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Measurement of the lengths of curves is quite common in solving various prob-
lems. If the function that defines the curve is differentiable, then computing the
curve length is a relatively simple mathematical operation. In the absence of
initial information about the function, it is necessary to apply approximate
methods. Which of these methods should be used for a particular function is
usually decided by the user. One of the important factors influencing the choice
of the method is the available time resource for the preliminary analysis of the
function and for the coordination with the initial data that include both the nec-
essary accuracy of the result and the total numerical costs. The article proposes
a method based on an a posteriori approach to the problem, where the analysis
of the behavior of the function is carried out in the process of an approximate
measurement of the length of the curve in a given area. This method became
possible thanks to the introduction of an incremental adaptation mechanism
that responds to the deviation of the function curve from the broken line ap-
proximating it. As a result, the local analysis accepted as a result of the adapta-
tion made it possible to pass the large steepness segments of the curve in small
increments and the flat segments, with large ones. With a particularly sharp
change in the function (for example, in sub-domains with singularities), the
main adaptation mechanism is able to go beyond the boundaries of the adopted
set of constants without serious complications of the algorithm. Thus, there has
disappeared the need both for a preliminary analysis of the behavior of the
function, not necessarily regular, and the identification of singularities (kinks,
extreme points, etc.), their numbers and locations. In order to compute the
length of the curve, it is enough to set the function on this area and the required
accuracy, limited by the minimum increment, without worrying about using
some auxiliary tables and weight factors. The numerical experiment conducted
on a test set of functions of varying complexity showed the advantage of the
proposed approach over grid methods, especially with equally spaced nodes.

Keywords: non-differentiable function, piecewise linear approximation,
adaptive peace-wise selection of nodes, efficiency index.

Measurement of curve lengths is a very common operation that occurs, for example, in optimal control
theory, isoperimetric analysis, geodetic constructions, and a number of related fields. This is a relatively simple
operation, if the curve-defining function is differentiable. In the case of lack of information about the function
or its differentiability, it becomes necessary to use approximate numerical methods.

When computing the length L of a line segment

(Fig. 1) given by the function f{x) on the segment [A,
B], it is always important to choose the simplest and
most economical search method.

In order to do this, we use the initial, most gen-
eral definition, where the length of the line is measured
as the limit of the sum of the lengths of the segments
inscribed in it (line segments) with an unlimited increase
in their number, when the maximum segment length
tends to zero. Therefore, further, for an approximate
computation of the line length, we will directly rely on
the representation
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Fig. 1. A variant of the diverse behavior of a function
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L= . (1)

where the lengths of the segments /j of the broken line g(x) inscribed in the curve are determined both by the

nature of the function f{x) and the method of specifying the nodes xj that divide the segment [A, B].

In order to solve problem (1), we consider it sufficient that the function be given by an analytical ex-
pression or some algorithm allowing us to uniquely indicate the number y for any number x€[A, B]. The in-
volvement of such functions, including non-differentiable ones, is justified by the fact that most real applied
problems contain non-smooth functions [1-4], where no assumptions are made about the class of functions
f(x), except for the possibility of its computation at arbitrary points of a given segment [A, B]. In this case,
the question arises both of the number n of segments in (1) and their rational arrangement on [A, B] to ensure
the required approximation accuracy €.

Obviously, the more complete the initial information about f(x), the more successful the solution to
the problem assigned. Taking into account such a priori information as a function class, the presence and lo-
cation of characteristic points, the behavior of the function in different regions of the segment [A, B], as well
as previous experience in solving such problems can be useful [5—12]. It has always been used to solve prob-
lems by classical methods.

According to the established tradition, with rare exceptions (Gauss K. F. [6, 7], Chebyshev P. L. [8]),
for convenience, a grid of equally spaced nodes is used [5-7, 12], although it is clear that the way to choose
them must depend on the behavior of the function fix) on [A, B].

Adaptive Approach

The strive to reduce computational costs while ensuring a given accuracy, leads to an a posteriori
way of solving such problems. In this case, local information is used on the change in the nature of the func-
tion f(x) as it moves along the curve.

