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UDC 519. 853. 3 An adaptive approach to the numerical differentiation of difficult-to-compute functions

is considered. Complex dependencies, which are the result of multiple superpositions of
AN ADAPTIVE functions or the product of various algorithmic processes, are knowingly difficult to
METHOD FOR study directly. To establish the nature of the behavior of such dependencies, one has to
NUMERICAL resort to numerical analysis. One of the important characteristics of functions is a de-

rivative, which indicates the direction and rate of change of a dependence. However,
DIFFERENTIATION with difficult-to-compute functions, the available a priori information is not always
OF DIFFICULT-TO- | sufficient to achieve the appropriate accuracy of the solution by known means. The loss

COMPUTE of accuracy occurs due to the accumulation of round-off errors that grow in proportion
to the number of calculated values of a function. In this case, it is necessary to pass on
FUNCTIONS to the posterior approach in order to determine the behavior of the function and move
away from the scheme of equidistant nodes, relying on an adaptive way of studying the
Helii A. Sheludko local situation in the domain of the function. This paper implements an adaptive method

ORCID: 0000-0003-4171-9591 | for finding derivatives of a function with a minimum of restrictive requirements for the
class of functions and the form of their assignment. Due to this, the costs of calculating
Serhii V. Ugrimov the function have been significantly reduced with the result that their number has been
sugrimov @ipmach.kharkov.ua brought to almost the optimal level. At the same time, the amount of RAM used has
ORCID: 0000-0002-0846-4067 | sharply decreased. There is no need for a preliminary analysis of the problem of estab-
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of Mechanical Engineering For research, it is enough to assign a continuous and bounded function on a fixed seg-

Problems of NASU . ment and a minimum step, which is indirectly responsible for ensuring the required
2/10, P Ozhar§ky1 St., Kharkiv, accuracy of differentiation. The effectiveness of the proposed method is demonstrated
61046, Ukraine on a number of test examples. The developed method can be used in more complex

problems, for example, in solving some types of differential and integral equations, as
well as for a wide range of optimization problems in a wide variety of areas of applied
analysis and synthesis.
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Introduction

The list of problems leading to the necessity of calculating the derivative of a function is extremely
diverse and numerous [1-4]. In fact, in order to analyze the characteristics of processes, as well as estima-
tions associated with the accuracy of the solutions obtained, they resort to the use of derivatives that establish
the rate of change of a particular feature, its extreme properties, etc.

The class of functions offered by practice is very wide, and the functions themselves are often diffi-
cult to compute [5—7]. Sometimes they are represented by complex analytical structures (for example, multi-
ple superpositions of functions, experimental results), or are defined algorithmically. Therefore, one has to
focus on the numerical methods that do not impose strict requirements on the function f(x), except that they
require its continuity with a finite number of singularities in the segment [A, B].

Differentiation of elementary functions is a fairly simple operation. In the general case, the error in
the approximate derivation of the derivative m of order f™(x") at the point x € [A, B] from the given table
function y=f(x) (at the nodes A<x;<x; < ... <x,<B the function values yy, yi, ..., y, are known) can be repre-
sented in the form [8, 9]

(m) ("
RG) = f 70 - B ) = Sy ey 1)
(n+1)!
provided that the function is n+1 times continuously differentiable on the segment [A, B]. Here, P,(x) is an
interpolation polynomial satisfying the conditions
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B(x)=f(x), {x}elAB], ox=]]x-x) &elA4,BI].
i=0

Such a scheme, based on the Lagrange interpolation formula [8, 9], most often provides for equally
spaced nodes x;e[A, B]. As a result, the function is assumed to behave similarly in certain sub-segments of
the segment [A, B], which may entail a loss of the required accuracy of calculating the derivative f™(x"). A
simple increase in the number n of the nodes x; does not always solve this problem, since the closeness of the
functions f{x;) and P,(x;) still does not guarantee the closeness of their derivatives at other points, especially
since the error increases due to the accumulation of round-off errors. With large n, small errors in the values
of f; can result in large errors [9-11].

