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UDC 539.375 To ensure vehicle safety at the design stage, of primary importance is the development of
a mathematical model, within whose framework it is possible to effectively predict crack
WHEELED initiation in the break drum of a braking wheeled vehicle. Considered is the contact frac-
ture mechanics problem of the initiation of a cohesive crack in the brake drum of a
VEHICLE wheeled vehicle. It is believed that during the multiple braking of a wheeled vehicle, the
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BY FRACTURE model is proposed, within whose framework crack initiation in the brake drum of a brak-
TOUGHNESS ing wheele‘d vehlclg is described. The crqck initiation zone is modeled as a region of
weakened interparticle bonds of the material (pre-fracture zone). The location and size of
CRITERIA the pre-fracture zone are not known in advance and must be determined in the process of
solving the problem. Both the perturbation method and the apparatus of the theory of
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scheme is used in each approximation, the singular integral equation reduces to a system
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taking into account the criterion of the ultimate stretching of material bonds.
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Introduction

The friction pair "drum-lining" of drum brake shoes works [1-3] in conditions of complex stress. To
ensure vehicle safety at the design stage, it is important to develop a mathematical model within which it is
possible to predict crack initiation in the drum of the breaking system in a braking wheeled vehicle.

The fracture toughness of materials and machine elements determines their resistance to the initiation
and growth of cracks leading to a partial or complete fracture. Strength and durability calculations according to
the fracture toughness criteria are performed in the cases where there is a real danger of crack initiation during
operation of machines, or when the traditional calculation without taking into account crack initiation is not
able to provide answers to the questions regarding brittle fracture prevention measures. Thus, for a wheel drum
brake, the prediction of crack initiation plays a decisive role during prolonged multiple braking.

Problem Formulation

As the friction pair "drum-lining" of a wheeled vehicle is used, a pre-fracture zone will appear in the
metal brake drum. We will model it as a region of weakened interfacial bonds of the material, and the drum it-
self, as a real brittle body. In the process of deformation, at some points of the drum, there may appear zones in
which Hooke's law is not satisfied, i.e. stresses exceed the elastic limit.

In the intermittent braking mode, the drum of the braking mechanism of a wheeled vehicle experiences
multiple cyclic loading. It is accepted that in the brake drum, there is a stress concentrator — a region (zone) of
weakened interparticle bonds of the drum material. In the region of weakened interparticle bonds of the mate-
rial, inelastic deformation occurs. The region of weakened interparticle bonds is small compared to the elastic
part of the brake drum. Therefore, the region can be mentally removed by replacing it with a cut whose surfaces
interact with each other according to a certain law corresponding to the action of the material removed.

After some of brake applications, in the zone of weakened interparticle bonds, the material loses the
ability to deform, and the opening of crack faces occurs. Crack initiation will occur when the opening of the
faces of the zone of weakened interparticle bonds of the material reaches the limit value for this material [4].
In the case under study, the occurrence of an embryonic crack is a process of transition of the pre-fracture
zone to the zone of broken bonds between the surfaces of the brake drum material, with the location and size
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of the pre-fracture zone not being known in advance and
having to be determined in the process of solving the
problem.

Thus, the cohesion crack initiation zone is mod-
eled as a pre-fracture zone (zone of weakened interparti-
cle bonds of the material). At the center of the pre-
fracture zone, there is the origin of the local coordinate
system x;0;y, (Fig. 1). The x, axis coincides with the
line of the pre-fracture zone, and forms the angle o; with
the Ox axis. The brake drum of a wheeled vehicle is
modeled as an isotropic homogeneous elastic body. It is
accepted that the conditions of plane strain are satisfied. Lo

It is known that the real surface of the brake L
drum is never absolutely smooth, but it has technological
micro- or macroscopic irregularities that make the sur-
face rough. Despite their extremely small sizes, such

irregularities significantly affect the operational proper- Fig. 1. A scheme of the wheeled vehicle brake
ties of the drum [5, 6]. mechanism drum with a pre-fracture zone

y

Consider some implementation of the rough inner surface of the drum. It is believed that the inner
contour of the drum is close to circular. We assign the drum to the polar coordinate system r, 6 with the ori-
gin at the center of the concentric circles Ly and L with radii Ry and R, respectively.