In order to obtain the length L (1) of the curve, we introduce a controlled incremental process

by = U(Q(f,€)), )

generating nodes {x;} of segments /; of the broken line g(x)
that approximates the true length of the curve L* described Y
by the function f{x) on [A, B]. Here, U is a kind of adaptive
control depending on the situation 6,=0; (f; €) that occurs at
the increment h; with the corresponding segment [, when
the required accuracy € is achieved by the given method of
controlling the situation. Vi

Fig. 2 shows a fragment of the incremental con- o X Xy Xk l Xew  x
struction of the broken line g(x) ensuring the implementa- — I th
tion of process (1), from which it follows that at least two
ways are possible to track the changing situation oy along | Fi8- 2. A fragment of t}"e sfheme of deviation of g
the curve described by the function f(x). from for adaptive increment control

b
%/
J

In the first case, the situation
6, (a,b,c)=cb= |)’1<+1 — (=1 vy +Hk)’k—1|’ We=h by, @)

is characterized by the deviation of the side ac from the side ab of the triangle A, If the arc turns out to be
a straight line, then the value 6,=0. With an increase in the curve knee, the value G; increases. It is clear that
the smaller the angle Za, the more precisely the curve f approaches the broken line g.

_ m
Another possibility of controlling the "maximum" deviation of the chord ab from the arc ab of the curve

(@)
fix) (Fig. 2) is based on the most probable location of the deviation in the "middle" neighborhood of the arcab ,
i.e. when the situation G, can be approximately characterized, for example, by the magnitude of the deviation
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o, =0.5y; — & 4)

Here, unlike the approximation method in [13], the approximate direction JH ]_b of the "derivative"
f'(x) at the point (x, y;) is taken into account, which allows us to more accurately approximate the point d
(@)
(Fig. 2) to the arc ab by using the informative points (x_1, Yi_1), (X Yi)s Xie1> Yer1)s

Iy Vet Ve Xt e

yi = Ve t M O = Yi)s A =05 I+ > 8k > > X >

Hereinafter, informative points refer to the points where the values of the function are known.

Dependence (4) makes it possible, without computing the function f{x) at the point xZ, to approxi-

mate the arc of the curve f of the broken line g composed of two segments ad and db whose total length is

I = O,S(J(yi gl =2y, + 02+ (v + g =2y, +02 j : (5)

In order to compute the approximate length L (1), we dwell on adaptive approach (2) for taking in-
formation by using 6, (4), which makes it possible, by the formula

h,., = h, expla(e—c,)], (6)

to obtain the lengths of increments, and from them, the lengths of segments /; (5) through the quantities yz and

gz that characterize the proximity of the broken line g to the curve f. The intensity factor o, which is part of
(6), is responsible for the degree of increase or decrease in the increment change /., and g, for the acceptable

level of the deviation of y, from g, .
If the behavior of the function f{x) on the current set x;, x;,; changes sharply, then not only the discriminant
D=¢e-o0, @)

turns out to be negative, but the rotation angle Za of a segment of the broken line may become greater than a
right angle (7/2). And then the next increment, determined by formula (6), may turn out to be too small, leading
to a slowdown in the search process. Depending on the nature of the behavior of the singularity encountered,
such an excessive deviation from the standard advancement along the curve will more or less negatively affect
the amount of computational costs. Because of this, and also in order to eliminate the possible instability of the
incremental process, we can introduce the minimum increment /.., i.e. agree that 4, =h,;;, for all numbers of k.

In the case of relatively flat curves, the incremental process, defined by formula (6), oscillates, and,
where the deviations of the function f(x) from g(x) are large, it algorithmically switches to the "minimum
increment" mode.

With a "sharp change in the direction of the function" according to the value of D (7), accuracy may
be lost in calculating the length of the curve in the current segment (adaptive increment correction will occur
only in the next segment). Therefore, in method (4)—(6), we can introduce the maximum tolerance M>1 for
the deviation from ¢, i.e. satisfy the condition ;<M €. If it is violated, then it is necessary, within the frame-
work of the incremental process defined by formulas (4)—(6), to introduce an additional informative point

x; =x, +h, /2M . This somewhat reduces the efficiency of the method, but it contributes to maintaining the

deviation of g from f close to €. After being adjusted and passing through a singularity, the process automati-
cally switches to the previous mode. When the current increment /., overlaps the boundary of the segment
[A, B], then it is natural to take x;,;=B and complete the computation of L (1).

