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Introduction

At present, inverse problems, that is, such problems in which the causal characteristics of physical
processes are determined from measurement results or other investigative manifestations, have confidently oc-
cupied their niche in the study of physical processes of various nature, including thermophysical ones. The so-
lution of internal inverse heat conduction problems (IHCP) for the identification of the tensor of thermal con-
ductivity in anisotropic materials is of particular importance at the stage of constructing mathematical models
of thermal processes in most heat-shield materials used, for example, in modern aerospace technology (fiber-
glass, asboplastics, carbon plastics, most graphites, and graphite-containing materials). This is due to the fact
that heat transfer in such materials is described by equations containing the thermal conductivity tensor.

In this article, such an IHCP is considered as the problem of identifying a temperature-dependent ther-
mal conductivity tensor with a known heat capacity and boundary conditions at the boundary of the object un-
der study. In [1-5], IHCPs are classified, and methods of their solution are considered. At the same time, in [2—
5], the problems of identifying the thermal conductivity coefficient and heat capacity are called coefficient
[HCPs, and we, following the classification given in [1], consider all the problems of identifying the thermo-
physical characteristics inside the object under study as belonging to the class of internal IHCPs by analogy
with the external IHCPs of identifying heat fluxes and other thermal characteristics on the surface of the object.
In [6], an IHCP solution in an anisotropic half-space is given based on the analytical solution obtained in [7].

The author of [8] uses the conjugate gradient method to determine the tensor of nonlinear compo-
nents of thermal conductivity in a rectangular plate, and, for example, solves the inverse problem of recover-
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ing the tensor of thermal conductivity of a carbon composite material reinforced with unidirectional continu-
ous fibers at an angle of 30° to one of the plate boundaries. Monograph [5] presents approaches to solving
direct and inverse problems of heat conduction in anisotropic media. In particular, gradient descent methods
are used to identify the nonlinear thermal conductivity tensor.

In this article, the technique, described in [9], for determining the isotropic thermal conductivity co-
efficient is used to identify the thermal conductivity tensor with respect to the increments of the required pa-
rameters, and the search for the minimum of this functional is reduced to solving a system of linear equations
with respect to these increments.

Problem Formulation
An internal IHCP of identifying the thermal conductivity tensor for a two-dimensional domain is
considered. The thermal process in an anisotropic body is described as follows:

ofT 0 oT d oT d oT d oT
O B L B L e ) W N
(R(T)+ar),, . =aT,, 2
TM.v)| __, =T, 3)
where
RT)=( 2 (1) 2L n (1) 2L . costv, )+ [ 2 (0)- 2L s (1)- 2L |-cos(v, y): @
ox i dy ! ox 7 dy

D is the space domain occupied by the body; T=T(M, 7) is the body temperature; M is a point of D; 1 is time
coordinate; A (7), Ay(T), A(T) and A,,(T) are the required components of the thermal conductivity tensor;
C(T) is the volumetric heat capacity of the body; o is the heat transfer coefficient of the surface I'; 7 is the
specified temperature of the medium; v is the outer normal to the border of the body; Tj is initial temperature.
To solve the IHCP in an anisotropic body, time-dependent experimental temperature values are set

T(xk9yk9’c[):7}ex7 1:17’119 k:L_m, (5)
where 7, is the number of measurements along the time coordinate; m is the number of measurement points;

(xx, y) are the points of D in which the temperature 7;? 1s measured. Measurement error is a random variable

distributed according to the normal law with zero expectation and variance c>. The nonlinear components of
the thermal conductivity tensor are expressed in terms of the principal coefficients A:(7), A,(T) and the angle
of orientation ¢ of the principal axes O& and On, as follows [7]:

/IXX(T):7\,§(T)-COS2 (p+7\,n(T)-sin2 0, (6)
/lw(T)z%.n(T)-cos2 (p+7\,§(T)-sin2 0, @)
/lxy(T)zkyx(T)z(kg(T)—kn(T))-cos(psin(p. ®)

