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UDC 536.24 On the basis of A. N. Tikhonov’s regularization theory, a method is developed for solv-
ing inverse heat conduction problems of identifying a smooth outer boundary of a two-

TO THE SOLUTION | dimensional region with a known boundary condition. For this, the smooth boundary to

OF GEOMETRIC be identified is approximated by Schoenberg’s cubic splines, as a result of which its
identification is reduced to determining the unknown approximation coefficients. With
INVERSE HEAT known boundary and initial conditions, the body temperature will depend only on these
CONDUCTION coefficients. With the temperature expressed using the Taylor formula for two series
terms and substituted into the Tikhonov functional, the problem of determining the in-
PROBLEMS crements of the coefficients can be reduced to solving a system of linear equations with
respect to these increments. Having chosen a certain regularization parameter and a
Yurii M. Matsevytyi certain function describing the shape of the outer boundary as an initial approximation,
matsevit@ipmach.kharkov.ua one can implement an iterative process. In this process, the vector of unknown coeffi-
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the previous iteration and the vector of the increments of these coefficients, obtained as
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A. Pidhornyi Institute as a result of the experiment. It remains to select the regularization parameter in such a
way that this discrepancy is within the measurement error. The method itself and the
ways of its implementation are the novelty of the material presented in this paper in

a result of solving a system of linear equations. Having obtained a vector of coefficients

as a result of a converging iterative process, it is possible to determine the root-mean-
square discrepancy between the temperature obtained and the temperature measured
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comparison with other authors’ approaches to the solution of geometric inverse heat
conduction problems. When checking the effectiveness of using the method proposed, a
number of two-dimensional test problems for bodies with a known location of the outer
boundary were solved. An analysis of the influence of random measurement errors on
the error in identifying the outer boundary shape is carried out.
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Introduction

Today, inverse problems, that is, the problems in which the causal characteristics of physical proc-
esses are determined by the results of measurements or other investigative manifestations, are widely used in
the study of physical processes of various nature, including thermophysical ones [1]. Solution of geometric
inverse heat conduction problems (IHCP) of identifying the outer body boundary with a known boundary
condition is of particular importance at the stage of constructing mathematical models in the presence of ex-
perimental information about the thermal process under investigation. In this paper, a geometric IHCP is
considered as the problem of identifying the outer body boundary both with the temperature-dependent
thermal conductivity coefficient and heat capacity, and with a known boundary condition at this boundary.
Works [1-5] give classifications of IHCPs and consider methods of their solution. Monograph [1] also gives
a classification of geometric IHCPs. This paper, according to [1], considers the problem that belongs to the
class of geometric IHCPs of determining the shape and location of region boundaries. Article [6] proposes a
unified methodological approach to the formulation and solution of geometric IHCPs, one of the stages of
which is the parametrization of the required geometric information, ie. the solution of a geometric IHCP is
reduced to the determination of a finite set of geometric parameters.

In this paper, the search for the desired boundary in the two-dimensional case is reduced to finding
the equation of a smooth boundary in the form x=f(y). Having approximated the required function f{y) by a
linear combination of Schoenberg’s cubic splines with unknown coefficients, one can reduce the solution of
a geometric IHCP to the search for these coefficients. Work [7] proposes a method for solving an internal
THCP (identification of the temperature-dependent thermal conductivity coefficient). In this work, to obtain a
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stable solution, the author uses M. M. Lavrentyev’s o-regularization method [8], which is less flexible than
A. N. Tikhonov’s regularization method [4], since when using it, it is more difficult to take into account the
a-priori information about the required function.

In [9], we used both the iterative process proposed in [7] and A. N. Tikhonov’s regularization
method [4], as well as an approach to selecting the regularization parameter for the simultaneous identifica-
tion of several required thermophysical characteristics. Using this approach, this paper proposes a method for
finding part of a smooth boundary by solving nonlinear geometric IHCPs.

Problem Formulation
In this paper, a two-dimensional nonlinear geometric IHCP is considered, which can be formalized
as follows:
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where f(y) is the right side of the required equation | -° e R
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of the outer boundary x=f(y); T* =T(x,y,T) is
temperature, in many cases known from the experi-
ment (initial data); A is the operator that connects
the desired function f{y) with the initial data. 55 7

Due to the violation of causal relationships, |
such a problem, like any other ITHCP, is an ill-posed | o4 i
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posed or left ill-posed, but with the application of one

of the regularization methods [2-5]. Here, we use
A. N. Tikhonov’s regularization method [4].