Imagine the boundary of the inner contour L, in the following form:

r=p®)=R,+€H(0).

Here, €=R..,,/Ry is a small parameter; R, is the maximum height of the protrusion (trough) of the
roughness of the inner drum surface; H(0) is the function independent of the small parameter.

Consider the pre-fracture zone of length 2/;, located on the segment |x1 | <l;, y1=0. Recall that /,, the
angle o, and the pre-fracture zone center z = x +iy, are not known in advance and must be determined.

The pre-fracture zone faces interact with each other. This interaction (interfacial bonds) restrains the
initiation of a cohesive crack. For the mathematical description of the pre-fracture zone, it is accepted that there
are bonds between them whose deformation law is given. During braking, as a result of the action of contact
pressure and friction forces on the drum in the bonds that connect the pre-fracture zone faces, both the normal
stresses ¢, (x;) and tangential stresses ¢, , (x) will arise. Consequently, both the normal and tangential

stresses, numerically equal to g, (x;) and g, , (), respectively, will be applied to the pre-fracture zone faces.

These values are not known in advance.
The boundary conditions of the problem on the inner and outer brake drum contours of a braking
wheeled vehicle will be

c6,=-p®), T,=—fp(0) atr=p(B) on the contact area;

c =0, t,=0 at r =p(0) outside the contact area; (1)

n nt

0,=0, 1,=0 atr=R;

.
G, =4, Ty =qy, O the pre-fracture zone faces. )
Here, p(0) is the contact pressure; f is the friction coefficient of the pair; G,, T,4 are the components of

the stress tensor in a polar coordinate system.

In the boundary conditions (1), it is assumed that in the contact zone there are both the contact pres-
sure p(0) and the tangential pressure connected therewith by the Amonton-Coulomb law.
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Conditions (1)—(2) must be supplemented by the relation connecting the opening of the pre-fracture
zone faces with the stresses in the bonds

(v;r —V;)—l.(u;r _u;)zny(xl’qyl )qyl (‘xl)_inx(xl’qx]y] )qx]yl (xl) . (3)

Here, (vfr -V, ) is the normal and (ul+ —u; ) is the tangent component of the opening of the pre-
fracture zone faces; the functions IT, ()cl,qyl ) and Hx(quxl N ) are the effective bond compliances depending

on bond tension. With constant values of the functions II, and II,, in (3) we have the linear law of bond de-
formation. In the general case, the law of bond deformation is given and is nonlinear.

To find the contact pressure at which a cohesive crack initiates, the formulation of the problem must be
supplemented by a cohesive crack initiation criterion (breaking of the interparticle bonds of the drum material).
Such a criterion is the criterion of the critical opening of the faces of the zone of weakened interfacial bonds

iy (33.0) =17 (31.0) = 7 (1,.0) = v; (3.0)| =5, )

where . is crack resistance (a value characterizing the resistance of the drum material to crack initiation).
This additional condition allows us to find the parameters of the friction pair "drum-lining", at which
a cohesive crack initiates in the drum.

Solution Method and Analysis
We seek stresses and displacements in the brake drum of a braking wheeled vehicle and other un-
knowns in the form of expansions in the small parameter €. For simplicity, we neglect the terms containing €

with degree higher than 1
(0) M

(0) ) (0) 0

c,=0V+ec" +..., oy=0V +ec +..., T,=19 +etly +...,
Vv, =v04evl 4 vy =v rev + ..
L=1"+ell +..., o, =a)+ea +...,
Gy =y FEGY oo Gy =G T EG D e

We obtain the values of the stress tensor components at r=p(0) by expanding in a series the expres-
sions for stresses in the neighborhood at r=R,,.

