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UDC 539.375 When calculating the strength of machines, structures and buildings with techno-

logical holes, it is important to take into account the plastic zones that emerge
ELASTIC-PLASTIC around the hol.es. Howeverf the un]cnown shape anc.l size of the. plastic zone compll-

cate the solution of elastic-plastic problems. This paper gives an approximate
PROBLEM method and solution of the plane elastic-plastic problem of the distribution of
FOR A STRINGER stresses in a thin plate, reinforced with a regular system of stiffeners (stringers).
PLATE The stringer plate under consideration has a circular hole, which is completely

surrounded by the zone of plastic deformation. At infinity, the plate is subjected to a
WITH A CIRCULAR uniform tension along the stiffeners. A constant normal load is applied to the con-
HOLE tour of the hole. The plate and stringer materials are assumed to be isotropic. The

loading conditions are assumed to be quasi-static. It is assumed that the plate is in

the plane-stressed state. Taken as the plasticity condition in the plastic zone is the
Minavar V. Mir-Salim-zade | Tresca-Saint-Venant plasticity condition. Methods of perturbation theory, analytic
minavar.mirsalimzade @imm.az function theory, and the least squares method are used. The solution to the stated
ORCID: 0000-0003-4237-0352 elastic-plastic problem consists of two stages. At the first stage, the stress-strain
state for the elastic zone is found, and then the unknown interface between the elas-
Institute of Mathematics and | fic and plastic zones is determined using the least squares method. A closed system
Mechanics of the NAS of algebraic eq.uations has. been fonstructed in each approximation, the nume.rical
solution of which makes it possible to study the stress-strain state of a stringer

of Azerbaijan, plate, with the hole entirely surrounded by the plastic zone, as well as to determine
9, Vahabzade str., Baku, the magnitudes of the concentrated forces that replace the action of the stringers.
AZ1141, Azerbaijan The interface between the elastic and plastic deformations has been found. The pre-
sented solution technique can be developed to solve other elastic-plastic problems.
The solution obtained in this paper makes it possible to consider elastic-plastic
problems for a stringer plate with other plasticity criteria.
Keywords: plate, stringers, elastic-plastic problem, interface between elastic and
plastic deformations.
Introduction

Elements of many structures and buildings have technological holes. During operation, due to the
concentration of stresses around the holes, plastic zones emerge. Taking these zones into account is impor-
tant when calculating a structure or a building for strength. Such problems are complicated by the need to
determine the shape and size of the plastic zone, but they are of great interest [1-11]. An approximate
method for solving plane elastic-plastic problems, based on N. I. Muskhelishvili’s methods for solving the
elastic problem and the method of least squares, is proposed in [1]. The elastic-plastic problem for an infinite
plate weakened by two identical square holes with partially unknown boundaries is considered in [3]. With
the help of the theory of functions of a complex variable and the theory of conformal mapping, the problem
was reduced to a boundary-value problem of analytic function theory. A method for constructing an elastic-
plastic boundary in the problem of stretching a plate weakened by two circular holes of different diameters is
proposed in [4]. The proposed method is based on the use of conservation laws, and is applied to solve a
similar problem in [10]. Using the conservation laws, the interface between the elastic and plastic zones was
found in the course of solving the elastic-plastic problem of the stress state under complex shear conditions
in a body weakened by a hole bounded by a piecewise-smooth contour [7]. In [6], an analytical method
based on the Tresca yield criterion is shown for determining the elastic-plastic boundary around a circular
hole in a plate subjected to biaxial tensile-compressive loads at infinity. In this case, two or four non-
intersecting plastic zones emerge around the hole. In both cases, the conformal mapping method is used.
In [9], the conformal mapping method and the differential evolution algorithm are used to determine the elas-
tic-plastic boundaries in the case of two identical circular holes in an infinite plate.

In [2], a plane elastic-plastic problem is considered under the condition of the Coulomb limit equilib-
rium and various lateral thrust coefficients in the intact massif for elliptical, vaulted, square and polygonal
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cross-sectional workings, as well as mutually influencing workings. The solution to the problem is obtained
by the small parameter method and the finite element method. An approximate method for solving the elas-
tic-plastic problem for a rock mass, under the action of tectonic and gravitational forces, is given in [8]. It is
believed that the working is entirely surrounded by the plastic zone, and the material of the massif obeys the
plasticity condition of V. V. Sokolovsky.

