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UDC 539.375 On the basis of the principle of equal stress, a solution is given to the inverse
problem of determining the optimal shape of the hole contour for a plate weak-
DETERMINATION ened by.a sq;face rectll.mear crack. The plat.e is reinforced by a regular system
of elastic stiffeners (stringers). The crack originates from the hole contour per-
OF THE EQUI-STRESS pendicular to the riveted stringers. The plate is subjected to uniform tension at
HOLE SHAPE irff;lnity la10}.1g thel stiﬁenirs. .Th;hplatf.z m.aderhcma;iderat.ion i;l assumecll tZ be
eitner elastic or elastic-plastic. 1he criterion that determines the optimal shape
FOR A STRINGER of the hole is the condition that there is no stress concentration on the hole sur-
PLATE WEAKENED face and the requirement that the stress intensity factor in the vicinity of the
crack tip be equal to zero. In the case of an elastic-plastic plate, the plastic re-
BY A SURFACE CRACK

gion at the moment of nucleation should encompass the entire hole contour at

once, without deep penetration. The problem posed is to determine the hole
shape at which the tangential normal stress acting on the contour is constant,
and the stress intensity factor in the vicinity of the crack tip is zero, as well as to
determine the magnitudes of the concentrated forces that replace both the ac-
tion of the stringers and the stress-strain state of the reinforced plate. The
method of a small parameter, the theory of analytic functions, and the method
for direct solution of singular integral equations were used. The problem posed
is reduced to the problem of finding a conditional extremum. The method of
Lagrange indefinite multipliers was used. The obtained solution to the inverse
problem allows increasing the bearing capacity of the stringer plate.
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Introduction

Thin plates (panels) as elements of various designs and machines are often weakened by technologi-
cal holes. Finding an equi-stress hole contour is very important to prevent plate (panel) fracture and, accord-
ingly, for the reliability of the structure or machine. Problems of finding an equi-stress hole contour were
investigated in [1-20] and others, but cracks can always be present in a real material. There are only a few
publications [21-25] on finding the optimal hole contour at which cracks will not grow in the material. The
problem posed in this paper is to find the equi-stress hole contour in a plate, reinforced by a system of string-
ers and weakened by a rectilinear surface crack. A contour is searched at which there is no stress concentra-
tion near the hole and the crack is not growing.

Problem Formulation
Consider an unbounded thin plate (panel) reinforced by a regular system of stiffeners (stringers). The

reinforced panel is subjected to a uniform tensile stress of 67 =6, along the stringers at infinity. The plate

has a hole from which a rectilinear crack emanates (Fig. 1). The elastic isotropic stringers are considered to
be riveted to the plate symmetrically relative to its surface in a discrete manner with a constant step of y,
along the entire stringer length. The plate material is assumed to be isotropic.

The loading conditions are considered to be quasi-static. The following assumptions are made: dur-
ing deformation the stringer thickness is unchanged, and the stress state is uniaxial; a flat stress state is real-
ized in the plate. The stringers work only in tension (do not bend); the stringer system is a truss, and no
stringer loosening occurs due to the setting of attachment points. The plate and stringers interact with each
other in the same plane and only at the attachment points. The attachment points (adhesion areas) are the
same, with a radius of ay, which is small compared to their step of 2L and other typical dimensions.

The action of the attachment points is replaced by the action of the concentrated forces applied at the
points corresponding to the centers of the adhesion areas: z=+(2m+1)L+iky, (m=0, 1,2, ...; k=1, 2, ...). The
action of the stringers is replaced by the equivalent concentrated forces P,,, applied at the points of their con-
nection with the plate. These forces are unknown in advance.

The boundary conditions of the problem have the form
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Fig. 1. Design scheme of the problem of finding an equi-stress hole contour

— along the hole contour

— on the crack faces
c,=0, T, =0 R<x<l.
Here, n and ¢ are the normal and tangent to the hole contour.

