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Introduction

In the optimal design of building structures, which are complex multi-parameter systems with non-
linear objective functions and non-linear constraints, the use of regular methods such as the Gauss-Seidel
method, gradient and steepest descent methods, despite their high accuracy, is usually associated with severe
computational difficulties. Sometimes they do not give a solution at all, while the complexity of the objective
function and constraints does not cause significant difficulties in using stochastic programming methods.

With the development of computer technology, it became possible to create stochastic models of the
objects of optimization, as well as analyze them, search and provide a sorting-through with account taken of
the previous history of searching for models that satisfy a given optimality criterion. Modeling various opti-
mization objects, in particular building structures, based on the use of random and pseudo-random numerous
sequences was the basis of the optimization method referred to as random search [1].

Fundamental research in the field of random search methods is closely related to the works of
L. A. Rastrigin [1, 2], L. S. Gurin, Ya. Z. Dymarsky, A. D. Merkulov [31, I. N. Bocharov,
A. A. Feldbaum [4], V. Ya. Katkovnik [5], A. Fiakko, McCormic [6], D. Himmelblau [7], S. H. Brooks [8],
D. C. Karnopp [9], M. Shumer & K. Stejglitz [10].

L. A. Rastrigin's works [1, 2] are devoted to the theory of statistical search methods. These works in-
vestigate the local properties of various random search algorithms, mainly those that adapt locally, provide
estimates of the effectiveness of these algorithms, including random search algorithms with self-learning and
forgetting, algorithms with a director cone, a director sphere, and a number of others.

As follow-up to L. A. Rastrigin's research in [11], algorithms using smoothing operators in problems
of extremum search are considered; step adaptation in random search algorithms, and an algorithm for esti-
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mating descent directions, using the statistical gradient method, are considered; some global optimization
algorithms and ravine random search algorithms are proposed, etc.

The use of the random search method in the optimal structural design is given in [12-21]. In prac-
tice, the random search method was used in the optimal design of the dynamic systems of the superstructure
of the ERP-2500 bucket-wheel excavator in collaboration with the UkrNIIProekt of the Ministry of Coal In-
dustry of the USSR [22]. The effect was found to be equal to 5% of the superstructure weight, which
amounted to five tons.

Since the second half of the 1980s, random search methods have been used in the problems of optimal
design of structures interacting with an aggressive environment. The results of optimization of such structures
are described in detail in [23]. Random search, as a method for finding extreme solutions, was also used to de-
velop an evolutionary theory of identification of mathematical models of corrosion destruction [24].

During the past five years, the random search method has been used in [25-28].

The experience of research, design, and operation shows that thin-walled shells reinforced by a sys-
tem of ribs are the most rational ones in terms of weight. The load-bearing capacity of such shells is much
higher than that of smooth unreinforced shells with the same wall thickness. However, the computation of
shells reinforced by a system of ribs is much more complicated. The critical stresses arising in optimal com-
pressed reinforced cylindrical shells are a function of not only the skin and reinforcement parameters, but
also the number of half-waves in the circumferential and meridional directions that are formed due to buck-
ling. In turn, the number of these half-waves depends on the variable shell parameters. Consequently, the
search area becomes non-stationary, and when formulating a mathematical programming problem, it is nec-
essary to provide for the need to minimize the critical stress function with respect to the integer wave forma-
tion parameters at each search procedure step.

Let us formulate the general statement of the problem of optimally designing a compressed rein-
forced shell, taking into account the above, in the form of the following mathematical model [29]:

F(A 1
e .
in satisfying the constraints

5,(4)20. min min|B,(4,)]> 0 @)

(m., n)

Ab<A <A, (=120 —-LL+1,...0; j=1,L; S=12...S,), (3)

where F is the objective function; A; is the vector of optimization parameters; Af] ,Aiv are, respectively, the

lower and upper boundaries of the change in the geometric parameters of the shell being optimized; m, n are
the integer parameters of wave formation in the circumferential and meridional directions; K; is the vector of
discrete quantities that quantitatively characterizes the primary structure that reinforces the shell; S; is the
value corresponding to a certain type of structural deformation.