When adapting the increment [4, 13-22], we obtain a more accurate idea of the problem in the
course of its solution, which is why the sensitivity to the initial data decreases. However, an unsuccessful
choice of the initial increment A, can sometimes indirectly affect the error of the solution. Thus, a very small
increment allows us to increase accuracy, but to a certain limit. However, at the same time, this increases
numerical costs. An abrupt increment reduces the costs, but can lead to missing singularities at the very be-
ginning. Given this uncertainty, it is necessary to limit the maximum and minimum increments, i.e. accept
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the condition £, <h;<h..x. But adaptation (6) partially solves the problem of the rational choice of the initial
increment A, and makes it possible for the method to function even without specifying the beginning, relying
only on Ay, in the absence of other information.

Numerical Experiment

We can make correct conclusions about the capabilities of a particular method only after conducting
appropriate tests on a representative set of a wide-class of test problems, and after comparing the results with
those of the solutions obtained by other methods. It is desirable that the comparison take place on an equal foot-
ing with the methods that have been synthesized on the same basis (in this case piecewise-linear).

Certainly, in this process, an important role is played by the problems chosen for the experiment. If
possible, they must reflect a fairly wide class of functions with a different spectrum of singularities (kinks,
stationary points, etc.), and also rely either on well-known examples [5-7, 13, 10-19, 21, 22] or on the con-
structed ones, which combine diverse functions.

One such example of constructed functions may be the dependency

8
f(x)=ZX(x_xi—1)'X(xi_x)'fi’ x(x)=(1+sgnx)/2,

i=1

composed of the set of functions f; =1, f, =Inx+1.693147181,

points xp=0, x,=0.5, x,=1.5, x3=2, x,=3, x5=3.8, x¢=5, x7=6,
xs=7.5 in which singularities (kinks, stationary points) are lo-
cated. The behavior of the function f(x) is illustrated in Fig. 3.

fi= 0955119613 , f4=1.791759469x — 2.583518938,
x—1.0448803876
f5 =3.88089368 —0.054221831-¢", f,=-1,
fr= x(l .0(6)—0.07(3)xv6 — x), fy = x> —14.8(3)x +53.09), A
that are defined on their segments whose ends are the junction Al | W | wB

Fig. 3. An example of a combined function

The table below shows both the test functions and the results of calculating the lengths of their curves
both by the adaptive exponential (AdEXx) control method and, its special case, Scan method where there is no
control, i.e. D=0. In this case, for the convenience of analyzing results, the number of informative points in the
Scan method is chosen equal to the number obtained in the AdEx control method. The choice for the comparison
of the Scan method rather than the more accurate Simpson or Gauss methods [6, 7, 12] is explained by the fact
that the Scan method can give greater accuracy for functions with discontinuous derivatives (see Figs. 1, 3).

In assessing the quality of methods, the essential characteristics are usually both the laboriousness
(solution time) of the problem and the amount of memory used. Therefore, in our case, we restrict ourselves
to a conditional criterion (index of effectiveness) [23] in the form

E=(B—A)[N(‘L—L* +o) ", ®)

where the proximity measure | L-L<e on [A, B], L is the approximate solution (1), L* is the exact solution,
N is the number of computations of the function f(x) to achieve the given accuracy € . The length of the seg-
ment [A, B] in (8) serves as a leveling coefficient in many examples for the method being tested.

In the above table, the functions f(x) and their corresponding approximations of the lengths L of
curves are arranged in the increasing order of the complexity associated with the presence of singularities
and their nature. The presence of singularities in the functions, as expected, somewhat reduces the efficiency
of the E solution. But it still turns out to be higher than in the Scan method, which is based on the same
piecewise-linear approximation of the function f{x).
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Computation Results of Test Cases

*

k Function [A, B] |Method L L N E
205 . Scan | 3.1412363916 8.331309
! (=) FEA ey 30418001085 141992633 1775340503
205 _ Scan | 1.2912102895 6.777798
2 (1-2.582843592 32 [6] 006 [~ 20 ronazae| 1291290325 85—
5 e 1oy | Scan |4367as2ats0l o [ | 0281874
X —X -1; . —
AdEx | 43891797505 0.587940
o _ Scan | 4.1958229760 0.251372
4 e sin27x 0321 =4 dEx [22108280000] 42250024451 256 46047
- . Scan | 6.0829017202 19.192283
> [1+G7T [10] FL41 e Te.084a301606| 0844230961 259675536
6 Sin6x-+sin(7x47) [0;0.757] j;‘g; ﬂ;gg;ggéz? 11.227596321| 215 %
S 5.0776795649 1,249688
7 arctg [(x-3)/(X’+4)] [0; /2] A;”g)‘c S TreRaaoTs|  S077680629| 246 |t
a2 _ Scan | 7.6622848307 33.814669
8 130y {12] 041 =4 aEx [7.066303a6307] ' 002778876] 239 rs cou004
9 5244l [(0;2.5] [ S€an | 20399563941 | ) 694115566 | 247 | 0094415
AdEx | 20.697280762 2.187902
0 cin el 1] o171 | Scan [ 94a77is82 [ "0 Tl 1137283
St X x 0571 ™y dEx 94432600208 ° 1.169288
05 ey Scan | 56.859218061 0.348427