The task is to find the shape of the hole (the unknown contour Ly) that satisfies two conditions: the
tangential normal stress o, acting on the contour is constant, i.e.

c=0.=const along the hole contour; (1)

and there is no growth of the crack emanating from the hole. Since, according to the theory of quasi-brittle
fracture by Irwin-Orowan, the stress intensity factor is taken as the parameter characterizing the stress state

in the vicinity of the crack tip, this condition means the requirement that the stress intensity factor K| in the
vicinity of the crack tip be zero

K'=0. )

In condition (1), the quantity ©. requires that it be determined if the plate material is elastic. For an

elastic-plastic plate, we require that the plastic region at the moment of crack nucleation encompass the en-

tire hole contour at once, without deep penetration, since such a body is the most durable in the sense of uni-
form stress distribution over the entire hole contour [1]. We write the plasticity condition as follows [26]:

J(6,,6Tu)=0,
where f'is a given function. It follows from the plasticity condition that for an elastic-plastic plate 6.=G,, i.e.
condition (1) has the form

o=0,=const along the hole contour,
where ©; is the plasticity constant of the plate material.
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Solution of the boundary-value problem
We will look for the unknown hole contour L, in the class of contours close to circular. We represent
the required contour L, as

r=pO)=R+eH(0).

Here, R is the radius of a circular hole; e=R,,,,/R is a small parameter; R« is the maximum height of
the protrusion (depression) of the unevenness of the profile of the hole contour L, from the circle r=R.

The function H(0) is required to be determined in the process of solving the problem. Without limit-
ing the generality of the inverse problem under consideration, we assume that the function H(8) is symmetric

with respect to the coordinate axes and can be represented as a Fourier series H(0) = Z d,, cos2k0 .
k=1
The required functions, i.e. stresses, displacements, the concentrated forces P,,, and the stress inten-

sity factor K II are sought in the form of expansions in powers of the small parameter ¢

6,=6V+ec”+.., ©,=06"+ecV+.., 7, =10 +et +..,
w, =u” +eul +..., v, =v0+er 4+
_ pO 4 op®
P,.,=P, +€P. +..,

K=K +ek® +....

Each of these approximations satisfies the system of differential equations of the plane problem of
the theory of elasticity. For the sake of simplicity, we neglect the terms containing € of order higher than one.

Expanding the expressions for the stresses in the vicinity of r=R in a series, we obtain the values of
the stress tensor components at ¥=p(0). Using the well-known formulas [27] for the stress components 6, and
T, we write the boundary conditions of the problem

— for the zeroth approximation

c” =0, 79 =0 along the contour r=R, 3)
c” =0, 1) =0 R<x<l on the crack faces; 4)
— for the first approximation
c"=N, 1y =T along the contour r = R,
GS) =0, T%) =0 R<x<l on the crack faces,

(0) 0) ) ©_ -
N:_H(e)ai+2hw’ T =—H(0) JT,4 +69 G, 0H(0) -
or R 00 or R %

Based on the Kolosov-Muskhelishvili formulas [27] and boundary conditions (3) along the hole con-
tour and boundary conditions (4) on the crack faces, the problem is reduced in the zeroth approximation to
the determination of two analytic functions (D(O)(z), ‘P(O)(z) from the conditions

D@ (1) + @ (1) - hcb“”' (D+y© (’C)J= 0 att=Re", (5)
V(1) +® (1) +x0” ()+ WO (x)=0  R<x<l (6)

The solution to the boundary-value problem (5)—(6) is sought in the form
P ()= (2)+ P (2)+ P (2), (7

PO () =¥ () + PP (2)+ PP (2),
where k=0.
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The potentials (IJE)O)(z) and Téo)(z) describe the stress and strain field in a solid (without a crack)

plate under the action of a system of the concentrated forces P.” and the stress 6. @\’ (z), ¥\ (z) are
determined by the formulas

1 i 1 1
CI)(O) 7)=—0y——— ’P(O) - ) 8
0 (2) 4° 27th(1+1<)zm,n m j ' ®)

z—mL+iny, z—mL—iny,

1 1 1 1
¥ () =0y~ > By - — |+
2 21th(1+ %) z—mL+iny, z—mL—iny,

i mL—iny mL+iny
4+ ’ P(O) 0 _ 0 ,
21th(1+ %) mz;‘ " { iny,)” iny,)>

(z—mL+iny,)" (z—mL—iny,)

where k=(3— v)/(1+v); v is the Poisson ratio of the plate material; the prime at the summation symbol indi-
cates that the index m=n=0 is excluded during the summation.
The potentials (IJio) (z) and ‘Pl(o)(z) are sought in the form