An internal IHCP of identifying the thermal conductivity tensor (1)—(5) using relations (6)—(8) can
be formalized in the form

Al (1), (T). @1 =T*

where A:(T) and A, (T) are the principal temperature-dependent coefficients; ¢ is the angle of orientation of
the principal axes Of and On; T is the temperature, which in most cases is known from the experiment (ini-
tial data); A is the operator connecting the required dependencies A:(T), A,(7) and ¢ with the initial data 7.
In this formulation, to identify the thermal conductivity tensor, it is sufficient to determine the principal coef-
ficients A«(T), Ay(T), and the orientation angle ¢ of the principal axes OE and On.

Such a problem, like any other IHCP, due to causal relationship violation, is ill-posed according to Ha-
damard, which is the reason for the instability of the solution obtained. To solve such a problem, it is either re-
duced to a conditionally well-posed one, or left ill-posed, but one of the regularization methods is used [2-5].
Here we use Tikhonov's regularization method [4].

The methodology for solving the problem is discussed below.
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Regularization Algorithm for Solving an Internal IHCP of Identifying the Thermal Conductivity
Tensor

To solve a nonlinear internal IHCP of identifying the thermal conductivity tensor (1)—(8), Tikhonov's
regularization principle is used, which is reduced to minimizing the following functional:

7 =[[lreeym-1Coy. 0] adyar+ p- Q. (1)1, (7). 6] . ©)
0D

where T(x, y, 1) is the temperature obtained in the process of solving the IHCP; T%(x, y, 1) is the experimen-
tally obtained temperature; T, is the moment of the end of the thermal process analysis; P is the regulariza-
tion parameter; Q[A:(T), A (T), ¢] is the stabilizing functional.

If the required functions A:(T) and A,(7T) are presented in the form

ny

T)=Z§k3§3(T) ) (10)
k=1
Zm 113 (an

where (§,,&,,....5, )= CI)é and (1M;,M,,.. ,nnn) , are the vectors of the required parameters, and B§3(T)
and Bn3 (T') are Schoenberg’s cubic splines, then the identification of the thermal conductivity tensor will be

reduced to determining the unknown vectors CITé and &, , as well as the orientation angle ¢ of the principal

axes O¢ and On.
Functional (9) is minimized by the iterative method [9-11]. Since the temperature 7(x, y, T) depends

both on the vectors CITé , @, and the orientation angle ¢ of the principal axes O and On, it can be written, at

the (p+1)th iteration, using the Taylor series as follows:

TP‘H(X,y,’C }\,[)+1,}\4[1)1+1,(p1)+1) Tp(x y,T }Vg, n’(pp) zaT p+l+zaT A p+l E)T A(pp+l, (12)
perleSY on, ¢

where (AE/™, AEDT .. A&P*‘) AQD”“ and (An/*', Ans*,. .,Ang“):Aq)ﬁ“ are the vectors of the in-
n

crements A(D”+1 = @{’” —@{’ , A(Dé’+1 = @Tf” —@Tf , and the increment of the orientation angle
A =" -

At the (p+1)th iteration, the stabilizing functional is represented in the form

. N . Tnax akp+1 aZ}MpH 2
Q[}fl }wl (Pp 1] J. Woe 7‘5 )2+W1§( a; J Wzg( aTi ) dT +
T,
; (13)

p+l

min

T axpﬂ 92! 2 )
+ J. Won M“)z+ m( v j +w2n(a—T“2J dT+w(P~((p” ‘)2

T,

min

where Wz, Wig, Wag, Wy, Wiy s Wan, W, are the weight factors that are selected using the a-priori information

¢
about the required dependencies A:(T), Ay(T) and ¢. In this problem, to determine the required dependencies
Ae(T), M(T), the second-order regularization was used, and for ¢, the zero-order regularization [5].