The plane elastic-plastic problem of stress distribution in a thin plate with a circular hole, with crack
initiation and propagation in the elastic zone, was considered in [5]. It is assumed that the zone of plastic de-
formations completely surrounds the hole, and in the elastic zone, crack initiation and destruction of the plate
material occur. The methods of perturbation theory and the theory of singular integral equations are used.
The possibility of crack initiation in the elastic zone is taken into account when solving the plane elastic-
plastic problem of stress distribution in a thin plate with a round hole in [11]. The interface between the elas-
tic and plastic deformations was found, as well as the location and size of crack initiation zones.

In this paper, we consider a plane elastic-plastic problem of stress distribution in a thin plate rein-
forced by a regular system of stringers, the plate having a circular hole completely surrounded by the zone of
plastic deformations.

Problem Formulation
Consider an infinite thin plate with a T T Gu T T T T T T
mrgular hole (Fig.1). Elastic stiffeners P P I P,
(stringers) are attached to the plate symmet- I I i} I I
rically relative to the surface. The plate is
subjected to a uniform tensile stress of : :
Gj’ =0, along the stringers at infinity. Un- I P —1 P Lo IPQ IPzz
der the action of external tensile loads and Yo
internal pressure on the contour of the hole, IP—zl ¥j P /’ \ IPn P
there emerges a zone of plastic deformations O 2);1_1 ¥
around that hole, entirely surrounding it. % _/ J_I i
The plate material is assumed to be I Py I P IPH Py
isotropic. The loading conditions are con-
sidered to be quasi-static. The plate is be- I P I P I P I Py
lieved to be in the plane-stressed state. The .
hole contour is under constant normal load

_ _ 2L
G,=p, Te=0. I‘Pzn—’I P, IPM IPzn

Taken as the plasticity condition in

the plastic zone is the Tresca-Saint-Venant i i l i l l 5 l i
plasticity condition. As is known [12-16], ’

the plane problem of ideal plasticity is stati- Fig. 1. Design diagram of the elastic-plastic problem
cally definable if the boundary conditions for a stringer plate

are specified in stresses.

The action of the stringers is replaced by the previously unknown equivalent concentrated forces P,
applied at the points z=+(2m+1)L+iky, (m=0,1,2,...; k=1,2,...; i= \/—_1 ) where the stringers are attached to
the plate.

It is necessary to determine the boundaries of the plastic deformation zone around the hole, the
stress-strain state of the stringer plate, and the magnitude of the concentrated forces.

Let there be the inequality 64=6,>0 in the plastic zone. In this case [16], the characteristics in the
plastic zone will be radial straight lines, and the stresses will be determined by the formulas

R
Gf=(5s+(p—(5s)7, ol =0 =0,

s

where ©; is the tensile yield stress of the plate material; R is the radius of the hole.
For the inequality 64>6,>0 to hold, it is obvious that the load p must satisfy the condition 0<p<c;.
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On the unknown contour L, separating the elastic and plastic zones, all the stresses are continuous.
The boundary conditions on Lyhave the form

o6/ =0’ Gy, =0}, T =Th.
Therefore, to determine the stress state in the elastic zone of the plate, we have the following bound-
ary conditions:

o/ —ityy =0l —itly on L, (1)
To find the boundary of L,, we have the condition
Gy =G4 on L. ()

Solution of the Boundary Value Problem
We will search for the unknown contour L, in the class of contours close to circular. We represent it
in the form
r=pO)=c,+eH(0),

where the function H(0) is to be determined; e=Ry/c is a small parameter. Here, R, is the maximum height of
the deflection of L, from the circle r=c,.

Without losing the generality of the problem under consideration, we assume that the required func-
tion H(0) is symmetric with respect to the coordinate axes, and can be represented as a Fourier series

H(®)= ZCZk cos2k0 .

k=1

Stresses and displacements in the elastic zone, as well as concentrated forces, are sought in the form
of small-parameter expansions, in which, for simplicity, the terms containing € powers above the first one are
discarded

(0) @ (0) 1

6,=0, +&0," +..., G,=0, +€0,’ +..., T (0) M

= Tnt +£Tm +...5

nt

u, =u'® +eud +..., v, =v +erV 4,

n n
P, =P +eP\) +....