Consider a thermal process in a two-
dimensional body (Fig. 1).

Fig. 1. Geometry of a body investigated in a test problem
with a finite element mesh

This process is described by the following equations [2, 10]:
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at T(x,,y,,7) =T, I=Ln., k=Lm, (6)

where T =T(x, y,t) is the body temperature; D is the space area occupied by the body; I,i =14 are parts

of the boundary of the area D; (x, y) is a point in the area D; A7) and C(7) are the temperature-dependent
thermal conductivity coefficient and heat capacity; o, and a, are the heat transfer coefficients on the body

surfaces I's and I'y, respectively; Ty and 7y are the specified temperatures of the external environment in

contact with the body surfaces I'; and I'y, respectively; v is the outer normal to the body boundary; I'4 is the
body boundary to be identified, described by the equation x=f(y); T is the initial body temperature; n, is the
number of measurements in time; m is the number of measurement points in the body; (x;, y,) are points of
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. . X . . . . .
the area D in which the temperature 7" is measured. The measurement error is a random variable distrib-

uted according to the normal law with zero mathematical expectation and ” dispersion.

According to the thermophysical experiment, the equation of the outer boundary x=f(y) is determined
taking into account the available a-priori information about this function.

Below we consider a methodological approach to solving the problem.

Regularizing Algorithm for Solving the Geometric IHCP
To solve the nonlinear geometric IHCP (1-6), we use A. N. Tikhonov’s regularization method,
which reduces to minimizing the functional

7= [ [y m-1 Gy 0] dwyar+B- £ (5)]+ Al (V) (7
0D

where T=T(x, y, 1) is the temperature obtained in the process of solving the geometric IHCP; T%(x, y, 1) is the
experimentally obtained temperature; T, is the completion moment of thermal process analysis; B is the regu-
larization parameter; Q[ f (y)] is the stabilization functional; A[ f (y)] is the quadratic functional characteriz-

ing the discrepancy between the required function f{y) and the a-priori information given about it.
We represent the required function f{y) in the form

F)=2 0B (y), (3)
k=1

where (¢,,9,,....,0,) = @ is the vector of required parameters, and B3k (y) are Schoenberg’s cubic splines.

Then the identification of the required function reduces to the determination of the unknown vector @ .
We minimize functional (7) by the iterative method [7]. Since the temperature 7(x, y, ) depends on

the vector @, it can be represented in the (p+1)th iteration using the Taylor series as follows:

Tp+l(x, y,’C,pr(y))z T”(x,y,r,f”(y))+zn: 3T” A(P1€+l ’ 9)
k=1 k

where (AQ/,AQS™,...,A@P*") =AD"  is the vector of increments AD?* =®7* — D7

We represent the stabilizing functional Q[ f ( y)] in the (p+1)th iteration in the form

1 Pl \2 2 ppi )2
Qfﬂ+1(y)]:‘[[wo(fp+l)2+Wl(a];y J +W2(a f J }dy, (10)
0

where wo, wy, w; are the weight factors that are selected using the a-priori information about the desired func-

tion f(y).

In this problem, we used the second order regularization [5], when wy=0, w;=0 and w,=1.
The quadratic functional A[ f (y)] characterizing the discrepancy between the values of the desired

function and its same values that are a-priori specified for some values of the variable y, can be constructed
as follows.

Let yi, ¥, ..., ys be some arguments of the required function, and fi, f5, ..., f;, respectively, the a-
priori specified values of this function. Then

A[f(y)]=il?,~(f(y,-)—f,-)2, (11)

where P; are the weight factors that are selected based on how accurately the a-priori values fi, f5, ..., f; are
specified.

If we substitute expressions (8), (10), (11) into functional (7) and replace T(x, y, t) with an approxi-
mate temperature value (9) at temperature measurement points, then, using the necessary condition for the
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minimum of functional (7), we can obtain a system of linear equations with respect to A(p"+1 i=1,n, in
the (p+1)th iteration
(M0+B'M1 "'Mz)A(PPJrl =Vo-B-Vi+V,,

where M, Z{m()ii}injl , M1={m1,-j}';.