For approximate differentiation, formulas based on the Gregory-Newton and Newton-Stirling inter-
polants are widely used [10]. However, in the first case, one often has to deal with relatively large coeffi-
cients with divided differences, which entails a loss of accuracy, and in the second one, an error occurs due
to the use of a smaller number of significant digits in the finite differences, and therefore in the calculated
values of derivatives.

Applying any formula of approximate differentiation, one always introduces a number of assump-
tions and restrictions regarding the properties of the function, for example, the absence of rapidly oscillating
components, the period of which does not exceed the step size. The use of usual differentiation formulas
(Newton, Stirling, etc.) presupposes a certain "correctness" in the behavior of finite differences for given
equally-spaced grid nodes. If such correctness is violated, then every time it is necessary to conduct a special
study of the nature of the function.

An attempt to select an optimal differentiation step, posed as the problem of minimizing the sum of
truncation and round-off errors, solves the question, but only for a specific function [11, 12].

Since with the nonlinear transcendental functions f{x) the use of divided differences for approxima-
tion is problematic, then one tries to compensate for the lack of information about the nature of the function
by simply increasing the number of nodes, which is not always justified. This is especially noticeable in the
case of difficult-to-compute functions [13].

It would seem that it could be more convenient here to approximate the functions f{x) by splines
[12]. They have greater local flexibility. Even with a small degree n of the polynomial (three, five), splines
show good results in the selected sub-segment of the segment [A, B]. But again, the question of using the
nodes x; to preliminary divide the segment [A, B] into sub-segments remains open. Therefore, for difficult-to-
compute functions, one can expect to obtain a derivative of only a limited level of accuracy. The reduction of
the derivative calculation error when dividing the segment [A, B] into an increasing number of sub-segments
(n>5 splines) is rather slow. At the same time, the complexity of calculations increases significantly due to
the appearance of a large number of coefficients in the formulae used.

The aim of the proposed work is to increase the efficiency of approximate differentiation in condi-
tions of poor awareness of the nature of the behavior of an undoubtedly difficult-to-compute function.

Problem Formulation

The main source of error in calculating derivatives (especially for difficult-to-compute functions) is,
on the one hand, the number n of its calculations, and, on the other hand, the uncertainty of the method of
dividing the segment [A, B] into small sub-segments, with a previously unknown character of behavior of the
function y=f{x). This circumstance forces us to abandon the a priori assignment of the number of nodes n and

turn to their a posteriori selection based on the analysis of

the emerging search situation. Such a choice of points for a | &

function given over an interval of great length puts forward AR
stringent requirements for the construction of the computa- }
tional process. It should provide qualitative tracking of

changes in the behavior of the function over the entire in- Yin
terval under study. 0 Xien X

Striving for the most economical and simple way of
approximating the original function f(x), given by a discrete | Fig. 1. Scheme of approximation of g (x) to f (x)
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set of its values, leads to the use of first-order splines, i.e. to a piecewise linear approximation g(x) (Fig. 1).
This gives rise to unwanted breaks in the function g(x). However, the derivative at point ¢ (see Fig. 1) can be
approximately represented by its piecewise-difference analogue, using, for example, the weighted-slope
method [14]. The accuracy of the approximation of the derivative f’(x) at point ¢ with left-hand A,,, and

right-hand A,.(A,,=(f(u)—-f(v))/(u—v)) differences is proportional to the distance of points ¢ and b from c.
Therefore, putting
A=[(b—c) A+ (c—a) Ayc)/(b-a),
we come to the weighted-slope method
A=At Ay (2)
In this case, the derivative at point c of the function f (x) is replaced by weighted average approxima-

(@) (@)
tion, when the role of weights is played by corresponding ratios of the lengths of the arcs ca/ba and

m (@) @) N
bc / ba . Coarsening the derivative approximation, one can replace the lengths of the arcs bc and ca with

the lengths of the chords bc and ca that contract them, i.e. put

Ac = _bc_ Aca +$Abc .
bc+ca bc+ca

The smaller the neighborhood of point c, the closer A. to f’(c).