0.5 (x-1)

~1,5+1,5 [12 : , a1
1 moe 2] 0: 7] ™ 4dEx | 56880034218 | 08863068431 340 maeds
. s _ Scan | 10.267133014 0.886594
12 [ sinx+ sin [(6e)"x] [0:61 = Ee T10.272087109] 10-2851427511 356 =501 a¢
o A _ Scan | 192.79878747 0.235758
13 [ 1003740, =09 02°T 631 | [0: 1] [ oo i e 192.805976090| 518 (oo
e _ Scan | 30.635488704 0.680544
14 [sin (x'/20) | [0:30) Iy dEx [30.656310079] 00993520461 357 M eeaag
_ Scan | 21.359827202 0.129386
15 [ Fxe-4)] 2| 0361 =) gy (21431380002 214631870961 436 755309
JiX 20+ (-2 [ (S=0)+3x(=5)], Scan | 42.180853268 1.856540
167 fi=loeD-1, fml (-3)11, [-0.5:7] 42.191169149| 557 ————
f3=(x-5)4+15 AdEx | 42.196942922 2.292393
" ZS: ( g ). f 075y | Sean [ 2401974101 aso| ors | 2009632
X=x_)xx;, —x)- f; ;7. . —
L XX ) K AdEx | 25361745241 0.079836
10(15+2sin x+10c0s x+3c0s 3x+ _ Scan | 689.81426576 0.486768
18 +3sin 4x+cos 5x) [7] 7 %) A dEx | 689.82234612| 000822898510 1340 =350 0 4g

For all examples, the computation was carried out under the same conditions: e=10", h,,=107,
he=5-10", a=10, M=2.
The comparison of the curve length results obtained by the Scan and AdEx methods in the test cases
shows that the efficiency criterion E for the AdEx method is higher in all test cases.

Conclusions
An adaptive method is proposed for numerically finding the length of a curve. This effective incre-
mental method became possible due to the rejection of equally spaced nodes x;, which are generally unfavor-

able for computing the integral sum at once over the entire segment [A, B].

The adaptive local retrieval of the information regarding the nature of an arbitrary, not necessarily
regular, function describing the shape of the curve made it possible to significantly reduce computational
costs by keeping a uniform allowable deviation error € over significantly extended segments [A, B]. There is
no longer any need for any preliminary preparation or transformation of the function for the direct way of
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dividing the curve into segments with singularities. At the same time, computational costs have been reduced
to almost optimal values. No a priori information is needed about the location and number of possible singu-
larities, as well as their nature (kinks, stationary points, etc.). No special analysis is required to establish the
value of the initial increment.

In order to implement the proposed method, it is enough to set the function f{x) defined on [A, B], the
required accuracy €, and the minimum allowable increment without any intermediate actions or using the
tables of nodes and weight coefficients, and, furthermore, special functions associated with the established
tradition of integration. The method is characterized by minimal time losses and amount of RAM used,
which is especially important when solving problems that require strict time limits. At the same time, the
method allows us to study the nature of the function and determine the areas with a sharp change in the val-
ues of the functions on [A, B].

Naturally, the method equally shows its efficiency and effectiveness not only for special functions,
but also in the case of ordinary continuous functions of a wide profile. The developed approach is universal
in nature and seems promising for the use in various fields. The idea of the method easily extends to many
cases of managing incremental procedures.