L M, :{mzﬁ}fl,l are the symmetric matrices of dimension n, and
g 7

V {Vo, }1 - V {Vu }1 - V2 = {vzl. }1"1 are the vectors of dimension n. The corresponding components of the

j j B{pp or’ }dxdyd‘t,

l 3 23
3B} (y) 9B}(y)  9°B(y) 9°B}(y)
mlUZI[WOBtS(y)B?(y)J"WI l(y) J +W2' l(y) J dy,

matrices and vectors are as follows:
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This system includes the regularization parameter 3, which is determined, as in [9, 11, 12], based on

the condition
(1—1/£JG£8£(1+1/£J0, (12)
N N

which was proposed in [5]. Here, N is the total number of thermometric measurements; ¢ is the root mean
square error of measurement; o is the root-mean-square deviation at temperature measurement points, ob-
tained from the temperature measured.

It is considered that the regularization parameter is chosen correctly if, for the solution obtained ac-
cording to the iterative scheme proposed above, the two-sided inequality (12) is satisfied.

Numerical Experiment

Let us consider the process of cooling a body (Fig. 1) by convective heat flux. To carry out a nu-
merical experiment, as f{(y) at the boundary I'y we take:

— the dependency

F(y)=1+04y-24y> +2y%, (13)

which is fairly accurately approximated by Schoenberg’s cubic splines with a small number of required parameters;
— the nonlinear thermal conductivity coefficient

MT)=1+3.2T -7T% +4T°
— the nonlinear heat capacity
C(T)=1-1.2T +7.2T*-5.7T°.

ISSN 2709-2984. Ilpobremu mawunodoyoysanns. 2021. T. 24. Ne 1 9



AEROHYDRODYNAMICS AND HEAT-MASS TRANSFER

Let us impose constraints on the right side of the equation of the boundary to be identified. Let the
required function f(y) satisfy the two-sided inequality

F<f (y ) <k,
where F| and F, are selected based on the technological process. Let us assume that the temperature meas-
urement points are arranged evenly along the coordinates x and y so that they are strictly in the region under
study when we search for the boundary. On the obtained numerical solution at the temperature measurement
points, we impose a random error distributed according to the normal law at 6=0.02.

To solve the geometric IHCP under consideration, as the a-priori information, we use the values of
f(y) at the ends of the interval [0,1]: 0)=1 and f(1)=1.

Fig. 2 shows the functions f(y) of the boundary to be identified for the following dimensionless data:
n.=400, m=36, At=0.0025, 0,=5.0, ,=5.0, T, =0, T, =0, To=1.0, n=13, we=0, wi=0, wr=1, F=0.7,
Fo=12, s=2, y,=0, y,=1, fi=1, fp=1, 21=10°, 2,=10".

The dependencies 7(t) at the point E (Fig. 1) located on the outer boundary I'; are shown in (Fig. 3).

The selection of the regularization parameter § began with p=80.0. The iterative selection process 3
after four iterations ended at p=0.8-10" when the mean square error 5~0.005186 was reached. All the bound-

ary value problems of determining the temperature field in the body under investigation were solved using
the finite element method and an implicit difference scheme.
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Fig. 2. Dependencies of the right side of the equation Fig. 3. Dependencies T(t) at the point E (Fig. 1) with the
of the boundary to be identified x=f(y): coordinates x=0,7, y=I:
1 —in the form (13); 2 — boundary in the Ist iteration 1 — obtained using the equation for the boundary I, in the
at p=80; 3 - boupdary 1n the 2n§1 lteration at [3:_9,8; form (13); 2 — the "noisy” solution of the direct problem;
4 — boundary in the 3rd iteration at p=0.8-10"; 3 — obtained by solving the geometric THCP

5 — boundary in the 4th iteration at $=0.8-10*

Conclusions

The presented solution of the nonlinear two-dimensional geometric IHCP of identifying part of the
outer boundary indicates that the proposed method can be successfully used in the presence of the a-priori in-
formation about the desired function even with sufficiently large errors in temperature measurements (Fig. 3).

Although this paper is of a theoretical nature, the approaches and methods presented in it are used (see
[1]) and can be applied in the design of radio electronic equipment, when it is necessary to determine the areas of
location of heat sources and sinks. They can also be useful in the study of such technological processes as the in-
duction heating of parts or activation annealing of a semiconductor wafer. They can also be used to carry out non-
destructive diagnostics (for example, to determine the size of cracks and other defects in the body under study).

