

The numerical experiment was carried out with a compressive load P varying from 0 to 1000 kN.
Fig. 4 shows graphs of the dependence of the weight of an optimal shell on the magnitude of a compressive
load in the form of a peculiar loop.

Three zones can be distinguished in this loop. The first zone of shell weight values lies below section A.
With load values of P<10 kN, the constraints that determine the optimal design are geometric constraints on the
shell wall thickness and the total buckling of the shell axis (3). The effect of initial imperfections on the value of
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the shell weight in this zone is absent. The weight of an ideal shell and the weight of a shell with initial imperfec-
tions are the same. The second zone is located between sections A and B. The optimal solutions for an ideal shell
and a shell with initial imperfections belong to the zone under consideration, and are characteristic in that the
determining constraints for them are the local and total buckling constraints (9) and (3). In this second zone, the
influence of initial imperfections on the increase in shell weight is observed, the shell wall thickness turns out to
be greater than that of an ideal shell (Fig. 5), and the radius of the middle surface, smaller (Fig. 6).

The ratio of the middle surface radius to the wall thickness of an ideal shell turned out to be larger
within the second zone than that of a shell with initial imperfections (Fig. 7).

The largest relative weight increase in a shell with initial imperfections relative to the weight of an
ideal shell

G. -G
E=—1—1.100%
Gi
was observed within the second zone, and amounted to 36.71%. With an increase in compressive load, the
relative increase in weight decreased, and at P=26 kN it turned out to be zero.

(g &, (cm)
4000 = 0.050
E' /B P
3500 s 0.045 »
’ A LA
3000 - Va 0.040 v
2500 / z/ 0.033 ’,.-’ |/
A LA LA
y, 0.030 L/
= s )
1500 7 0 s
00 7 "
1000 1,/ rg
4 o LA LA
yZ 4 sors AL
500 | o a
D 0 nns
0 4 % 12 16 W 24 28 PN .
x) o4 8 1z 16 24 28 P, (KR

Fig. 4. The weight dependence of an ideal shell (1) and
a shell with initial imperfections (2) on the amount
of the compressive force P

Fig. 5. The dependence of the wall thickness of an ideal
shell (1) and a shell with initial imperfections (2)
on the amount of the compressive force P
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Fig. 6. The dependence of the radius of the middle
surface of an ideal shell (1) and a shell with initial
imperfections (2) on the compressive strength P

Fig. 7. The dependence of the ratio of the middle surface
radius to the wall thickness R/ of an ideal shell (1) and
a shell with initial imperfections (2) on the amount
of the compressive force P
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The third zone in Fig. 4 lies above section B, and is characterized by the equality of values of the ob-
jective function both for an ideal shell and a shell with initial imperfections.

The determining constraint for the third zone is the strength constraint (4). The influence of initial
imperfections on the optimal design in this area is absent.

From other observations, it can be noted that for shells with initial imperfections lying in the second
zone, the total buckling constraint begins to work much earlier than for ideal shells. So, if for a smooth shell the
local buckling constraint begins to work at P=12 kN, then for shells with initial imperfections, this constraint
begins to work at the compressive force P=24 kN. For an ideal shell, the optimal solution will be found on the
strength constraint with significantly lower compressive loads (P=12 kN). This means that, starting from
P=12 kN, the optimal parameters for an ideal shell can be determined taking into account only the strength
conditions, which greatly simplifies the solution. With the optimal design of shells with initial imperfections,
such a calculation can be carried out only after the compressive force reaches a value of P=24 kN

Conclusions

The numerical experiment allows us to draw the following conclusions:

1. The presence of initial imperfections in an axially-compressed smooth cylindrical shell leads to an
increase in its weight as compared with an ideal shell optimally designed.

2. An increase in shell weight does not occur over the entire range of compressive loads. It occurs
only under those loads, where both the local and general bucklings are the determining constraints. If the op-
timal solution pertains to the strength constraint, which is typical for large compressive loads, the influence
of initial imperfections on the optimal design is not observed, the weight of both an ideal shell and a shell
with initial imperfections in the optimal design is the same.
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OntumanbHe MNPOCKTYBAaHHA IVIAAKHX 000.J10HOK 0e3 YpaxyBaHHA Ta 3 YpaxXyBaHHAM MOYAaTKOBHX
HeA0CKOHAJIOCTEM

T'. B. ®itaroB

VYxpaiHChKUH nepKaBHUH XIMIKO-TEXHOJIOTIYHUHN YHIBEpCHUTET,
49005, Ykpaina, M. {ninpo, np. ["arapina, 8