If we substitute expressions (9), (10), (11), and (12) into functional (8) and use the necessary condi-
tion for the minimum of functional (8), then we can obtain a system of linear equations with respect to

AEF LA ﬁ” ! ,An/ o .,AT]Z:I,A([)’? ! at the (p+1)th iteration. The elements of the system of linear equations

can be obtained in the same way as the elements of the system of linear equations were determined in [10].
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This system includes the regularization parameter, which is determined as we did in [9, 10, 12, 13],

proceeding from the condition
(I_W/EJGSSS(“'W/&JG’ (14)
N N

which was proposed in [4]. Here, N is the total number of thermometric measurements; ¢ is the root-mean-
square error; 0 is the standard deviation of the obtained temperature from the measured one.

The regularization parameter is considered to have been chosen correctly if, for the solution obtained
according to the iterative scheme proposed above, the two-sided inequality (14) is satisfied.

Numerical Experiment
We considered, for a rectangular anisotropic plate /,x/, heated by a convective heat flux, the internal
IHCP of identifying the thermal conductivity tensor Au(T), Ao (1), Ay(T), A\ (T)

c@ﬁT—a@AmMj+a@&nﬂj+i@ﬁmﬂj+i@ﬁnﬂ}xemghemgx<w>

9t ox ) ox dy ) dy ox ) dy dy
R(T) oy ym0) =©- (16)
(R(T)+aT) (et ety ) = 0T,

where R(T) is the operator in the form (4). As in [8], 9 points were taken to identify the thermal conductivity
tensor (the justification of the minimum number of points for identifying the thermal conductivity tensor in
two-dimensional domains is also carried out in [8]). In this test numerical experiment, the points were se-
lected at the corners of the plate, in the middle of each of its outer sides, and in its center.

When carrying out the numerical experiment, taken as the principal temperature-dependent thermal
conductivity coefficients were the functions

Ae(T)=1+05-T-T7, (17)

A (T)=05-0.5-T+2-T%, (18)

which are fairly accurately approximated by Schoenberg’s cubic splines with a small number of required pa-
rameters. Taken as the orientation angle of the principal axes Of and On was that of 30°. The obtained nu-
merical solution at the temperature measurement points is superimposed with a random error distributed ac-
cording to the normal law at 6=0.02.

After substituting expressions (17) and (18) into (6)—(8) and at ¢=30°, the following expressions are
obtained

A (T)=0.875+0.25-T—-0.25-T?, (19)
A, (T)=0.625-0.25-T+1.25-T7, (20)
Ay (T) =1, (T)=0.4330127019- (0.5 +T -3-72) 1)

Figures 1-5 show the dependencies of the principal thermal conductivity coefficients A:(7) and A,(T)
obtained using the method described above, as well as the dependencies of the thermal conductivity tensor
A T), Ay (T), My (T), Ay (T), which are compared with their dependencies in the form (17)—(21) for the follow-
ing dimensionless quantities: n.=100; m=9; A1=0.01; [,=1; [,=1; 0=5; T;=1; To=0; n==4; n,=4; w=0; w;=0;
woe=1; won=0; wi;=0; wo=1; wy=1; C(T)=1. As far as the orientation angle is concerned, it is equal to 29.87°.

Figure 6 shows the dependencies 7(t) at the plate thermometry point (x, y)=(0, 0), obtained as a result of
solving both the direct and inverse problems, the “noisy” temperature at this point, as well as the one obtained
using the identified principal thermal conductivity coefficients and the orientation angle of the principal axes.
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Fig. 1. Dependencies of the principal coefficient A{T):
1 —in the form (17); 2 — obtained using the iterative method
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Fig. 3. Dependencies of the coefficient 2.,(T):
1 —in the form (19); 2 — using the iterative method
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Fig. 5. Dependencies of the coefficient 2.,(T) and 2,(T):
1 —in the form (21); 2 — obtained using the iterative method
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Fig. 2. Dependencies of the principal coefficient 2,(T):
1 —in the form (18); 2 — obtained using the iterative method
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Fig. 4. Dependencies of the coefficient ,,(T):
1 —in the form (20); 2 — using the iterative method
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Fig. 6. Dependencies T(t) at the plate thermometry
point (x, y)=(0, 0):
1 — obtained using the coefficients in the thermal
conductivity tensor in the form (18-20);
2 — "noisy" solution of the direct problem;
3 — obtained using the iterative method