Using the small parameter method for the boundary value problem of contact fracture mechanics, we
obtain a sequence of boundary value problems for the brake drum with circular boundaries.

The boundary conditions of the problem have the form:

— in the zeroth approximation

G(,O) =—p2), r‘,?; =—»Y(0) atr=R,, |8/<0, on the contact area; ®))
6(,0) =0, rﬁg) =0 atr=R, outside the contact area;
0 _ ) _ —p. ) _ 0 ) _ (0 _ 0.
6 =0, 1 =0 at r=R; o) =gy, 0 =40 at|x|=1; (6)

— in the first approximation

G(rl) =N- p(l)(e) , T%) =7T- fp(l)(e) at r=R,, |6 <0, on the contact area;

o’ =N, 1y =T atr=R, outside the contact area; )
M _ ) _ —R- M _ @ @ _ M 7l
o' =0, t9g=0 atr=R; o)) =4\, T =q\, at|x|=4, (8)

where 0, is the half contact angle;
(0) ()
No-H® 4000 LAH®) ko T =60~y O g T

—_—. ®
or R, d6 R, db or
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Using the Kolosov-Muskhelishvili formulas [7], the boundary conditions of problem (5)—(6) can be
written as a boundary value problem for finding two complex potentials, ®”(z) and ¥V (z).
We seek the complex potentials describing the stress-strain state in the drum in the following form:

V)=V )+ V() + 2V (2), YV =PV +¥ " (2)+¥7z). (10)
Here,
()= D a7, ¥ (2)= D b (11)
k=—c0 k=—oo
0 A 0
dO(z) = 81 (r)dt W(O)(Z):Le—m’a?j & (@) T\ 20| d
2 i : 2n Ji-a gy
1-TT, o
OV (7)=— Lol ——e‘“l o) |dt, 12
O(z) ZRJO e (1) 7o (12)

lO

1 72 T T —_—
() =— J{L—%— L I }" g?(t){l_—T{l— 1 —2(1_T1T1)}6_i“?8?(f)}df-

2mz || 21, 2 T, TS LT 1-7T, T,

26 3
i(1+ %) dx,

Here, ¢\”(x,) = {ul()+(xl,0) u; (x,,0)— (vl (x,,0) - vl_(xl,O))}; G is the shear modulus

.0 .0
of the drum material; k=3-4y; W is Poisson's ratio of the drum material; 7, =re'™ + zlo ; =™ (z — zlo );
T, =1-2T,.

Satisfying the boundary conditions on the pre-fracture band in the zeroth approximation by functions (10)

to (12), we obtain a complex singular integral equation [8] with respect to the unknown function 810) (%) [8]

I[Rfl(t,xl)glo)(t)+Sn(t g @) |dr=nf(x) x| =1, (13)

_110

where f°(x)=-{¢" ~ig® )- [®50><x1>+<I>§)°>(x1>+x1<1>5<“>(x1>+‘1’é“) (xl)J.
Satisfying the boundary conditions (5) written in terms of complex potentials by functions (10) to
(12), after some transformations, we obtain an infinite system of algebraic equations with respect to the coef-
ficients a, by of the potentials ®{”(z) and ¥ " (z).
For the internal pre-fracture zone, the singular integral equation must be supplemented with the condition
Iy
[ 2”@yt =0. (14)
_[]0
This condition ensures the uniqueness of displacements in bypassing the pre-fracture zone contour.
The singular integral equation (13) under condition (14), using the algebraization procedure [8, 9],

reduces to a system of M algebraic equations for determining the M unknowns gl(o) @,) m=1,2,...,.M)
1 M
ﬁzllo[gl(O)(tm)RlOl(llOtm’lloxr)+810)(t )Sll(llt llo'xr) :fo(xr)’ (15)
k=1

M
r=12,....M-1, Y ¢”(,)=0,

m=1

2m—1 Tr
where ¢t _=cos T (m=1,2,...,M); x, =cos— (r=1,2,..., M-1).
m Y, ( M) Y, ( )
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If in system (15) we proceed to complex conjugate quantities, we will obtain more M algebraic equations.