The error in the approximation of the derivative of the given function f{x) at point ¢ can be repre-
sented by the value

(c—a)(c—b)(c—d
3!

assuming that malx‘ f (x)‘ ~ f¥((c+b)/2) and counting approximately

3=|A,— f(e)=

)malx‘fm(x)‘, I:[a,b, c, d],

P =347 -A)/d-a),
where A, =2(A,, -A,)/(d—c), Al =2(A,.—A,)/(b-a).
The division of the segment [A, B] into sub-segments with different behavior of the function f(x) will
be carried out according to the change in the value of the discriminant

D=¢-oy, 3)
where € is a given average level of accuracy for the entire region of differentiation of the function f(x), and c;
is a criterion for a local situation [15, 16]. Let us agree to determine G, (see Fig. 2) as follows

o=l yi—gil, (4)
yi =0.25 | (1+2) Yir1+3 yk_}\'k Vi1 | > M=hd (hithy ),
81 =0.5 (ityir1), x,=0.5 (A1)

The situation 6, models the proximity of the function f{x) to the broken line g(x) approximating it at the
place of the probable largest deviation of the function f{x) from g(x), i.e. in the vicinity of the point x, . For this,

the direction of the derivative ;H Ib at point a is used, and not the direction of the previous chord la . Thus, if

the method of approximate differentiation, even at the most unfavorable points of the form x; , provides the given

accuracy, then in all other cases an acceptable result is guaranteed. The choice of the point c=(e+d)/2 accepted
here (see Fig. 2) pursues the only objective — to simplify the approximation algorithm as much as possible.
To obtain the new points x,.;=x;+/, the adaptive choice of which is determined by the situation G,

which describes the behavior of the function f{(x) in the segment [A, B] in the vicinity of the point x; , we use
the controlled process [14-16]
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hin=h exp(oD), o>0.

®)
Here, the coefficient o is responsible for
the degree of influence of the evolving situation on
the rate of change of steps in (5).

—

Changing D in (5) increases (or decreases)
the step size /. . Thus, this indirectly affects the
accuracy of calculating the derivative through the

accuracy of the approximation of the function f{x).

As it is shown in figure 2, monitoring the
local situation G, (4) together with the level of ac-
curacy € and with account of (3) can serve as a
control action in the step process (5), i.e.

7,
L
M1 =hy exp [0U(E—Cy)].

Ly
I,

(6)

Yy X
I:,&_
Fig. 2. The situation max/f(x)-g(x)/ in the neighborhood x,
To accelerate the advance along the segment [A, B], we take some €>G,, which can remain constant
or be rearranged in the course of process (6) in accordance with the degree of change in the situation G;.

The value of the initial step &, of process (6) is determined from the condition of the positiveness of
the discriminant D, i.e. choosing €>6;, for example, e=(1.01+1.1) Gy, since there is not enough information
about the function f(x) and the distribution of its characteristic points of different nature (extreme points,
kinks, etc.) in the given segment [A, B].

When approaching neighborhoods with kinks or extreme points, the angle between the directions of
derivatives at the neighboring points x;_;, x; noticeably increases, which accordingly entails a sharp decrease

in the step, down to values close to A, below which it is no longer advisable to distinguish the change of

the function f(x) for its approximation. But if the indicated neighborhood has already been passed and D>0,
then to accelerate process (6), we can return to the initial step, for example, fy=(1.1+1.2) App.

Passing the segment [A, B] by the adaptive method (6) in N calculations of the function f(x) makes it
possible to obtain the same number of values of the approximate derivative A, (2).

Using the example of the simple function f(x)= Jx [0.01; 1.01], we will start and exit the program

when the adaptive differentiation method is applied. Fig. 3 shows the exact behavior of the derivative f’(x) on
the segment [A, B], as well as the points of its approximate value A (2).

After two equal initial steps sy=h,=0.01, determined by the accepted value %.,;,,=0.005, have been taken, it
becomes possible to calculate the criterion of the local situation (4) 6,=0.009637592 and assign the value
€=0.01>0; with account of &, for the main mechanism (6) of the variable step to be included in the process.
Since the last step /33=0.01703624 of proc-

ess (6) places the last point x33=1.041639436 outside

X

1.0
the point B=1.01 of the segment [A, B], the algo-
rithm replaces the value of x;; with the value

B=1.01. The result was obtained at an intensity
equal to a=10.