(0)
B ()= j S ©)

l
1 1
SO ——— 122
(2)= ZEIL—Z (t—z)z}g (2.

where g(o) (x)= f—udi [v+ (x,0) —v_(x,O)]; p is the shear modulus of the plate material.
+ K dx

The required function g% (x) and the potentials <I>(2°) (z) and ‘I’Z(O) (z) must be determined from condi-
tions (5)—(6). We represent the boundary condition (5) in the form

q)(zo) (‘C) + q)(zo) (‘C) _ ezie hq)(zo)' (‘C) + \PZ(O) (‘C)J= — q)io) (‘C) _ q)io) (‘C) + ezie hq)io)’ (‘c) N lP;O) (T)J’ (10)
where CI)ka) (’E) = cI)BO) (T) + (I)i()) (T) , \P*(O) (T) — \PéO) (T) + ‘Pl(()) (’C) )
Solving the boundary-value problem (10) with the N. I. Muskhelishvili method [27], we determine
the potentials @} (z) and ¥.”(z)

) 2 .
q)(o) _ GO i 1—1 z—t (0) 1
A L(l 2 (-2 O a0

XZ (0) (mL—iny,)(mL+iny,)—1 B (mL +iny,)(mL—iny,)—1 4
(mL—iny,)[z(mL—inyy)=1F  (mL+inyo)[z(mL +iny,)—1]

m,n

iK 1 1
——— > Py} 11
" 2nth(1+ ) mz;‘ {z[z(mL—myO) 1] z[z(mL+my0) 1]} (1

o, @ oY
lPZ(())(Z): 02 2 2( )_ 2 2( )+
Z < <

[ 2_ _ .
L F_ o At Sl L t)}g(o)(t)dt+ i

—X
2nzy |tz z(-12)  z(l-12)?  (1-1z)’ 21h(l+ %)z

PO 1 1 1
x> 'P, + - .
z(mL—myO) 1 zZ(mL+iny,)—1 z(mL-iny,) (zmL+iny,)

m,n
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In formulas (11), all linear dimensions are referred to the radius R.
Requiring that functions (7) at k=0 satisfy the boundary condition (6) on the crack faces, we obtain a
singular integral equation for g(o)(x)

T a0)

TCR t—x

dt +— J' K, t)dt=FOx), (12)
Fo) = f" 0+ 1% (),

©) (o _ K+2 IO\ p0) 1 > p(0) 1
fo (x)—_Go"'M{ZZP—W y{ 2, 2 2]'_ zpm" y{ 2, 2.2 |

(x—mL)" +n"y; ol (x+mL)” +n"y;

1 S ) (x—mL)? —n’yy —(x* —m’LY)
LSS Ry, h o)
m=1 n=1 [(x—mL) +n yo]

— (x+mL)? —n?y2 —(x* —m*L*)
+>. > Py : ] :

m=1 n=1 [(x+mL)2 +n2y§ :
FO Gy =— 1 i O ) ry L
! 2n(l+x)h 5, ot x?
y 2(m*L? +n2y§ —1)[x2(3m2L —-n y0)+4xmL+1]+ 2K N
(m*L* +n’y; )[(xmL+l) +x2n2y§] (mxL+1)* +xn’y;

32,272
+(K—1j<—4(m2L2+n2y§—l) [x (Bm L —n y0)+6x mL+3x]

K [(xmL+l) +x2n2y§]
4mL+x(mL+ny0) _9 1 222+22122 B
L 412 + 2022 | Lo+ +°n’ys  m’L 40’y

2n(l+ 1K)k (m*L* +n’ yo)[(xmL 1)’ +X2”2y§]2

m,n=1

oo 272 2.2 2 2
! ZP<0>(2+L2J<2(m L +n’y2 =D Gm*L =n’y}) - 4xmL+1]+
X

+ 28, +(K— ljx
(mxL—1)*+x*n’y; K

2Gm —n yo) 6x>mL+3x

><<—4(m2L2+n2y§—1) Lt U y0)>

[oomL -1 + x22y2]’ [(me D> +xny3 |’