In general, model (1)—(3) has some specific features:

— the functions Bi(s)(Ai): {mn) Ej (A,) "breathe” according to the integer parameters of wave forma-

tion m and #;
— the quantities m and n are associated with a certain dependence on the quantities K; that discretely

change, as a result of which the function Bi(S)(Ai) has a ravine character;

— the minimization using S, corresponding to the non-stationarity of constraints, leads to the fact that
the zones of permissible changes in variable parameters can intersect, and, as a consequence, the appearance
of local minima, as well as fractures or deformations of existing ravines is possible.

As follows from the above, at each search procedure step, a multi-extremal problem of mathematical
programming is solved. In order to solve this problem, it is proposed to apply random search algorithms from
the class of independent ones, for example, an independent global search algorithm with adaptation of the
sample distribution or from the class of wandering algorithms, such as, for example, an algorithm with a di-
rector cone or sphere [1].
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Statement of the Problem of Optimal Design of a Stringer-reinforced Cylindrical Shell

Consider a hinged edge-supported stringer-reinforced
cylindrical shell of a given length L and radius R made of an 4
ideal elastic-plastic material and loaded by the combined action
of the axial compressive force N and internal pressure g (Fig. 1).

The axial force acts in the form of the uniformly dis-
tributed stresses p at the shell edges.

The assumption of the ideal elastic-plastic work of the 4
shell material allows one to estimate the limiting state of struc-
tures in terms of strength in accordance with the maximum shear

stress theory, and consider shell stability in linear formulation &
with the elastic behavior of the material. The rib eccentricity %
relative to the median skin surface is not taken into account. AN
Note that a similar design scheme can also be used in f;li—
the optimal design of a ribbed-lattice shell (Fig. 2).
In this case, the compartment between two frames is Fig. 1. Design scheme of a stringer-
reinforced shell

considered to be a hingedly supported stringer-reinforced shell
under the assumption that the rigidity of the frames during tor-
sion is small, and during bending, it is sufficiently large.

The meridional and circumferential stresses in the skin
and the longitudinal stresses in the stringers under the combined
action of the axial force and internal pressure are written as fol-
lows [29]

_N-uRqy _ _N+uRq _ _ gR
i+y) © 7 A(+y) " h

— N . . .
where N :ﬁ; v is the ratio of the cross-sectional areas of
T

)

G

the stringers and skin; p is Poisson's ratio, ¢ is the value of the
internal shell pressure; R is the radius of the middle shell sur-
face; h is the shell-wall thickness.

We will assume that the limiting state of the shell will
be determined using the condition of skin yield according to the
theory of the highest shear stresses

Fig. 2. Design model of a ribbed-lattice shell

O-equiv = O-l - 0-3 < [p]’ (5)

where [p] is the yield point.
Substituting the equations for 6, and o5 into expression (5), we obtain the strength condition for the
stringer-reinforced shell

2nR{A p1(1+Y)— Rg(1+7Y) + LRqY}Z N . (6)

The required value of the critical load, which avoids the buckling of the stringer-reinforced shell at a
given load, is provided by longitudinal reinforcement.

To assess stability, formulas are used for the parameters of the critical stresses of structurally anisot-
ropic shells with account taken of the discrete arrangement of the ribs [30]:

1) a general case of buckling, when the stringers bend and twist

1 t n’

_ ~2 2\, ~ 1
_1+Yk U+12<1_M2>(Ockm + Bkn )+q (7

UM

~2
m

2) a special case of buckling, when the stringers only bend
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1 tokin® . n’
= U+ +9— (8)
e 1+2yk{ 6ll —p?) qmz}
3) a special case of buckling, when the stringers only twist
Bkn*  _n?
=U+ tq4—=5- ©))
n3 6 1 _ IJ,Z q m2
E ER __q(RY
where lzﬁ; Y= F ; 0= J ; B: GJcr ; D= g m:mnR; G= E ; q:i_ ;
R 2nRh 2MRD 2MRD 12(1-p?) L 2(1+1) E\nh

i’ N t(n’&2 + nz)z
w2+ 2] 1200-u
sectional stringer area; E is the elastic modulus of the material; k is the number of stringers; 2n, m is the
number of half-waves generated during buckling in the circumferential and meridional directions.