If the derivative approximation process
were carried out with the same but constant step

0.50
h=hy, which ensures the obtained average accuracy,

then on a given interval it would be necessary to

1
!

1

i

H

v

1

1

i

3
B

compute the function 100 times instead of 33.

As we can see, the adaptive action of for-

%,
o "oun._o___o__u-_—n f'(x)
mula (6) is aimed not only at choosing the appropri- 0 0635 1050 1875 2500 3123 S0 4375 50
ate steps in order to reduce computational costs, but
also at creating favorable conditions for a better ap- Fig. 3. Derivative f'(x) and its approximation A
proximation of the derivatives (2). At the same time,
62
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when process (6) falls into the neighborhood of a sharp change in the behavior of the function f(x), character-
ized by criterion (4), the use of the weighted slope method (2) may be insufficient to ensure the proper level
of accuracy of the derivative. In this case, in the sub-segments with a sharp change in the behavior of the
function, it is necessary to switch to a simple sub-segment scanning with a deliberately reduced step, close to
humin- This partly contributes to the non-omission of singularities of the function f(x).

Numerical Experiment

The accepted method of numerical differentiation (2)—(6) was tested on the many examples of func-
tions of different complexity. Some of the test functions that have sharp local changes in behavior including
"kinks" are presented below [8, 10-12, 17-24]

fo=xsin(/x)s fu=|(x=1f]s fu=lsinxsin2as fiy =pe—e/@+ 227

N va :‘(27“2 _x3)1/3

fv = ‘sin(x3 /20) o fon = (2307 fuy = (3x° =255 +60x+16)/15;

fix =larctg[(x=3)/(x+D]|;  fx =fsin(nx)|; fig = =D*+[A+x)" =11"; fy; = |[Inarctgx)|;
fxm = sin(2[lg7(IJ"*‘g("J'D)]O'2 ); Fxy = Vx =3x+1; fxy =(2—cosx—cos2x)"”;  fyy; =exp(3x’ — )7,
Frwn = sin x+sin(10x/3) +1n x—0.84x+3; fyy = —in[n—x)°5 [+ x+ m+1};

Fax =arcte|(x=8)/ (22 +4)]: fux =2/ +x7sin’ ).
Let us introduce a simple concept of the unit cost of obtaining the integral averaged error in calculat-
ing the derivatives in the segment [A, B] in the form

N
C=N) |f{-A,
k=1

where f; is the "exact" value and A, = A(x;) is the approximate value of the derivatives at the corresponding

J(B-4), @)

nodes x:; N is the cost of achieving the desired result by this method, i.e. the number of evaluations of the

functions f(x) for this.

It is clear that the efficiency of the method, shown in solving a specific problem, is the greater the
lower the cost C (7), other things being equal.

We assume that scanning the same segment [A, B] with the smallest possible step A, provides a
more accurate approximation of the derivatives. Then we arrive at the inequality

N’ N
DTSN ED ISP 8)
i=1 k=1
where ivk are the numbers of the nodes of the corresponding grids, and N' is the integer part [(B—A)/ A
Based on (8), the effectiveness of method (2)-(6) will be conditionally estimated using the simplified

quality criterion ("efficiency index" [25])

N
o V2|4
E = —scan _ —;v:1 )]
CMUP NZ fk, _A*k
k=1

i.e., the ratio of the costs of achieving the corresponding mean-integral absolute errors on the same segment
[A, B], but on different ivk grids.

Criterion (9) contains the well-known principle of equal influences, when it is assumed that the total ab-
solute error on the entire segment [A, B] does not exceed a given value. For convenience, the "exact” value f, of

the derivative in all the above examples was calculated by the formula
(fx, +8)-A( x5 —8))/28,
where 8=10".
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These costs, of course, are not included in the number of N and N'.

The table shows the results of calculating the efficiency criterion E (9) for functions I-XX in an
adaptive way and the achieved cost of C,4,, in the segment [A, B]. Here, a specific case of using the constant,
on the sub-segments [x;, x;,1], precision value €=0.001, a=10, hy=h,;,=0.001.