The studies presented in the paper were carried out within the framework of the budgetary theme I1I-6-20.
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Jlo po3B’si3aHHs reOMeTPUYHHUX 00ePHEHHUX 32724 TeNJIONPOBiTHOCTI
10. M. MaueButuii, B. B. 'anunn

Iacturyt npobiem mMammHoOyyBanHs iM. A. M. Ilinropaoro HAH Ykpainu,
61046, Ykpaina, M. Xapkis, By:1. [Toxxapcekoro, 2/10

Ha ocnosi meopii pecynsapuzayii A. M. Tuxonosa po3pobiena memoouka po3s'szanis 06epHeHux 3a0ay menionpo-
8i0HOCMI 3 i0eHmu@IiKayii 2N1a0Kol 306HIUHLOI MedHCI 0B0BUMIPHOL 0bIACMI 3a BIOOMUX HA Hill 2PAHUYMHUX YMO8. [[ yb0o2o
2N1A0KA MedHca anpoKcUMyembcsl Kyoiunumu cnaativamu Lllvonbepea, 6naciiook uoeo iv idenmugpixayis 3600umscsi 00 6U3Ha-
YEHHS HegIOOMUX KOoeiyieHmie 6 Yill anpoxkcumayii. 3a 8I00MUX SPAHUYHUX [ NOYAMKOBUX YMO8 meMnepamypa ¢ mini oyoe
sanexcamu miibKu 610 yux xoegiyicnmis. Bupasusu it 3a gpopmynoro Tetinopa 0ns 060x unenie psaoy i niocmagusuiu 8 (hyH-
kyionan Tuxonoea, 3a0auy 6UsHa4eHHsl 30iIbUieHb KOeQIYicHmMIE MONCHA 36eCmiu 00 PO36 A3AHHSL CUCeMU JIHIUHUX DIGHSHD
w000 yux 36iibuienb. Bubpaswiu nesnuil napamemp pezynsapusayii i 0esiKy QYHKYII0, AKa ONUCYe Gopmy 308HIUHBOT MeiCI,
SIK NOUAMKOB8e HAOJIUIICEHHS, MOJICHA peaizyeamu Imepayiinuil npoyec. ¥ ybomy npoyeci 6ekmop Hegioomux Koepiyienmie
ons nomounol imepayii 6yde dopisHiosamu cymi 6eKmopa KoeqiyieHmie 3 nonepeorvol imepayii i 6eKkmopa npupoCcmie Yux
KoepiyieHmis, OmpuMaHux 6 pe3yibmami po3e’AI3aHHs CUCMeMU JIHIUHUX pieHsaHb. Ompumaswiu 6eKmop KoeQiyicnmis 6
pe3yibmami 30i0CHO20 TMepayiiiHozo NPoYecy, MONCHA BUSHAYUMU CEPEOHbOKBAOPAMUYHULL BIOXUL MIXC 00EPIUCYBAHOI0 me-
MNEpamypolo i memnepamypoio, Wo SUMIPIOEMbCS 8 Pe3yIbmami npogedeH020 eKcnepumMenmy. 3anuuacmocs nidiopamu
napamemp pezyiapusayii maKum YUHOM, wob yeil iOXu1 0Y8 y Mextcax cepeOHbOKeaopamuiHol NOXUOKY NOMUIKY GUMIDIO-
6amb. Y camitli memoouyi ma wiiaxax ii peanizayii noyseae HOBU3HA GUKIA0EHO20 Y CIAmmi Mamepiany 6 NOPIGHSIHHI 3 NIOXO0-
oamu IHWUX agmopie 00 po36’s3aHHA 0DEPHEHUX 2eoMempUdHUX 3a0ay menionpogionocmi. I1i0 uac nepegipku egpexmugHo-
Ccmi BUKOPUCMANHSL 3aNPONOHOBAHOI MEMOOUKU PO36 SI3AHO HU3KY OB0BUMIPHUX MECMOBUX 3a0ad OJisl MI 3 IOOMUM PO3MA-
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WYBAHHAM 306HIWHbOT Medicl. [IpoeedeHo ananiz eniugy GUNaOKOSUX NOXUOOK GUMIPHOGAHL HA NOXUOKY i0enmugbixayii ¢op-
MU 306HIUHBOT MEDICL.

Kniouoei cnosa: cecomempuuna obeprnena 3adauwa menionpogionocmi, memoo pezyaspuzayii A. M. Tuxonosa,

cmabinizyouutl GyHKyionan, napamemp pe2yiapusayii, ioenmugikayis, anpoxcumayis, kyoiuni cnaainu [llvondepea.
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