In expression (7), according to [30], the number of half-waves in the circumferential direction 2n
must not be a multiple of the number of stringers (2n#n,k). For special cases of buckling (8)—(9), the ratio of
the multiplicity of the number of half-waves in the circumferential direction to the number of stringers
(2n=n;k) can be satisfied.

Of the three considered cases of buckling (7)—(9), there can occur a case at which the smallest value
of critical stresses 6.,=En-t.

Choosing stringers from a strip with thickness 4, (the stringer height H is determined in accordance with
the characteristic value that ensures the local stringer stability) as reinforcing elements, we will look for the val-
ues of the skin thickness 4, rib thickness /., and number of stringers &, ensuring that, for a given load N, the shell
has the smallest possible volume, and, at the same time, its strength and stability conditions are satisfied.

Thus, the problem is reduced to finding the minimum of the function

V =Q2nRh+kF)L (10)

when the strength condition (6) and the constraint condition for the critical buckling force are met

U=

; J and J,; are bending and twisting moments of stringer inertia; F is the cross-

(.
2MRA* | 1+—2- |2 N, 1D
2TRh

H
where A=—.
p
By introducing the notation x,=h; x,=h,; x3=k; x4=n; xs=m and substituting into formulas (6)—(8), we
obtain the mixed-integer non-linear programming problem: to find the non-negative values xi, x,, x3 for
which the objective function would take the minimum value

® = min(2nRx, + Aalx; )L (12)
and, at the same time, the conditions
2R {x [p)1+7) - Rq(l+7)+uRq¥ > N}, (13)
2nEx(1+9x,) = N, (14)
oo Mo
where Y = 2mRx, .

Problem (12)—(14) can be solved in two ways.

The first way. Five pseudo-random numbers are generated on a computer, with the help of which
five random values £, h,, k, n and m (k, n and m can only be taken as integers) are played. Then, for the first
three variables &, h,, k, such n and m (integers) are found that would deliver the minimum value to the critical
stresses for all three cases of buckling. The minimization of critical stresses, as well as the search for the op-
timal parameters of the shell, is carried out using the proportional algorithm of continuous coordinate-wise
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self-learning with forgetting [1]. After finding the minimum critical stresses, constraints (13) and (14) are
verified for satisfaction. If the constraints are satisfied, then the value of the objective function is computed,
the found point is stored, and the memory vector is computed for each of the coordinates. Then, from the
found point, with account taken of the search history, a step is made again, and so on. Steps are made simul-
taneously in all coordinates. The procedure described mathematically can be represented as follows:

min ® = f,{min o, + f,(n,m)}.

The described approach allows solving the problem of optimal design of a reinforced cylindrical
shell, but such a solution is associated with significant search losses.

The second way. The solution of the posed problem (12)—(22) is based on the assumption of the in-
dependence of the forms n and m from the values of the skin and reinforcement parameters. This assumption
may turn out to be incorrect if the optimization process is carried out only by minimizing the shell volume
without account taken of the minimization of critical stresses. Control computations showed that in this case
the critical load is significantly excessive, and the solution obtained is not always optimal.

The difficulty in optimally designing this type of shells lies in the fact that the optimal (in terms of vol-
ume) shell must correspond to its stress-strain state, at which the critical stresses acquire the minimum value.

We will obtain the implementation of this approach, using the proportional algorithm of continuous
coordinate-wise self-learning with forgetting [1].