0

The right-hand sides of system (15) include unknown values of the normal stresses q;l)(xl) and tan-

gential stresses qi?;l (x,) at the nodal points of the pre-fracture zone partition. The condition that determines

the unknown stresses in the bonds between the pre-fracture zone faces is the additional relation (3) in the
zeroth approximation. Using the resulting solution in the zeroth approximation, we can write

2G d .
20 =1, (3,40 () )g @ () T (1,99 () )g () (16)
1+K dxl 21 1 11 1)1

This complex differential equation serves to find the stresses qi?)(xl) and qi?;] (x,) in the bonds be-

tween the pre-fracture zone faces.
To construct the missing algebraic equations for finding the approximate nodal stresses q;?) (t,,) and

qi?)),] (t,,) , we require that conditions (16) be satisfied at the points #, (m=1, 2, ..., M) contained in the pre-

fracture zone. In this case, the finite-difference method is used. As a result, we obtain a complex algebraic
(0)

system of M equations for determining the approximate values qi,?) (t,) and g, (z,) at the nodal points of

the pre-fracture zone.

For the isolation of the obtained algebraic equations, we miss two complex equations that determine
the size of the pre-fracture zone.

Since the solution to the integral equation (13) is sought in the class of everywhere bounded func-
tions (stresses), the resulting system (15) must be supplemented with the boundedness conditions of stresses

at the pre-fracture zone ends x, = J_rllo . These conditions in the zeroth approximation have the form

2

0. a7

i(—l)"“’” O yig 21 m-1,
o gl m g M

2m
4AM 4
Due to the fact that the location and size of the pre-fracture zone are unknown, the resulting algebraic
system is non-linear. Its numerical solution allows us to find both the coordinates of the vertices (location) and

size of the pre-fracture zone, as well as the stress-strain state of the brake drum in the zeroth approximation.

Due to the unknown quantities ll0 , Oc? , zlo , the combined system of equations turns out to be nonlin-

ear even with linearly elastic bonds. To solve it, the method of successive approximations was used. The

M
=0, Y (-1)"g",)ctg
m=1

united system was solved at some certain values 1*, o), z* = x]" +iy]" with respect to the remaining un-
(0)

knowns a;, by, gfo) ), qi,?) (t,) and .y, (¢,,) - In the case of linearly elastic bonds, these unknowns enter

the system in a linear manner. To solve this system of equations, the Gauss method with the choice of the

main element is used. The values ", o, z and the corresponding values of the remaining unknowns

will not, in the general case, satisfy equations (17). Then, using the Newton method, we find corrections to
the solution of equations (17). Selecting the values 110 ", oc?*, zlo ", we will repeatedly conduct calculations
until equations (17) are satisfied with the given accuracy.

In the case of the nonlinear law of deformation of material bonds, to determine the forces in the pre-
fracture zone, an iterative algorithm similar to A. A. Ilyushin’s method of elastic solutions was used. The
calculation of effective compliance was carried out similar to finding the secant modulus in the method of
variable elastic parameters. The nonlinear part of the bond deformation curve was taken as a bilinear de-
pendence, with the ascending section corresponding to the elastic deformation of the bonds 0<V(x,)<V. with
their maximum tension. For V(x;)>V.,, the deformation law was described by the nonlinear dependence de-
termined by the points (V., 6.), (3., 6.). For 6,.2G., an increasing linear dependence occurs (linear hardening
corresponding to the elastic-plastic deformation of the bonds).

The process of successive approximations ends as soon as the forces in the pre-fracture zone bonds,
obtained at two successive steps, differ little.
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The obtained systems of equations with regard to ay, by, gl(o)(tm) (m=1,2, ..., M) allow us, for a

given external load, to find the stress-strain state of the brake drum in the presence of a pre-fracture zone.
After solving the combined algebraic system, we proceed to constructing a solution to the problem in

the first approximation. For r=R,, we find the functions N and T according to formulas (9). Using the Kolosov-

Muskhelishvili formulas [7], the boundary conditions of the problem in the first approximation (7)—(8) can be

written in the form of a boundary-value problem for determining the complex potentials " (z) and ¥ (z).