Each of the approximations satisfies the system of differential equations of the plane problem of the
theory of elasticity. The components of the stress tensor at r=p(0) are found by expanding the expressions for
the stresses in the vicinity r=c in a series. In each approximation, the solution is found using the analytic
function theory.

Using the well-known formulas [17] for the stress components G, and T, we write the boundary

conditions of problem (1) — (2) on the contour r=c, in the following form:
— for the zeroth approximation

o =c”, 19 =18, 3)
— for the first approximation
oV =N, =0 0)
(0) (0)
H 0
Here, N = 2ﬂtim—H(9)L at r=cy.
c, do or

Based on the Kolosov-Muskhelishvili formulas [17]
ot +6¢ =6° +6 =202+ D(z)),
0 0% +2it, = ¢ (0f — 0% +2it%) = 2[70"(2) + ¥(2)],
20(u€ +ive) = 21e™ (u, +ivy) = KO(2) — 2P(2) — Y(2)

and boundary conditions (3) on the contours of the holes, the problem in the zeroth approximation is reduced
to determining two analytic functions, ®(z) and P(2), from the boundary condition

D, (2)+ P (2)— e[, (2) + ¥, (2)] = 67 —it,. (5)
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Here, z=coe™; w is the shear modulus of the plate material; ¢©'(2)=®(z); V' (2)=P(2); k=3-v)/(1+Vv); v
is Poisson's ratio of the material of the medium.
We seek the solution to boundary-value problem (5) in the form (k=0)

PP (=2 ()+2" (1), ¥"(@)=¥"@+¥" (). 6)
Here, the potentials CIDE)O) (z) and ‘Péo) (z) describe the field of stresses and strains in a solid plate under

the action of a system of the concentrated forces P” and o, and are determined by the following formulas:

1 [ 1 1
PO ()=~G, — ' plO _ ’ 7
0 ( ) 4 0 27th(1+K)mZ’n mn . . ( )

z—mL+iny, z—mL—iny,

1 ix 1 1
YO ()="g. — ' pl0) _ n
0 (@) 2 ° 27th(1+1<)§n ’"" ' j

z—mL+iny, z—mL—iny,

i , () mL—iny, mL+iny,
+ z Pmn . 2 - . 2 |
21th(1+K) o (z—=mL+iny,)” (z—mL-iny,)

where £ is the thickness of the plate; the prime at the summation sign indicates that during summation the
index m=n=0 is excluded.

To determine the functions CIDiO) (z) and lPl(o)(z) , we modify boundary condition (5), and, for it to be
solved, apply the N. I. Muskhelishvili method [17]. As a result, we find

CI)(O)( )_ —l z (()) -1 _ A A AKZ P(O) 1 ’ 8)
o A(ZA -1)° A(ZAQ—I) o (zAl—l) z2(zA, =1)
\y<°><z)=i+éZ'P“’> L 1] e @
! 27 &M A -1 A -1 ZA A, 2 z
1
Here, A=——, A =mL—iny,, A, =mL+iny,.
o+ Yoo 2 Yo

In formulas (8), all the linear dimensions are referred to radius R.

The magnitude of the concentrated forces is determined using Hooke's law. According to this law,
the magnitude of the concentrated force P(O)
E.A
2yon
where E; is Young's modulus of the stringer material; 2yon is the distance between the attachment points;

acting on each attachment point from the side of the stringer,

PO = =575 Ayl (m, n=1,2,...), ©)

Av? is the mutual displacement of the considered attachment points, equal to the elongation of the corre-

sponding section of the stringer.

It is believed that stringers work only in tension (they do not undergo bending), their thickness remains
unchanged during deformation, and the stress state is uniaxial. It is assumed that the truss-type stringer system
does not weaken the stringers due to the setting of the attachment points. The attachment points (adhesion ar-
eas) are the same, with a radius of a,, which is small compared to their step of 2L and other typical dimensions.
The plate and stringers interact with each other in the same plane and only at the attachment points.