This algorithm runs as follows. The search system makes a step only in the direction that is probabil-
istically favorable. Search direction should be understood as a probabilistic gradient. As it is known, such a
probability is formed using the increment of the objective function. We will use this property of the algo-
rithm and propose the search system to advance to the point corresponding to the minimum of the objective
function (for example, the minimum volume of a shell), not only depending on the increment of the objective
function, but also on the increment of the critical stress function. In this case, it is assumed that the critical
stresses should decrease. In turn, the critical stresses are a function of not only skin reinforcement parame-
ters, but also of wave formation parameters. As a result, self-learning will be carried out using the optimized
parameters, and the search system will move in the parameter space so that the critical stresses are mini-
mized. The implementation of the learning algorithm of the search algorithm can be carried out by corre-
spondingly changing the memory parameter u; using the following recurrent dependence:

uV =9.4™ —v. AAVAD | AG, .
Here, ¥ is the forgetting rate parameter (0<®<1); v>0 is the learning rate parameter.

The results of control computations of the numerical example are close to the results obtained by
other authors [29, 31]. It should be noted that the second method can drastically reduce the time required to
solve the problem.

To illustrate this, let us consider an example of the optimal design of a stringer-reinforced cylindrical
shell of radius R=1 m and of length L=2 m, hingedly supported at its edges under the axial compressive load
N=835kN and internal pressure g=0.535-10"Pa. Its elastic modulus E=6.867-10* MPa; p=147 MPa; u=0.3;
A=13. The shell is reinforced with strip-shaped stringers. The optimization parameters have the following
constraints: 0.1<h<1.5 mm; 1.0<h<2.5 mm; 1<k<100; 1<n<50; 1<m<50.

The problem was solved in the second way with the use of a standard program for obtaining pseudo-
random numbers uniformly distributed over a segment [0, 1]. The obtained values of the optimal parameters
were compared with the data given in [29], where the same problem was considered, but the studies were car-
ried out by the approximate solution of the corresponding direct problem. Table 1 shows the values of the op-
timal parameters, the volume and critical-stress parameters for all three forms of buckling, as well as the values
of the limiting critical forces N, and of the bearing capacity M, from the strength condition. The lowest row of
the same table shows the values of the optimal parameters and the optimal volume obtained in [1].

Table 1. Optimal design results for a compressed stringer-reinforced shell with account taken of three forms of buckling

me,cm3 h, mm h,, mm k, pcs mn n 3 N, kKN Npo, KN
12975 0.980 1.00 25 1.925 - - 843.0 960.0
11334 0.880 1.00 9 - 2.426 - 836.0 889.0
17480 0.997 1.81 58 - - 1.394 836.0 1293.0
16760 0.980 1.23 92 - - - - -
54 ISSN 2709-2984. Journal of Mechanical Engineering, 2021, vol. 24, no. 2
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Table 2. Computed values of the optimal shell parameters and critical stress values for the three cases of buckling

. Cross-sectional areas, cm’ Critical stress ..
Buckling cases Shell Shell wall Stringers parameters Critical stress value, MPa
General 83.25 3.331 3.33 1.925 101.26
First special 67.94 55.250 1.41 2.426 123.05
Second special 89.21 62.610 26.59 1.394 93.71
Conclusions

Analyzing the numerical experiment results given in table 2, we can say the following:

1. The limiting constraints for all three forms of buckling were constraints on the critical force, but
not on the bearing capacity of the shell. The safety factors for the bearing capacity for all three cases of buck-
ling are greater than unity.

2. The most dangerous case of buckling is the second special case. The critical stresses for this case
of buckling are smallest (6,=93.71 MPa at the coefficient n=1.394).

3. For the second special case of buckling, the cross-sectional area of the shell was distributed prac-
tically in equal proportions between the shell wall and reinforcement elements. The primary-structure area
was 42.5% of the total cross-sectional area of the shell. As a result, the thickness of the stringers increased
and more stringers were required (58) compared to other cases of buckling.

4. Due to the fact that the second special case of buckling is most dangerous for the shell, the pa-
rameters corresponding to this case should be taken as optimal.

5. Two methods of organizing the search system for solving the problem of optimal design are pro-
posed. The first method is traditional, requiring the inclusion of the integer waveform parameters into the
optimization parameters.