The functions ®" (z) and ¥ (z) are sought in the form similar to (10)—(12) with obvious changes. The fur-

ther process of solving the problem is similar to the zeroth approximation.

After determining the required values for predicting the limit value of the contact pressure in the
brake drum of a wheeled vehicle, at which a cohesive crack may initiate, the criterion of the critical opening
of pre-fracture zone faces was used (4).

Using the obtained solution, we find the limiting condition under which a cohesive crack will initiate
in the drum:

1+x 7, A2 +B2 =5, (18)
26 M
M, M,
Here, A = Z[vlo (t,)+ svll(tm)], B, = z u(t,)+eu (t, )], M, is the number of nodal points in the
m=1 m=1
segment [/, xlo ). A1L/(R - Ro)

A joint solution of the obtained equations | 03¢

with condition (18) makes it possible, for the given
characteristics of the brake drum material, to predict
the critical value of the contact pressure and the di-
mensions of the pre-fracture zone for the state of ul- | 0024
timate equilibrium.

The resulting systems were solved for the
values M=20 and 40, which corresponds to dividing
the integration interval [—1, 1] by 20; 40 Chebyshev | 0012
nodes. The calculations were performed for the
KamAZ-5320 brake drums.

Fig. 2 shows graphs of the dependence of the
pre-fracture zone length /,/(R—R;) on the contact pres- 0 01 02 03 0.4
sure po/c. (po is the force factor). Curve I corre-
sponds to the rough friction surface of the brake
drum; curve 2, to the smooth one. Fig. 3 shows the
distribution of the normal forces ¢, / q. in the pre- 2_25“ D / O.

Fig. 2. The dependence of the pre-fracture zone length
on contact pressure

fracture zone, and Fig. 4, the tangents g, / q. .

Curve / in both figures corresponds to the linear law
of bond deformation; curve 2, to the bilinear one.

The compliances of the bonds in the normal
and tangential directions were taken equal and con-
stant along the pre-fracture zone. The law of change
in the tangential stresses along the pre-fracture zone
is similar to a change in the normal forces with the
difference that the absolute values of the tangential
forces are much smaller. In this case, the maximum
values of the tangential stresses are achieved at | -1.0 -0.5 0 0.5 1.0
smaller sizes of the pre-fracture zone. For this case, it Fig. 3. The distribution of the normal forces

was found that ,=36°, 7, = 1,27R0ei“/ B in the pre-fracture zone
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Conclusion 44, /o.
225

model of cohesive crack initiation in the brake drum, it
is possible, at the design stage, to establish the maxi-
mum values of workloads and the limit level of the
brake drum defectiveness, at which a sufficient
strength margin is maintained, as well as determine the
optimal material for the brake drum and its safe life.
The parameters of the brake drum at the design stage
must be selected in accordance with the condition

where py.x is the design maximum contact pressure in >
the braking mechanism, p. is the critical contact

We note that with the proposed mathematical

p max<p cry

-1.0 -0.5 0 0.5 1.0

pressure. Fig. 4. The distribution of the tangential forces

in the pre-fracture zone

Knowing the basic values of the critical fracture (crack initiation) parameters and the influence on

them of the properties of the drum material, the class of technological treatment of the drum and lining sur-
faces, we can reasonably control the process of crack initiation in the brake drum by means of design-
technological solutions at the design stage.
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Po3paxyHok rajbMiBHOT0 6apadaHa KoJIiCHOI MAIIMHM 32 KPUTEPIAMH TPIlIUHOCTIHKOCTI
C. A. AckepoB

A3zepOaiiKaHChKUH TEXHIYHUA YHIBEPCUTET,
AZ1073, AzepOaitmxkan, M. baky, mip. I'. Jxasina, 25