1 1 o, 30,
-2 + - -———.
(mxL—1)* +x’n’y;  m’L* +n’y; 2x* 2t
Using the method of direct solution of singular integral equations [28-30], we seek a solution to
equation (12). Turning to dimensionless variables, we represent it in the form

g (M)

gV m)= :
I-n
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where g(()()) Q) is a bounded function, continuous on the interval [-1, 1]; it is replaced by the Lagrange inter-

polation polynomial constructed from the Chebyshev nodes.
In the problem under consideration, one end of the crack reaches the surface of the hole. The stresses
at this end are limited. Together with the additional condition

K =0 atx=R,
the singular integral equation (12), is reduced, through the algebraization procedure [28-30], to a system of
M linear algebraic equations for determining the M unknowns ¢ @ (7 y (m=1,2, ..., M)

M
3 A = f0 M)+ £0M,)
k=1

, (13)
< k), O
DD P gk =0
k=1 2
1| 1 0, +(-" "o, 2m-1
where A  =— ctg—= +K, ,T.) |, m=1,2,...M-1; 6 = T =cosO, ;
mk M Sinﬁm g 2 O(nm k) m m 2M nm m
T =MNg s gl(cO):g(O)(Tk)'

Next, we determine the concentrated forces P'” . According to Hooke's law, the magnitude of the

mn

concentrated force P'” acting on each attachment point from the side of the stringer will be

pO=EA N0 =12, (14)

2y,n
where E; is Young's modulus of the stringer material; A, is the cross-section of the stringer; 2yon is the dis-
tance between the attachment points; Ay'” the mutual displacement of the attachment points under consid-

eration, equal to the elongation of the corresponding stringer segment.

Let us accept [31] the natural assumption that the condition of compatibility of displacements is sat-
isfied, that is, we assume that the mutual elastic displacement of the points mL+i(ny,—a,) and mL—i(ny,—a)
)

mn

Using the Kolosov-Muskhelishvili formulas [27] and relations (7)—(9), (11), we find the mutual displacement
of the attachment points Av?’. Solving systems (13) and (14), we find the magnitudes of the concentrated

forces P

mn

tentials of the zeroth approximation.
For the stress intensity factor in the vicinity of the crack tip in the zeroth approximation, we have

u " 2m—1
KO =\nl-R)> (-1"g",)ctg T
m=1

Using the Kolosov-Muskhelishvili formulas and relations (7), we find the stress state in the stringer
plate in the zeroth approximation. Knowing the stress components in the zeroth approximation, we find the
functions N and 7.

Next, a solution to the problem is constructed in the first approximation. The boundary conditions of
the problem for the first approximation are written in the form

&0 (1) + & (1) — 2 e (1) + WO () |= N —iT (15)

and the mutual displacement of the attachment points Av, ’ in the problem under consideration are equal.

the approximate values of the function g‘”(t,) at the nodal points, and thus the complex po-

V() +0V () +xd" )+ PP =0  R<x<l, (16)
Similarly to the zeroth approximation, we seek a solution to the boundary-value problem (15) in the

form (7) at k=1, where the potentials ®{"(z) and PV (z) describe the stress and strain field under the action
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of a system of the concentrated forces Pn%) and are determined by formulas similar to (8), and we should set
oo equal to zero, and replace P,,(f,? by P,flfl) The potentials &{"(z) and ¥V (z) are sought in a form similar

to (9), with the function g (x) replaced by g"’(x). The potentials @ (z) and PV (z) are determined from
the boundary condition (15), again with the N. I. Muskhelishvili method:

V()= (2)+ Y ay ", (@)= ()4 ) by

k=0 k=0
Here, ®'"(z), " (z) are determined by formulas similar to (11), in which o, should be set equal

to zero, and P,;(;) and g(x) should be replaced by P”(;l) and g'"(x), respectively. The coefficients ax and by
are found by the formulas
a=C, R  (n=1,2,...), ay=0,
b,, =(2n—-DR%a,, , —R*a_,,., (n>2),

by=0, b, =—C,R*, N—iT =) Cye ™.
k=—co

For the concentrated forces P, we have

mn

A7)