Efficiency of finding derivatives by the adaptive method for test functions specified in the segment [A, B]

Jx) [A, B] Cadap N E
I [0.2/w; 5/7] 73.93731498 25 4.493741243
II [-0.995; 2] 38.67561466 190 4.388755049
11T [0; 2m] 200.8427336 625 1.006234064
IY [-2.995; 4] 10.13399088 693 1.011373266
Y [0; 37/2] 135.9652785 307 1.773252544
YI [-1;3.5] 242.4711093 390 1.175904877
YII [0; 2m] 300.2439079 31 126.3714985
YIII [0; 4.5] 150.9098132 451 4.666437614
IX [-m; 7] 3.029803189 430 1.58827937
X [0.01; 5] 343.3627677 90 5.467829259
XI [-2; 5] 3365.971896 657 1.088513516
XII [0.01; m] 54.35070561 39 7.146833836
XIII [-1.75; 0.56] 909.3456208 125 1.885660155
XIY [-1; 2] 200.9964238 94 15.46132117
XY [-m; 7] 14.62555623 419 3.433101097
XYI [-1;1.6] 57.04142104 156 3.918496306
XYII [0.1; 3.5] 5.518200797 142 1.213207504
XY [-1;1] 269.4804473 27 10.13027855
XIX [0; 1] 126.9048103 25 4.817065532
XX [-7/4; 37] 45719.13737 549 2.803608813

It can be seen from the table that the proposed method of adaptive differentiation for the considered
test functions, given on segments of different lengths and with different characteristic points, showed a fairly
good process efficiency with a completely acceptable result error (despite the constant precision level € ac-
cepted for all test examples). Almost always, the adaptive method in the segment [A, B] achieves a smaller
average differentiation error than in the case of a simple scanning with the step A,,, and therefore, for all
examples, the value E>1. When approaching the neighborhood with a sharply changing situation G;, when
the values of o, and € turn out to be weakly correlated, it is necessary to reduce the step to a minimum,
changing the derivative A, (2) for A,. The coincidence or proximity of the results of the costs to be com-
pared (9) is possible only if, in methods like Scan, any of the points x; turns out to be incidental to the center
of a sharp symmetric break in the function f(x) with its weakly curved, almost linear sides. Although, in gen-
eral, this is unlikely.

Conclusions

The article implements an adaptive method for finding derivatives of a function with a minimum of
restrictive requirements for the class of functions and the form of their assignment. For real problems, espe-
cially high accuracy of the result is not often required, however, large numerical costs are undesirable, which
is why the main emphasis in the implementation of the method was aimed at the efficiency of the differentia-
tion process. To implement the method, neither a preliminary research of the given function nor the use of its
transformations is required. This is especially important in the case of noticeable nonlinearity, most often
inherent in difficult-to-compute functions. In fact, the minimum information is used, which ensures the
specified accuracy of differentiation, without resorting in advance to one or another special method of region
discretization.

With the help of the created step-by-strep method for clarifying the situation and a simple technique
for calculating the local derivative, it was possible to limit ourselves to piecewise linear approximation, when
all the required conditions are easily satisfied without unnecessary numerical costs. The effectiveness of the
proposed method is demonstrated on a variety of examples of differentiation of functions of different levels
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of complexity, some of which have sharp local changes in behavior, including "kinks". A numerical experi-
ment showed a noticeable increase in efficiency when using the developed adaptive method in comparison
with the known methods of approximate differentiation.

The proposed approach of approximate adaptive differentiation, which occurs in an automatic mode,
may turn out to be convenient for solving some classes of differential and integral equations evolving in a
variety of applied areas.
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AanTHBHUNA MeTOJ YHCEJIbHOro AM(epeHIiI0BAHHA BAXKKOO0UHNCIIOBAJBLHUX (PYHKITIH
I'. A. leayabko, C. B. Yrpimon

[acturyt npobiem MammHoOyyBanHs iM. A. M. Ilinropaoro HAH Ykpainu,
61046, Ykpaina, M. Xapkis, Byin. [Toxxapcekoro, 2/10