Let us accept [18] the natural assumption that the mutual elastic displacement of the points
z=mL+i(ny;—ao) and z=mL—i(ny,—ap) in the problem under consideration is equal to the mutual displacement

AV of the attachment points. This additional condition for the compatibility of the displacements makes it

possible to find a solution to the problem.
Using the Kolosov-Muskhelishvili formulas [17], relations (6)—(8), after performing elementary cal-

culations, we find the mutual displacement Ay'? of the attachment points
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Av,(;)) = Av,?, +Av,, , (10)

2 g2
L5 pof g dsta’, 2dsd [2k(12< m)L ;rab]
2n(1+ x)uh o dy+b (dy+b°)(dy+a”)

272 42
s, < Go|r0d, | 2diL [k_L_kL}M[ﬂ_dlj v L spon
2u B, B; \ B, B; B, 2n(l+ K)uh o

A =50 1+ x0)d, +
4u

where b=(r—n)y,—a; dy=b+a; d,=ry,—a; d,=(k-m)L*;

[ = ) Ca(DKL—Dyd,) - Cy(DkL—d,D) C,(DskL—D,d,)—Cy(DkL—d,D3) |
(D} +D*)B, (D; +D})B,

—K(ds _1){ D,dy —2ny,mLD, Ddg—2ny,mLD, } + 1+ X, D*+ D} N 2nyy(ny, —a)

n
(D; +D;)D, (D*+D})D, 2  Di+D; dsB,

-1 C, [mL(D2 —D?)+2ny,DD,]-C; [ZmLDlD—nyO(DZ —Df)]_
; (D* + D?)*d;

>

¢, |mL(2 = D2)=2ny,D,D,]- Ci[nyy (D2 = D}) + 2mLD,D |
(D5 +D3)ds

L .
ds=m’L*+n’yy; dg=m’L’=n’y;; Bz=k2L2+d122C4:kL+%; C2=d1£1+il
2

D =kmL +ny,d, —1; D,=dmL—nykL; D,=dmL+nykL;
D, =kmL’ —ny,d, —1; D, =d; +4y;’m" .

Solving system (9)—(10), we determine the magnitude of the concentrated forces P\, and thereby
the complex potentials of the zeroth approximation. According to the Kolosov-Muskhelishvili formulas and
(6), the stress components in the reinforced plate are found in the zeroth approximation. Knowing the stress
state in the zeroth approximation, we find the functions M.

After finding the solution in the zeroth approximation, we turn to the solution of the problem in the
first approximation (4).

The boundary conditions of the problem for the first approximation are written in the form

V(1) + " (1) - [fdV () + ¥V (1)|= N at 1=coe”. (11)

The solution of the boundary-value problem (11), similarly to the zeroth approximation, is sought in

the form (6) at k=1, where the potentials CIDBD(z) and lI’él)(z) describe the field of stresses and strains under

the action of a system of the concentrated forces Pngl), and are determined by formulas similar to (7), in
. 0) 3 1)
which we should set 6, equal to zero, replace P, with P

To determine the potentials @{"(z) and ¥ (z) from the boundary condition (11), we again use the
method of N.I. Muskhelishvili. As a result, we find

D)= ()+ Y ayz . Y@= @+ by
k=0 k=0

Here, CIDﬁ)(z) and ‘I’l(j)(z) are determined by formulas similar to (8), in which G, should be set equal

to zero, PW(,S) be replaced with Pw(lln) . The coefficients ay; and by are found using the formulas
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a,, =C, R™ (n=12,...), a,=0,

by, =(2n—-1)R%ay, , ~R™a_,,,, (n122), by=0, b,=—CiR*, N= ) Cje™ . (12)

k=—o0
For the concentrated forces P,f;,) , we have

P =§;—Z";Av§;; : (13)

The mutual displacement Ay) is determined in the same way as the zeroth approximation.

The solutions of the problem for the elastic zone in subsequent approximations can be constructed in
a similar way.