Using the AdEx method can be useful for many practical purposes (transport tasks: creating optimal
networks (roads, pipelines, waterways, etc.), routing and tracing, cutting materials, and other technical and
economic projects).
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AnanTuBHe 004HCIeHHS N0BKUH KPUBHX, AKi 3a1a10Thcsl HeAn pepeHIiiioBHUMH QYyHKIISIMHA
I'. A. llleayabko, C. B. Yrpimos

[HcTHTYT IpOOIeM MammHOOYAyBaHHS iM. A. M. Ilinropaoro HAH VYkpainwu,
61046, Ykpaina, M. Xapkis, Byin. [Toxxapcekoro, 2/10

Bumipiosanns 0o6dicun Kpugux € 00Cmamus0 ROWUPEHUM nio 4ac po3e’sa3anHs pisHux 3aay. Axwo ¢ynkyis, wo
3a0a€e Kpugy, € OuPepeHyitiogHo, Mo 0OUUCIEHHS. Q0BAUCUHU € OOCUMb NPOCIOK MAMEMAMUYHOK onepayieio. 3a giocym-
HOCMI nouamKosol ingopmayii npo GYHKYII0 00800UMbC 3ACMOCo8y8amu HaOauxceni memoou. Axuil 3 yux memodie 3a
HAABHOCMI KOHKpemHOi yHKYIl 0OYinbHO SUKOPUCIAMUY, 36UHATIHO BUDIULYE KOPUCHYBAY, BPAXO8YIOHU Kiac QyHKyii ma
icHyI0uUll 8 11020 PO3NOPSIOdNCEHHT apcenan moxcausocmeti. OOHUM §3 BANCTUBUX PaKMOpPIs, WO BNIUBAIOM HA BUOID Memo-
0y, € HAABHUIL pecypc Yacy Ha NONepeoHill aHaniz GYHKYI ma y3200CeHHsl 3 NOYAMKOBUMU OAHUMU, SIKI BKTIIOYAIOMb HE0D-
XIOHY MOYHICMb pe3yibmany I 3a2albHi YUCI06I gumpamu. Y cmammi npononyemvcsi Memoo, uwjo [PYHMYEmMvCsi Ha anocme-
piopnomy nioxoodi 0o npobaemu, KO AHARI3 Xapaxkmepy nosediHku QyHKYil 30iCHIOEMbCS came 8 NPoyect HaOAUNCEHO20
BUMIPIOBAHHSL 008IHCUHU KPUBOT 8 3adaniti oonacmi. Taxuii cnocio cmae MONCTUBUM 3ABOSIKU BBEOEHHIO NOKPOKOBO2O A0an-
TUBHO20 MEXAHIZMY, WO peaye Ha 8IOXUNEHHs Kpueoi yHKyii 6i0 il anpokcumyiouoi iamarnoi. B Kinyesomy niocymxy npuiin-
AMULL TOKATbHULL AHAE3 6HACTIOOK adanmayii 003601U6 NPOXOOUMU OLAHKU 3 8EIUKOIO0 KPYMICIIO KPUBOT 3 MATUM KPOKOM,
a nonoei — 3 eenuKuUM. 3a 0cobaUso pizKol 3MiHU QYHKYIT (Hanpuknao, 8 nioobIACMAX 3 0COONUBOCMAMIL) OCHOBHUL AOANMUB-
HULL MEXAHIZM HAOLIEHUL MOJCIUBICIIO BUXOOY 3d MEJICI NPULIHAMO20 HADOPY KOHCMAHM 6e3 Ceplio3HUX YCKIAOHEeHb ale0-
pummy. Taxum yuHoMm, 8ionana HeoOXIOHICMb 8 NONEPEOHLOMY OOCTIONCEHHE XapaKmepy noeediHKu (QyHKYil, He 0008 513K060
PpecyIApHIt, ma UAGIeHHI 0COOIUSOCMeEl (3T0MU, eKCMPEMANbHL MOYKY | m.n.), iX uucaa i micys. [l 06uucieHHs 0084CUHU
Kpusoi 0ocmammuvo 3adamu QyHKYiIo Ha Oauil obaacmi i HeOOXIOHY MOYHICTb, 0OMENCEHY MIHIMATLHUM KPOKOM, He NIKTY-
IOUUCh NPO BUKOPUCTAHHS SKUXOCh OONOMINCHUX Mabauyb ma 6a206ux Koegiyicumis. Ilposedenuil yucenbHuil eKcnepumenm
Ha mecmogomy HAOOPi (hyHKYIl Pi3HOT CKIAOHOCME NOKA3A8 nepesazy 3anponoHO8aH020 NiOX00y HAO CIMKOBUMU MEmMOOamu,
0C06IUBO 3 PIBHOBIOOAIEHUMU BY3TIAMU.

Kntouogi cnosa: neoudepenyiiiogna @yHKyist, KYCKOGO-NIHINIHE HAONUNCEHHS, A0ANMUBHUL NOKPOKOSUL GUOID
8Y371i8, IHOEKC eqheKmusHOCMI.
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