The mutual displacement of the attachment points Ay is determined in the same way as the zeroth

approximation.
Requiring that functions (7) for k=1 satisfy condition (16) on the crack faces in the first approxima-
tion, we obtain a singular integral equation for the function g"(x)

(2%

RRl‘x

Using the algebraization procedure [28-30], we reduce the singular integral equation (18) under the
condition

& Wy j Kt,x)gV(0)dt=F"(x). (18)

K" =0 at the hole edge,
similarly to the zeroth approximation, to a system of M linear algebraic equations for determining the M un-
knowns g (t,) (m=1,2,....M)

M
ZAmkgff’ ="M+ £,
, 19)

k=1
where m=1, 2,..., M—1; 819) = 8(1)('%) .
For the stress intensity factor in the vicinity of the crack tip in the first approximation, we have

M " 2m—1
K" =rnd—R)Y (=)™ g (1,)ctg "
m=1

The right-hand sides of the obtained systems of equations of the first approximation contain the coeffi-
cients dy; of the expansion of the function H(6) in a Fourier series. Thus, for the obtained systems to be closed,
the missing equations should be constructed using conditions (1) and (2). Using the obtained solution, we find o,
in the surface layer of the contour L, (r=p(8)) up to the first- order values with respect to the small parameter &

(0)
J H©®"©®) 0 (e)}
or

o, =" +
r=R

r=R
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The stresses (551) (8) depend on the coefficients d»; of the Fourier series of the required function H(0).

Requiring that the close-to-uniform stress distribution be ensured along the hole contour, we obtain the missing
equations that allow determining the coefficients dy.
The stress concentration along the hole contour is reduced by minimizing the criterion

M
U=>Y[0,6)-0.]' > min.
i=1

Here, ©. is the unknown optimal value of the normal tangential stress in the surface layer of the hole
for the elastic plate.

It is necessary to find the values of the unknown coefficients d,; that provide the best possible values
of the function 640;) according to condition (1) under the additional constraints (2). The function U and the
stress intensity factor depend on the coefficients dy, and, thus, we arrive at the problem for the conditional
extremum of the function U,(0,,d,, ), when the coefficients dy are related to the additional constraints (2).

It is necessary to find the minimum value of the function U,(0,,d,,), and with k+1 arguments of

this function being dependent and subject to the additional constraints (2).
To solve the problem for a conditional extremum, we use the method of Lagrange indefinite multi-
pliers. Consider the auxiliary function

U,=U+\K]

with an indefinite factor A.
The k+1 necessary conditions for the extremum have the form
%zO (k=1,2, ..., n), %
od,, 00,

The obtained n+1 equations with the additional equation (2) constitute a system of equations with the
n+1+1 unknowns G., dy (k=1, 2,..., n), . Adding this system of equations to the previously obtained alge-
braic systems (17), (19), we obtain a closed algebraic system for determining all unknowns, including 6. and
the coefficients dy;.

The system of equations (20), together with the obtained algebraic systems of the problem of the
theory of elasticity in the zeroth and first approximations, makes it possible to determine the shape of an
equi-stress hole, the stress-strain state of the reinforced plate, and in the case of an elastic plate also the opti-
mal value of the normal tangential stress G..

The calculations were carried out for the values of free parameters: ay/L=0.01; yo/L=0.25. It was as-
sumed that E=7.1-10* MPa, E.=11.5-10* MPa, stringers were made of the Al-steel composite, and the plate
was made of the B95 alloy. For simplicity, it was assumed: A,/yph=1. The number of stringers and attach-
ment points was assumed to be 14, and the value M=72. The results of calculating the expansion coefficients
of the required function H(0) are given below.

d> dy ds ds dio di dis
0.1307 -0.1041 0.0773  0.0594 -0.0365 0.0139  0.0108

=0. (20)