Jlna cmeopenns ymoa 6e3neku mpaHcnopmuux 3acodie Ha cmaoii npoexmy8anHs 0cooaue 3Ha4eHHs MA€e po3po-
OKa MamemMamu4Hoi MoOeni, Y PaMKax AKOi MONCIUBO eheKmMUBHO NPOSHO3Y8amuU MpiyuHOYmMeopeHHs y bapabari anb-
MIBHO20 MEXAHI3MY 8 NPOYeCi 2antbMyBaHHs KONICHOT MawuHuy. Po3ensioaembca 3a0a4a Mexauiku KOHMAaKmHo20 pyuHyeaH-
HSL BPO 3aPO0JICEHHsL KO2e3iHOT mpiwunu y 6apabari 2anbMigHO20 MeXaHizmy KOMICHOI mawunu. Beadcacmovcs, wo 3a
b6azamopazoe020 2anrbMy8aHHA KONICHOI MAWUHU 8i00YB8AEMbCA PYUHYBAHHA Mamepiany nio dac mepms, SUKIUKAHOZ0
KOHMAKMHOW 83aemodicio. Bpaxosyembcs, wo peanvbha nogepxms 2aibMisnozo bapabana ne 6ysae abcomomuo 21aoKoio,
ane Mae MIKpo- abo MaKpOCKORIYHI HEPIGHOCMI MEXHOI0STHHO20 XAPAKmepy, wo Ymeoproms WOPCMKICMb. 3anponoHo-
8aHA MAMEMAMUYHA MOOETb, Y PAMKAX AKOI ONUCYEMbCS 3APOONCEHHS MPIWUHU 8 2ATbMIGHOMY bapabaHi nio yac 2aib-
MYBAHHS KOIICHOL MawuHu. 30Ha 3apO0dHCEH s, MPIWUHU MOOETIOEMbCS K 00IACMb OCIAOICHUX MINCYACMKOBUX 36 S13Ki6
mamepiany (30Ha nepedpytinysants). Micye posmawuiyéants i po3mip 30HU NEPEOPYUHYBAHHS 3A30a1e2i0b HeGiOOMI | Ma-
10mes 6ymu usHaueHi 6 npoyeci poss’sazanna 3adadi. Bukopucmosyemuvcs memoo 30ypens i anapam meopii CUHSYIAPHUX
iHmespanbHux PieHAHb. 3adaua npo pieHosazy 2aibMieH020 6apPabana KOAICHOT MAWMUNHY i3 3APOOKOBOI0 MPIWUHOIO 360~
OUMbCA 00 PO38’°A3AHHS 8 KOJCHOMY HAOIUNCEHHI HEeNIHIIIH020 THme2podughepenyitinoco piensanns muny Kowi. 3a euxopu-
CMAHHA KOAOKAYIUHOT cXxeMu po38’A3aAHHA 8 KOXCHOMY HAOUNMCEHH] CUHSYISPHEe iHmezspabHe PIGHAHHA 3600UmbCs 00 Cul-
cmemu HeHIHUX PigHAHb anzebpu. /s ix po38’A3aHHA BUKOPUCOBYEMbCA MEMOO NOCTIO0BHUX HAOIUMNCEHb Ma imepa-
YIUHUL AeOpUMM NPYHCHUX PO38’A3KI6. 3 PO38’A3KY OmpUMaHoi cucmemu PiGHsAHb 3HAUOEHA HOPMATbHA | OOMUYHA HA-
npyaa 6 30Hi nepeopyliHy8anHs. Ymosa nosgu Ko2e3itlHoi mpiyuHu 8 2a1bMigHOMY 0apabaHi hopmymoemvcs 3 ypaxysan-
HAM KpUmepiio 2paHudHoi 6UmsdCKU 36 a3Kie mamepiaiy.

Kniouosi cnosa: canvmignuii 6apaban, 30Ha nepeopyiHy8anHsi, 3apO0NHCeHHs. MPIWUHU, UWOPCIKA NOGEPXHSL.
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