10 ISSN 2709-2984. Journal of Mechanical Engineering — Problemy Mashynobuduvannia, 2021, vol. 24, no. 3




AEPOI'TAIPOAMHAMIKA TA TEIINIOMACOOBMIH

The selection of the regularization parameter [ began with p=0.01. The iterative process of selecting
[ after three iterations ended at f=0.0001 when the root-mean-square error reached 6~0.0199. All the bound-
ary-value problems for determining the temperature field in the object under study were solved using the fi-
nite element method and an implicit difference scheme.

Using the proposed technique, we also solved the problem presented in [8], where, in a rectangular
plate [,xl,, the nonlinear components of the thermal conductivity tensor of a carbon composite material rein-
forced with unidirectional continuous fibers at an angle of 30° to one of the plate boundaries are recovered.
In this case we used equation (15), initial condition (3), the boundary condition

T| =T, (22)

(x=0)u(y=0)ulx=t,)uly=1,) ~ °s

and experimental data (5) at nine points.
For the numerical experiment, as in [8], the principal components of the thermal conductivity tensor
are taken in the following form:

Ae(T)=-5.625+0.25-10"-T +0.46875-107 -T*  W/(mK), (23)

A, (T)=-4.5+0.0125-T —0.625-107 - 7> W/(m-K). (24)

The direct problem (15), (16), (22) with the principal components of the thermal conductivity tensor (23),
(24) and the orientation angle ¢=30° of the principal components of the thermal conductivity tensor to one of
the plate boundaries was solved at 7,=1400 K; 7;=600 K; C=2.25x10° J/(rn3-K); [,=0.1 m; /,=0.06 m. The ex-

perimental temperature values were determined at the points {(x; )}, i:1,_3; j:1,_3, where

x={0.01 m; 0.05 m; 0.09 m}, y={0.004 m; 0.012 m; 0.02 m}, at times {r,=k-Ar}, k =1,40 at Ar=5 sec. In solv-
ing the IHCP, superimposed on the experimental temperature values was a random error distributed according
to the normal law at c=5K.

Figures 7-8 show the identified dependencies of the principal thermal conductivity coefficients A:(T)
and A, (7), obtained using the method described above, which are compared with their dependencies in the
form (23)—(24) for n=4; n=4; wo:=0; w=0; wy=1; wo,;=0; wi,=0; wo=1; wy=1. The orientation angle
identification converged to a value of 31.27°.

The selection of the regularization parameter p began with p=4x10". The iterative process of select-
ing P after five iterations ended at f=1.5x10° when the root-mean-square error reached 3~5.385. All the
boundary-value problems for determining the temperature field in the object under study were solved using
the finite element method and an implicit difference scheme.
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Fig. 7. Dependencies of the principal coefficient A{T): Fig. 8. Dependencies of the principal coefficient 2,(T):
1 —in the form (25); 2 — obtained using the iterative method 1 —in the form (25); 2 — obtained using the iterative method
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Conclusions

The presented solution of the nonlinear two-dimensional internal IHCPs of identifying the thermal

conductivity tensor indicates that the identification technique presented can be successfully used in the pres-
ence of an a priori information about the desired function. If such information is not available, then the pro-
posed approach can also be applied, but the measurement errors should be comparable with those in the solu-
tion of the direct problem. The method proposed in this paper for the identification of the nonlinear thermal
conductivity tensor gives comparable results with the known methods, and when using the a priori informa-
tion on the smoothness of tensor components, the efficiency of its application is even higher [8].