The resulting systems of equations of the first approximation are not yet closed, since the right-hand
sides of these systems include the coefficients cy; of the expansion of the function H(8) in a Fourier series.
To construct the missing equations, we use the boundary condition (2). Using the obtained solution, we find
G4(0) (r=p(0)) up to first-order quantities with respect to the small parameter €

G
05 =05 (8),_, +€ HO)=—+ g (8)

‘ r=cg

The stresses Gg(0) depend on the coefficients of the Fourier series of the required function H(6). To
construct the missing equations that allow determining these coefficients, we demand that the condition (2)
be satisfied. To satisfy the condition (2), we use the least squares method.

The stress G on Ly is a function of the independent variable of the polar angle 6 and (m; + 1) of the pa-
rameters ¢y, ¢y (k=1,2,...,m;). The unknown parameters ¢, ¢y, are constant and must be determined. To determine
them, we carry out a number of calculations. We divide the segment [0, 27] of the 0 change into M, parts, where

2
0,=6,+jA8 (j=0,1,2,....M~1), Aezﬁn, My>my+.

1

Calculate the normal tangential stress G at the points of division
65(0,)=F(8;,c5,c5) (¢=0,1,2,....M,-1).

Therefore, it is required to find such values of the unknown parameters cy, ¢z, which will provide the
values o} for the values of the circumferential stress function g on L, in the best way.

The Least Squares Principle states that the most likely parameter values will be those at which the
sum of the squares of the deviations is smallest

M, -1
U= [F®,.cp.cr,) -0, - min.
j=0
Writing the necessary condition for the extremum of the function U, we obtain (m;+1) equations
with (m;+1) unknowns
oUu oUu
—L0=0, —L=0, (k=1,2,....m). 14)
ac, acyy
The system of equations (14) closes the obtained algebraic systems of problem (12), (13). The listed
systems must be solved simultaneously.
Note that the issues of convergence of the perturbation method in solving elastic-plastic problems
and the theory of inhomogeneous elasticity were discussed in detail in monographs [19, 20].
It should be remembered that the complex potentials of the first approximation depend on the com-
ponents of the zero-order stresses and the coefficients ¢y, ¢z To determine the stresses in the first approxi-
mation (see boundary condition (11)), the coefficients cy, ¢ are used. In this case, it is necessary to simulta-
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neously solve the systems of equations (12)—(14).

Results Analysis

A simultaneous numerical solution to the obtained systems of algebraic equations (12)—(14) makes it
possible, for a given external load, to find concentrated forces, complex potentials, and the coefficients ¢, co
(k=1,2,...,my).

The calculations were carried out for the following values of free parameters: ay/L=0.01; yo/L=0.25.
It was considered that the stringers were made of Al-steel composite, the plate was made of the B95 alloy,
E=7.1-10 MPa, E,=11.5-10* MPa. For simplicity, it was assumed that A,/yoh=1. It was assumed that the
number of stringers and attachment points is finite (14), and M,=72. It was assumed that p/c,=0.6;
6/6,=0.75. The results of calculating the expansion coefficients of the function H(0) are given below.

Co (&) C4 Ce Cg C10 C12

1.903 0.798 0.511 0.384 0.267 0.188 0.139

Conclusions

A solution has been found for the plane elastic-plastic problem on the stress distribution around a
circular hole in the stringer plate being stretched, the hole being entirely surrounded by the zone of plastic
deformations. A closed system of algebraic equations has been obtained, the numerical solution of which
makes it possible to study the stress state of a stringer plate with a hole entirely surrounded by the plastic
zone. The constructed equations allow us, for the given mechanical and geometric characteristics of the
stringer plate, to use numerical calculations to find the interface between the elastic and plastic deformations.

The proposed method for solving the elastic-plastic problem for a stringer plate can be developed for
solving other elastic-plastic problems. The solution obtained in this paper makes it possible to consider prob-
lems with other plasticity criteria, as well as especially complex elastic-plastic problems, taking into account
the initiation and development of cracks in the elastic zone. A stringer plate can have not one, but several
holes or a whole system, which is why research in this direction can be continued.
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[py:xHO-TUIACTHYHA 3272492 JUIA CTPUHTEPHO] IUIACTHHHU 3 KPYTOBHM OTBOPOM
M. B. Mip-Cagaim-3aae