The second method is based on such an organization of the search system, in which the advance to the ex-
tremum of the objective function depends not only on the increment of this function, but also on the increment of
the critical stress function. In this case, it is assumed that the critical stresses should decrease. In turn, the critical
stresses are a function of not only skin and reinforcement parameters, but also wave formation parameters. There-
fore, learning is carried out using these parameters as well, and the search system will move in the parameter
space so that the critical stresses are minimized. The use of this method significantly reduces search losses.

In conclusion, it should be noted that this work did not determine the degree of influence of the shell
buckling (separately axial compression and internal pressure) on the value of the critical force, i.e. the value
of load leading to a more dangerous case of buckling. In the future, such a study should be carried out.

As for the organization of the search procedure, the promising researches could be those connected
with the creation of hybrid algorithms for finding extreme solutions. In particular, when combining methods
of dynamic and random search, random search and genetic algorithms, one should apply reduction, i.e. re-
duce complexity to simplicity, and create so-called metaheuristic methods for seeking the global extremum,
which are presented in [25]. Random search methods, with their undoubted advantages over regular methods
for seeking extrema in the non-linear feasible space, have a significant drawback: they lack high accuracy.
When reducing the feasible space, the accuracy of random search methods increases significantly.
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OnTuMajabHe MPOEeKTYBAHHS MiIKPINJIeHUX MUIIHAPUYHUX 000JI0HOK MPH CHiILHOMY 0CLOBOMY
CTHCKAHHI Ta BHYTPIlIHHOMY THCKY

T. B. ®inatos

JIBH3 Yxpaincekuii nep>kaBHUIN XiMiKO-TEXHOJIOTIYHUN YHIBEPCHUTET,
49005, Ykpaina, M. {ninpo, np. ["arapina, 8

Y emammi posenadaemoca 3acmocysanus memooy 8unaoko8o20 NOULYKy Ol ONMUMATIBLHO20 NPOEKMYBAHHS OOHO-
Waposux NiOKPInAeHUx pebpamu HcopcmroCmi YUTTHOPUUHUX 0DOJIOHOK NPU CRITbHOMY 0CbOBOM) CHIUCKAHHI T BHYMPIUHLOMY
MUCKY 3 YPAXYBAHHAM NPYHCHO-NIACIUYHOT pobomu mamepiany. K Kpumepili onmumManibHOCMi NPUILMAEMbCA MIHIMATbHULL
06’em obononku. Obracms NOWYKY ONMUMATBHOZ0 PO36 A3KY 8 NPOCMOPI NApAMempis, Wo ONMUMIZVIONbCsl, 0OMENCYEMbCs
ymogamu mMiyHocmi i cmitikocmi 06ononku. 110 uac oyinku cmitikocmi 6paxo8yemucsi OUCKpemHe posmautyéantsi pedep. Kpiv
VMO8 MIYHOCMI | CIIUKOCMI 0O0NOHKY, HA 00AACmb OONYCIUMUX PO38 S3KI6 HAKIAOAIOMbC 0OMENCEHHL HA 2eOMEmpPUYHL
posmipu napamempis, wjo onmumizyiomuocs. CKIaOHicms npu ROCMAaHO8Yl 3a0a4i MAMeMamuyHo20 NPOSPAMYBAHHSL NOJAAE 8
MOMY, WO KPUMUYHI HANPYICCHHS, SKI UHUKAIOMb 6 ONMUMALLHUX CIUCHYMUX NIOKPINAEHUX YUTTHOPUUHUX OOONOHKAX, €
QyHKyi€elo He minbKu napamempie 0OWUGKY | NIOKPINIeHHsl, ale U KLIbKOCMI HaNiGX6uUb 6 OKPYICHOMY Ma MepUOIOHAIbHOMY
HAanpsIMKax, wjo Ymeopioromuvcsl 8 pe3yibmami mpamu Cmitkocmi. ¥ ceoro uepey, KilbKicmb yux HANieXeulb 3a1exlcunms 6io
sapitiosanux napamempis obonronxu. Omoice, 001aCMb ROUWLYKY CIAE HECMAYIOHAPHOIO § NPU NOCMAHOBYT 3A0a4i Mamemamu-
YHO20 NPOSPAMYBAHHSA CIO nepedbayamu HeoOXIOHICIb MIHIMI3ayii YHKYIT KpUMUYHUX HANPYIICEHb 3d YLIOYUCTIO8UMU Na-
pamempamu  XeuneymeopeHHs HA KONCHOMY Kpoyi NOuiykoeoi npoyedypu. Y 383Ky 3 yum HpONOHYEMbCA Memoouxa
PO38’A3aHHA 3a0a4i ONMUMATLHO20 NPOEKMYB8AHHS NIOKPINIEHUX CIMKOI0 pebep 000I0HOK i3 3ACMOCYBAHHAM ANICOPUMM) 6U-
NAaoKoB020 NOULYKY, BUBHEHHS. IKO20 30IUCHIOEMbCS. He MIbKU 8 3aNIe)HCHOCI 60 3MeHUIeHHsL YIIb0o6ol (YHKYIL, a 1l 6i0 30i1b-
WEHHS KDUMUYHUX HANPYICEHb HA KOJMCHOMY Kpoyi nowyky excmpemymy. Memoro pobomu € demoHcmpayis Memoouku on-
mumizayii maxkoeo poody 0O0I0HOK, 3a KO BUKOPUCIIOBYEMbCS CREYIANbHULL AI2OPUMM HABYAHHS CUCTEMU NOWLYKY, KOmMpa
noJiseae 8 Momy, wo OOHOUACHO PO36’A3YI0MbCs 08I 3a0adi MAMEMAMUYHO20 NPOSPAMYBAHHSL: MIHIMI3ayis 64206801 YLb0BOI
QyHKYIT | MIHIMI3AYIS KPUMUYHUX HARPYJiceHb. Memoouka, wjo nponoHyemuCst, LIIOCMpPYEMbCsl HA YUCTO80MY NPUKIAOL.