Poszenanymo adanmusnuii nioxio 00 yucerbHo2o ougepenyitosants 8axckooouucmogarbrux gyuxyit. Ckiaowi
3ANeAHCHOCHI, SIKI € Pe3YTbMaAmom 6a2amopazosux cynepnosuyit Gyukyit abo pizHux aieopummivHux npoyecis, ckiao-
Hi 0118 6e3nocepednbo2o 00CHiOdNHCeHHA. [l 6CMAHOBIEHHS XapaKmepy HO8eOTHKU MAKUX 3ANEHCHOCmEN 00800UMbCSL
goasamucs 00 uuceibHo2o ananizy. OOHIEI0 3 BANCTUBUX XAPAKMEPUCMUK YHKYIU € NOXIOHA, KA 6KA3YE HANPAM i
weuoxicms 3minu 3anexchocmi. OOHax npu CKIAOHOOOUUCTIOBATLHUX QYHKYIAX HASAGHOT anpiopro iHghopmayii ne 3a6-
24COU 0OCMAMHBO, WOO BIOOMUMU 3ACODAMU MOAICHA OVI0 6 DoCAeMU HANEICHOT moUHOCMI po38°A3KYy. Bmpama mouno-
cmi 8i00y8acmMbCsl 6HACTIOOK HAKONUYEHHS NOMULOK OKPYeleHHs, AKi 3pOCMAaiomb HNPONOPYINHO KilbKOCMI 3a0isTHUX
3Hauensb QynKyii. Y ybomy sunaoky 00800umvcs nepexooumu 00 anocmepiopHo2o nioxooy 0/ moeo, woob susHauumu
no6edinKy Qyuxyii ma 6iditimu 6i0 cxemu Pi6HOBIOOANEHUX 8Y3/i6, CRUPAIOYUCH HA AOANMUBHUL CNOCIO 8UBYEHHS TOKA-
JIbHOI 00cmarnosKy 8 obaacmi guznavenus ynkyii. ¥ cmammi peanizosano adanmueruti Memoo nowyKy noxionux ¢y-
HKYTL npu MIHIMYMI 0OMeNCYBATLHUX 8UMO2 00 Kacy QyHKyil i hopmu ix 3a0anms. 3a60aKuU YbOMY 3HAUHO 3MEHUUTUCS
sumpamu Ha 00uUCIeHHs PYHKYIT, 6 pe3yabmami 4020 KilbKicmb 00uucienb 6)10 008e0eH0 Matlice 00 ORMUMATLHO2O0
pisns. Ilpu yvomy pizko sHuzuscs 0dcse eukopucmosysanoi onepamusnoi nam'smi. Hemae nompebu 6 npogedenni no-
nepeoHbo2o aHaNi3y 3i 6CMAHOBICHHS KIACY 00CIONCY8AHOL YYHKYTL, 8 3anyyenni cneyyukyil abo nepemeopenti no-
YAMKOBUX YMO8 Ol GUKOPUCIAHHS CMAHOAPMHUX MAOIUYb 8a208UX Koepiyienmie i m.n. s 0ocuiodxicenns docmam-
HbO 3a0amu Henepepsmy i oomediceny QYHKYIIo Ha PIKCOBAHOMY ceeMeHmi | MIHIMATbHUN KPOK, Kl NOOIYHO 8I0NOGi-
dac 3a 3abe3neuents HeoOXiOHoi mounocmi Ooughepenyioeanus. Egdexmuenicms 3anponoHosanoco memoody O0emon-
CMpPYEMbCsL HA PAOT Mecmosux npukiadis. Po3pobaenuti memoo modice 6ymu uKopucmano y 6ilbid CKIaOHUX 3a0ayax,
HANpuKaao, npu po38’a3amuHi 0essKux munie OupepeHyiarbHux i iHmespatbHux PieHAHb, A MAKONIC 0151 WUPOKO20 Psoy
3a0a4 ONMUMI3ayii 6 HAUPIZHOMAHIMHIWUX 0OIACMAX NPUKIAOHO20 AHAI3Y MA CUHME3Y.

Knrouosi cnosa: neougepenyitiosana GyHkyis, KyCKOGO-IIHIUIHE HAOTUICEHHS, A0ANMUGHUL NOKPOKOBULL 6UOID
8y371i86.
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