Conclusions

A solution has been found to the problem of finding an equi-stress hole contour in a plate reinforced
by a regular stringer system. The found contour ensures the stability of a rectilinear surface crack emanating
from the hole and the absence of stress concentration near the hole. A closed system of algebraic equations
has been constructed for the found equi-stress hole shape. The obtained solution to the inverse problem
makes it possible to increase the strength of the plate, as well as its reliability and bearing capacity.
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Busnavenns gopMu piBHOMIIIHOTO OTBOPY /JJISi CTPHHTEPHOI JIACTHHH,
0cJ126/1eHO0i TOBEPXHEBOK TPIIIMHOK0

M. B. Mip-Canim-3ane

IacTuTyT Matemaruku 1 mexaniku HAH Azep6aiimpkany,
AZ1141, Azepbaiimxan, M. baky, By:n. b. Baxa63ane, 9

Ha ocnosi npunyuny pisnomiynocmi 0aemvbcsi po38’a30K 00epHeHoi 3a0aui 3 GU3HAUEHHS ONMUMATbHOL (popmu
KOHMYpa 0meopy Oisl NIACMUHU, 0CLAONeHOT NOBEPXHEBOI0 NPAMONIHINIHOW mpiwunolo. [lnacmuna nioxkpiniena peeyisp-
HOIO CUCMEMOI0 NPYICHUX pebep dcopcmrocmi (cmpuneepis). Tpiwuna 6uxooums 3 KOHMypa 0meopy nepneHOUKYIAPHO
npuknenanum cmpuneepam. Ilhacmuna niodaemocs Ha HECKIHYEHHOCII OOHOPIOHOMY PO3MAZYBAHMIO Y30080iC pebep Hco-
pcmxocmi. Ihacmuna, wo po3ensidacmoscs, NPUNYCKAEMbCsl NPYAHCHOIO abo npyicHo-niacmuunoio. Kpumepiem, wo eu-
3HAYAE ONMUMATILHY QOPMY OMEOPY, CIYICUMb YMOBA 8IOCYMHOCMI KOHYEHMPAYIi HANPYJHCEHHS HA NOBEPXHI OMBOPY i
BUMO2A PIBHOCMI HYIIO KOepiYieHma iHMeHCUBHOCMI HANPYJHCeHb 8 OKOJIL 8epuUHY MPIWuHU. Y pasi npysicHo-niacmuyHol
NIACMUHY NAACMUYHA 00IACMb Y MOMEHM 3APOONCEHHS MAE OXONTI08AMU 8i0pA3y Y8eCb KOHMYP OMBOpY, He NPOHUKAI0-
yy eenu6. Ilocmasnena 3a0aua nonazae y 6U3HAYeHHi maxoi popmu omeopy, 3a AKOi MaHeeHYialbHe HOPMATbHEe HANpy-
JicenHs, wo i€ Ha KOHMYPI, € CMAIUM, a Koe@piyichm iHMeHCUGHOCMI HANPYICEHHSL 8 OKOJIL 6epUIUHU MPIWUHU OOPIBHIOE
HYII0, 4 MAKONC V BUSHAYEHHI BeUYUH 30CEPeONCeHUX CUN, WO 3aMIHIOIOmMb Oil0 CMpuHeepis, i HanpyiceHo-
Odeghopmosanoeo cmany niokpinieHoi niacmunu. Buxopucmosysanuca memoo manozo napamempa, meopis aHaAIiMUYHUX
@DYHRYITL § MemOO NpsAMO20 PO36’A3aHHS CUHSYIAPHUX THmMezpanibhux pieHsams. [locmaenena 3adaua 3600umscs 00 3a0a4i 3
BIOWYKYBAHHS YMOBHO20 EKCMPeMyMy. 3aCmoco8y8ascss Memoo HesUusHaweHux MHodcnuxie Jlazpanowca. Ompumanuil
P036’530K 00epHeHOI 3a0aui 003680JI€ NIOSUWUMU HeCYYy 30aMHICIb NIACMUHU CMPUHEepd.

Knwuogi cnoea: nracmuna, cmpuneepu, pieHOMiyHUL OM8Ip, Mpiuna.
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