The studies presented in the paper were carried out within the framework of budgetary theme I11-6-20.
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Po3B’si3anHsI 00epHeHOI 3a1a4i 3 inenTudikauii TeH30pa TEMIONPOBITHOCTI B aHI30TPONMHUX MaTepiagax

10. M. ManeBurnii, B. B. 'anunn

Iacturyt npobiem mMammHoOyyBanHs iM. A. M. I[linropaoro HAH Ykpainu,
61046, Ykpaina, M. Xapkis, Byin. [Toxxapcekoro, 2/10

Ha ocnosi meopii pecynspuzayii A. M. Tuxonoea po3podieno memoouKy po36's3anis 0bepHeHux 3a0ay menion-
pogionocmi 3 idenmugbikayii menzopa menionpogionocmi 08oeumipnoi oonacmi. Lfi 3adaui 3aminoromoca Ha 3a0ayi 3
ioenmughixayui 20106HUX KoepiyicHmie ma Kyma opicHmayii 20108HUX OCel, a 20J106HI KOepiyichmu anpoKCumyromvcs
Kkyoiynumu cnaaiunamu Hlvondepea. B pe3yriomami 3a0aua 3600Umvcsi 00 8UHAYEHHS HEeBIOOMUX Koeiyichmie 6 yux an-
poxcumayisnx i Kyma opicumayii 20106HUX ocell. 3a 8i00MUX SPAHUYHUX | NOYAMKOBUX YMO8 memnepamypa 8 ooaacmi 6yoe
3anedcamu minbKu 6i0 yux xoeghiyienmis i Kyma opienmayii. Axwo eupasumu ii 3a gpopmynoro Tetlnopa 015 060X UleHié
paody i niocmasumu 6 @ynkyionan Tuxonoea, mo eusHauenws 30itbulensb Koegiyicumie i 30inbuenHs Kyma opieHmayii
MOXHCHA 366t 00 PO38 A3AHHA CUCeMU JIHIIHUX PIBHAHb w000 yux 30itbuiens. Bubpasuiu neenuii napamemp pezynapu-
3ayii’ i desiki pyuKyii 01 201068HUX KOepIiYyicHMIe MmenionpogioHocmi i Kyma opieHmayii sk nowamrkose HabIUINCEHHS,
MOJICHA peanizyeamu imepayiunull npoyec 8usHayenHs yux Koeiyicumis. Ompumasuiu 6exmopu Koepiyicumis i Kym
opienmayii 6 pezynrvmami 30i2abHO20 IMePAYitiHOc0 NPOYecy, MONCHA BUSHAYUMU CePeOHbOKBAOPAMUYHY HEeB 3KV MIdIC
00epIHCY8AHOI0 MeMNEPAMYpoIo i memMnepamyporo, AKa 8UMIPIOEMbCA 8 pe3yIbmami NPo8eO0eH020 eKCnepuUMeHmy. 3anu-
waemovcs nididpamu napamemp pe2yiapu3ayii maKum 4uHom, woo ys Hes sa3Ka 0YIa 8 MexNcax cepedHbOK8aopamuyHoi
noxubKu nomunky eumiprosats. 11io uac nepesipku eghexmuenocmi 6UKOPUCMAHHI 3ANPONOHOBAHO20 MeMOOY pPO38’A3AHO
PAO0 0BOMIPHUX MecmOoux 3a0ay 0JisL Mii 3 GI0oMUMU MeH30pamu menionpogionocmi. Ilpoananizoeano 6niue unadkosux
NoXuOOK BUMIPIOBAHL HA NOXUOKA I0eHmuU@iKayii meH30pa MenionposiOHOCHI.

Knrouosi cnosa: snympiwins obeprena 3adaua menjonposioHoCmi, MeH30p MenjionposioHoCmi, Memoo pezy-
asapusayii A. M. Tuxonosa, cmabinisyouuil QyHKYyioHan, napamemp pe2yiapuzayii, ioenmugixayis, anpoxcumayis, Ky-
oiuni cnaaiinu llvonbepea.
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