Knrouosi cnoea: niokpiniena yuniHopuuna 060I0HKA, ONMUMATbHE NPOEKNYS8AHHS, UNAOKOBULL NOULYK, KPUMUYHI
HAaNpyHCeH s GMpamu CIMiuKoCmi.

Jliteparypa

1. Pacrpurun JI. A. Cratuctudeckue Mmetoabl orncka. M.: Hayka, 1968. 376 c.

2. Pactpurusn JI. A. CrryuaiiHblil nouck B 3afadax ONTUMU3ALUM MHOTONapaMeTpuyeckux cucteM. Pura: 3uHathe,
1965. 287 c.

3. Typun JI. C., Oemmapckuii S. C., MepkynoB A. [I. 3agaun 1 MeTOJIbl ONTUMAJILHOTO PAaCHpPECICHUS PECYPCOB.
M.: Cos. paguo, 1986. 513 c.

4. Bbouapos U. H., ®enpadaym A. A. ABTOMaTH4ecKUi ONTHMHU3ATOP JUIS MOMCKa MUHUMAIGHOTO M3 HECKOJIBKUX
MUHUMYMOB. Aémomamuka u meaemexanuxa. 1962. T. 23. Ne 3. C. 67-73.

5. KarkoBruk B. fI. 3amava anmpoxcumarnym (QyHKOUH MHOTHUX TEPEMEHHBIX. AGmomamuxa 6 menemMexanuxa.
1971. Ne 2. C. 181-185.

ISSN 2709-2984. Ilpobremu mawunodyoysanns. 2021. T. 24. Ne 2 57



APPLIED MATHEMATICS

58

6. ®uakko A., Mak-Kopmuk I'. HenureitHoe mporpammupoBanue. MeToabl TOCIeI0BaTeIbHON 0€3yCI0BHOM OI1-
tAMu3anud. M.: Mup, 1972. 240 c.