[nctutyT Maremaruku i Mmexaniku HAH AzepOaiimxkany,
AZ1141, Azepbaiimkan, M. baky, Byn. b. Baxa63aze, 9

Ipu pospaxyHKy Ha MiyHICMb MAWUH, KOHCMPYKYIT | CROPYO, WO MAOMb MEXHOIOSIUHI OMEOPU, 8ANCTUBO 6DA-
xXogysamu nAACMUYHi 061aCMi, WO UHUKAIOMb HABKOI0 0meopie. OOHaK HesidoMi popma i po3mipu niacmuyroi obracmi
VCKIIAOHIOIMb PO38 A3AHHA NPYICHO-NAACMUYHUX 3a0a4. Y 0aniil pobomi 0aembcsi HAGIUdMCEHU Memoo i po36’ 30K NJo-
CKOI' npYJICHO-NIacmu4Hol 3a0a4i npo po3nooil HANPYICeHb 8 MOHKIU NaacmuHi, NiOKPInIeHoi pecyiapHoi0 CUCmMeMOor
pebep srcopcmrocmi (cmpunzepis). Boce 3eadana cmpuneepha niacmuHa Mae Kpy2osuii Omeip, AKULL YiikoM OXONII0EMbCA
30H0I0 naacmuyHuUx oeghopmayii. Ha neckinueHHocmi niacmuna cCXuibHa 00 0OHOPIOHO20 PO3MALYEAHS Y3008iC pebep
arcopemrocmi. [lo Konmypy Kpy208020 omeopy npuxiadeHa nocmiiihe HOpMdaibHe Hasanmasicents. Mamepianu niacmunu
i cmpuneepie npuiliHami i30MpOnHUMY. YMO8U HABAHMANCEHHS NPUNYCKAIOMbCA Kéasicmamuynumu. lpuiinamo, wo nia-
CIMUHA 3HAXOOUMbCA 8 NIOCKO-HANPYICEHOMY cmani. AK ymoea niacmuuHoCmi 6 nAGCMUYHIN 30HI NPUUMAEMbC YMO6A
nracmuunocmi Tpecka-Cen-Benana. Bukopucmogyromscs memoou meopii 30ypeHs, meopii aHanimuyHux QyHKyiu i me-
Mmoo Haumenwux keadpamis. Po36’s30x nocmaenenoi npyscHo-niacmuynol 3a0adi ckradacmoca 3 060x emanis. Ha nep-
WoMy emani 3HaxX0OUMbCs HANPYHCEHO-0eOPMOBAHULI CMAH OISl NPYHCHOL 30HU, A NOMIM 3d OONOMO20K0 MemOody Hali-
MEHWUX KBAOPAMI6 BUIHAUAEMbCS HeBI0OMA Medica po30LLy npyicHoio I naacmuunoi 30H. [loOyoosana 6 KOHCHOMY Ha-
ONUIICEHHT 3aMKHYMA CUCeEMA AN2eOpaiyHuX piBHsIHb, YUCI08ULL PO36 30K AKOI 00380SE Q0CIIONCYBAMU HANPYIHCEHO-
Odeghopmosanuil cman cmpuneepHoi NIACMUHU 3 NOBHUM OXONJIEHHAM OMEOpY NAACMUYHOI 30HU, d MAKONHC BUSHAYUMU
BEUUUHU 30CEPEONCEHUX CUT, SKI 3AMIHIOIOMb 0il0 cCmpuHeepis. 3Halldena mexca po30iny NPYHCHUX i NAACMUYHUX depop-
mayin. Hasedena memoouxa po3s’sa3anus modice Oymu po3euHeHa Osl pO36 A3aHHA THUWUX NPYICHO-NIACMUYHUX 3A00Y.
Ompumanuii 8 pob6omi po36’s130K 0A€ MONCTUBICMb PO32AAOAMU NPYICHO-NAACUYHY 3A0aYy 0151 CMPUH2EPHOT NAACTUHU
3 IHWUMU Kpumepisamu naacmuyHOCmi.

Knwouosi cnosa: niacmuna, cmpunzepu, npysxcHO-NIACMUYHA 3A0a4d, Mexca PO3OLLY NPYHCHUX | NAACIIUYHUX
deghopmayiil.
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