Y emammi posenaoaecmoca 3acmocysanus memooy 8unaok08020 NHOUWYKY 00 ONMUMATLHO20 NPOEKIMYBAHHS CMU-
CHYMUX 8 0CbOBOMY HANPAMKY 2AA0KUX YUNTHOPUUHUX [0eaNbHUX MOHKOCMIHHUX 000JIOHOK i 000J0HOK 3 NOYAMKOBUMU
HedockoHanocmamu. Ilpu nocmanosyi 3a0a4i MamemMamuyHo20 NPOSPaAMy8anHa AK Yinbosa (YHKYIA po321a0acmvcs Mi-
HiManbHa 8aza 000I0HKU. K 0bMedCcenHs, W0 HAKIA0AIoMbCsa HA 30HY OONYCHMUMUX PO38 3K, NPUUMAIOmbcs 0dMe-
JHCEHHSA: 3 KPUMUUHO20 HABAHMANCEHHS MICYEBOT 8mpamu CMIIKOCMI, 3 KPUMUYHOLO HABAHMAICEHHS 6MPAMU CIIUKOC
oci 000IOHKU; YMO8A MIYHOCMI T YMOBA W0O0 0OMedceHHs 2abapumié 000I0HKU (padiyca I mOGUJUHU CIMIHKU 000JIOHKU).
Ipu onmumansHomy npoexmy8anti 0O0IOHKYU 3 NOYAMKOBUMU HEOOCKOHAIOCIAMU NOCMAHOBKA 3a0a4i MaAMeMamuyHo20
NPOZPAMYBAHHSL 3ATUUAEMBCS. MAKOIO JC, 5K T 015l i0eanbHol 000N0HKU, 3MIHIOEMbCS MITbKU 0OMEHCeHHsT 3 Micyesol
smpamu cmitikocmi. Memoro yici pobomu € 00CHiONHCeHHs 30HU BRAUY ONMUMATLHOL 8a2U 0OONIOHOK HA 6EIUHUNY CIMUC-
KAIbHOL CUNU | BUSHAYUEHHS OiaNA30HY 306HIUHIX CIMUCKAIbHUX HABAHMANCEHb, 34 SIKUX BUSHAUATLHUMU € OOMEIICEHHS 3
3azanpHoi ma micyegoi smpamu cmivkocmi obonouxu. Ilposedeno wucnosuil excnepumenm. JJoCaioxncy8anucs 3a1eicHoc-
mi 6azu, MosWUHU CIIHKU, paoiyca cepeounHol NOBepxHi i BIOHOUIeHHs padiyca cepeounHol nOBepXHi 00 MOGWUHU CIMIH-
KU 8i0 8eUYUHU CMUCKATILHO20 HABAHMANCEHHA 015 i0eaibHoi 000NOHKU | 0OO0IOHKU 3 NOYAMKOBUMU HEOOCKOHALOCHIAMIL.
B pesynemami npogedenozo uucio8o20 excnepumenmy 8CMAHOBIEHO, W0 HAABHICMb NOYAMKOBUX HeOOCKOHANocmel )
21a0Ko1l YUNIHOPUYHOL 000IOHKY, CIMUCHYMOL 8 0CbOBOMY HANPAMKY, NPU3800UMb 00 30iNbUEeHHS 1T 8acU Y NOPIGHAHHI 3
ioeanvroio 0bononkow. 30inbiuenHs 6acu 8i00YBAEMbCs He HA 8CbOMY O0IANA30MI CIUCKATLHUX HABAHMAIICEHb, A MITbKU
NpU HABAHMAINCEHHSX, KOIU GUSHAYATLHUMU € 0OMEICEH sl 3 MICYeoi ma 3azanbHoi empamu cmitkocmi. Axkwo onmuma-
JILHUTL PO36° 30K HANEHCUMb OOMENCEHHIO 3 MIYHOCT, WO XAPAKMEPHO OISl ENUKUX CIMUCKATLHUX HABAHMANCEHD, BNIIUBY
HOYamKO8UX HeOOCKOHAIOCMell HA ONMUMALbHULL NpOeKm He cnocmepizaemuvcs. Baea ioeanvnoi obonouxu i obononku 3
NOYAMKOBUMU HEOOCKOHATOCMAMU 8 ONTNUMATIbHOMY NPOEKMI BUABTAEMbCA 0OHAKOBOIO.

Knrouosi cnosa: monxocminna yuiiHOpuuna 0060I0HKA, HOYAMKOSE HeOOCKOHANOCHI, ONMUMATbHE NPOEKMYEAaHHS,
BUNAOKOBUL NOULYK.
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