7. Xummennbmnay /1. [Ipukinannoe HenmuHeiHOE iporpammupoBanue. M.: Mup, 1975. 534 c.

8. Brooks S. H. A discussion of random methods for seeking maxims. Operations Res. 1958. Vol. 2. Iss. 6. P. 244-251.
https://doi.org/10.1287/opre.6.2.244.

9. Karnopp D. C. Random search techniques for optimizations problems. Automatica. 1965. Vol. 1. Iss. 2-3.
P. 111-121. https://doi.org/10.1016/0005-1098(63)90018-9.

10. Shumer M., Stejglitz K. Adaptive step size random search. IEEE Trans. Automat Contr. 1968. Vol. 13. Iss. 3.
P. 270-276. https://doi.org/10.1109/TAC.1968.1098903.

11. Bonsiuckuit 3. U., ®unato I'. B. [IpuMeHeHue onepaTtopoB CriIaXUBaHUS B ONTHUMAaJIbHOM MPOEKTHUPOBAHUU
pedpucThix 060s04eK. Pegh. ungpopm. o saxonuennvix HUP 6 gyzax YCCP. 1976. Bein. 7. C. 24-25.

12. @unaros I'. B. [IpuiosxeHre METO0B CIIy4aifHOTO MOMCKA K ONTUMM3aLMK KOHCTpYKumid. K. 1. CaapOprokkeH,
I'epmanns: LAP LAMBERT Academic Publishing, 2014. 184 c.

13. Mamissruyc . A., Urowume A. M. O6 ogHOM anropuTMe CIIydalHOTO MOWCKA JJIsi CHHTE3a ONTHMAaIbHOU
YIpYTO# MapHUPHO-CTEP)KHEBOU CUCTEMBI. JIum. mex. c6. BunpHioc: MunTtac. 1970. Ne I (6). C. 77-83.

14. TTourman 1O. M., Tyraii O. B. YcToiunBOCTh M BECOBasl ONTUMHU3AIMS MHOTOCIOWHBIX MOAKPETICHHBIX ITHJIHH-
IpU9IecKuX 000JI0YeK MpH KOMOMHUPOBAHHOM HArpyXKeHHH. [ uopoaspomexanuxa u meopus ynpyeocmu. JlHen-
pomerpoBck: JlHenmporetp. yH-T, 1979. Beim. 25. C. 137-147.

15. [ourman 1O .M., ®unaros I'. B. UccnenoBanue nedopmannii TrHOKUX CTEpXKHEH METOJJOM CTATUCTUUECKHX HC-
nelTaHuid. Cmpoum. mexanuxa u pacuem coopyorcenui. 1970. Ne 5. C. 36-39.

16.[Tourman 1O. M., ®unaros I'. B. OnruMun3zanus napameTpoB peOpUCTBIX IUIACTUH HPHU KOJICOAHHUSX METOJ0OM
cirydaiiHoro noucka. [Ipo6a. npounocmu. 1972. Ne 2. C. 83-85.

17. ®unaros I'. B. BecoBas ontumusaims C:kaToW MUJIMHIPUICCKON 000JI0OYKU ¢ OTPaHHYCHHOHN JOJITOBEYHOCTHIO.
Ipuxn. mexanuka. 2006. T. 42. Ne 3. C. 97-101.

18. Gellatly R. A., Gallagher R. H. A procedure for automated minimum weight design. Part 1. Theoret. Basis.
Aeron. Quart. 1966. Vol. 7. Iss. 7. P. 63-66.

19. Golinski J., Lesniak Z. K. Optimales Entwerfev von Konstruktioner mit Hilfe der Monte-Carlo-Methode. Bau-
technik. 1966. Vol. 43. Iss. 9. P. 47-54.

20. Filatov G. V. Application of Random Search Method for the Optimal Designing of Ribbed Plates. Intern. J.
Emerging Techn. and Advanced Eng. 2019. Vol. 9. Iss. 10. P. 223-228.

21. @paitat M. 4. [IpumeHeHue ciryyallHOroO MoMCKa K 3ajJjauaM ONTHMAlbHOIO MpoeKTHpoBaHus. Cmpoum. mexa-
Huxa u pacuem coopyscenuti. 1970. T. 1. C. 87-91.

22.T'yxoBckuii B. B., ITono H. H., [Tacanuenko B. U., ®unatos I'. B. OntuMu3anuust AMHAMUYECKUX CUCTEM BEp-
XHEro CTPOCHHUs POTOpHOTo 3kckaBartopa DPII-2500. ['opro-mpancnopmuoe obopydosanue paspe306. MUH-BO
yronsHol npoM-ctu CCCP. Kues: YkpHUHnpoexr, 1975. C. 3-12.

23. ®utatos I'. B. [IpunoskeHrne METOOB CIIYYaifHOTO TOMCKA K ONTHMHU3AIMNA KOHCTPYKIUil. MoHOTp. CaapOprok-
keH, ['epmarmss: LAP LAMBERT Academic Publishing, 2014. 177 c.

24, ®unaroB I'. B. Teoperndeckne OCHOBBHI ABOJIIOIIMHA MAaTMOJENEH KOPPO3UOHHOTO paspymeHus: MoHorp. Caap-
oprokken, ['epmanms: LAP LAMBERT Academic Publishing, 2014. 181 c.

25.TlanTenees A. B., Poguonosa /I. A. IIlpuMeHeHne ruOpUIHOTO METO/Ia CIIYIaiHOTO MOMCKA B 3a/Ja4aX ONTHMH-
3alMK DJIEMEHTOB TEXHUUYECKUX cUcTeM. Hayy. eecmn. Mock. mexu. yn-ma epasxco. asuayuu. 2018. T. 21. Ne 3.
C. 139-149. https://doi.org/10.26467/2079-0619-2018-21-3-139-149.

26. CenbkuH B. C., Crotkuna-Jloponnsa C. B. CoBMecTHOE NpUMEHEHHE METO0B CIIy4ailHOro MOUCKa C IPaJUeHT-
HBIMH METOJaMH ONTHMH3aLUK MPOCKTHBIX IaPaMEeTPOB M IIPOTPaMM YIPABJICHUS PAKETHBIM OOBEKTOM. TexH.
mexanuxa. 2018. Ne 2. C. 44-56. https://doi.org/10.15407/itm2018.02.044.

27. Filatov H. V. Optimal design of single-layered reinforced cylindrical shells. J. Mech. Eng. 2021. Vol. 24. No. 1.
P. 58-64. https://doi.org/10.15407/pmach2021.01.058.

28. Filatov H. V. Optimal design of smooth shells both with and without taking into account initial imperfections.
J. Mech. Eng. 2020. Vol. 23. No. 1. P. 58-63. https://doi.org/10.15407/pmach2020.01.058.

29. ®punman M. M. OnrtuManbHOe MTPOSKTHPOBAHHUE TPYOUATHIX CTEPIKHEBBIX KOHCTPYKITUH, MOABEPIKEHHBIX KOP-
posun. Ilpooa. mawunocmpoenus. 2016. T. 19. Ne 3. C. 37-42. https://doi.org/10.15407/pmach2016.03.037.

30. IManpueBckmii A. C. PacueT CTpUHIEpHBIX IWIMHIPHYECKUX 000JI0YEK MHUHHMAJILHOTO Beca MPU COBMECTHOM
OCEBOM CXXaTHH W BHyTpeHHeM aaBneHuu. [puxn. mexanuxa. 1970. T. 6. Bem. 10. C. 49-54.

31. Amipo 1. . JocaimkeHns criikocTi peOpUCTOi IMIIHAPUYHOT 0OOJIOHKH IIPY TOB3/I0BXKHBOMY CTHCKY. [Ipuki.
mexanixa. 1960. T. 4. Bum. 3. C. 16-23.

32.Burns A. B. Combined loads minimum weight analysis of stiffened plates and shells. J. Spacecraft and Rockets.
1966. Vol. 3. No. 2. P. 235-240. https://doi.org/10.2514/3.28425.

ISSN 2709-2984. Journal of Mechanical Engineering, 2021, vol. 24, no. 2



