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Introduction

Despite the policy of the European Union to reduce greenhouse gas emissions [1] and high growth
rates of "green" energy, steam turbines of TPPs and CHPPs make up a significant share in the total electricity
generation balance. For example, the share of generated electricity at TPPs and CHPPs is about 30% in
Ukraine, about 50% in Poland [2], and about 14% in the entire European Union [3]. In addition, due to the lack
of a sufficient number of hydroelectric power plants and pumped storage power plants in Ukraine, the power
units of thermal power plants perform functions of regulating capacities that are not characteristic for them. In
the future, the load on thermal power plants of Ukraine in order to perform regulating functions will only in-
crease. This is due to the plans to significantly increase the share of generation from renewable energy sources
(sun, wind and others) [New Green Deal], which are known to be unstable and require a sufficient amount of
not only maneuverable, but also compensating capacities [4].

Along with the development of green energy, another way to significantly reduce greenhouse gas
emissions is to increase the efficiency of power generating equipment at TPPs and CHPPs. Equipment im-
provement ensures a decrease in the unit fuel consumption for generated electricity, which automatically leads
to a reduction in harmful emissions [5].
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One of the ways to improve the efficiency of the power generating equipment of TPPs and CHPPs is
the gas-dynamic improvement of the steam turbines flow parts. This is especially important for Ukraine,
where most of the existing power units of thermal power plants have worked out established and extended
resources [6]. They require radical reconstruction or replacement with new power units [7, 8]. As a rule, the
flow parts of powerful steam turbines are divided into three cylinders: high, medium and low pressure [9],
the most problematic of which are HPCs. Among the powerful steam turbines of TPPs and CHPPs operated
in Ukraine, almost all HPCs are made with impulse type stages [10]. This is due to the fact that such stages
allow large (compared to reactive) thermal drops to be triggered, therefore, their number in the turbine is
less, and, accordingly, the turbine production cost is lower. In addition, reactive type stages require better
seals [11]. Studies of recent years related to the gas-dynamic improvement of the turbomachines flow parts,
carried out using the methods of computational fluid dynamics 3D CFD [12, 13], indicate the advantage in
efficiency of reactive type stages over impulse type [14].

One of the most widespread steam turbines with an impulse type HPC in Ukraine is the K-300 series
turbine (more than 40 units have been installed and operated).

The article presents an option of a new reactive type HPC of the K-325-23.5 series turbine developed
by JSC "Ukrainian Energy Machines" (formerly JSC "Turboatom"). The new flow part is designed in such a
way that it can be accommodated within the dimensions of the existing turbine. The design was carried out
using the methodology implemented in the /IPMFlow software package. The methodology includes gas-
dynamic calculations of various levels of complexity, as well as methods for constructing the spatial shape of
the blade rows based on a limited number of parameterized values. It is shown that a significant increase in
efficiency and power has been achieved in the developed HPC due to the use of reactive type stages with
modern smooth blade profiles and monotonic meridional contours.

Method for calculation and analytical profiling of axial type flow parts

The numerical study of the three-dimensional steam flow and the design of the steam turbine flow
part were carried out using the IPMFlow software package, which is the development of earlier software
packages FlowER and FlowER-U [15]. The mathematical model of the package is based on the numerical
integration of the Reynolds-averaged unsteady Navier-Stokes equations with the use of an implicit quasi-
monotonic ENO-scheme of increased accuracy and Menter’s k- SST two-equation turbulence model [16].
To take into account the thermodynamic properties of steam, method of interpolation-analytical approxima-
tion of the JAPWS-95 equations was used [17]. The results obtained with the use of /PMFlow software pack-
age have the necessary reliability both by the qualitative structure of the flow and by quantitative assessment
of the characteristics of isolated turbine stages and flow parts of turbomachines as a whole [18].

To speed up the time of calculations in the IPMFlow software package, an original technology of
parallel computing [19] has been introduced. The technology has the following main characteristics:

— it is used for computers with shared RAM,;

— weakly depends on the operating system because each parallel process is an executable module;

—no less than one blade row (minimal object) should be considered in one parallel process;

— the number of parallel processes does not exceed the number of blade rows;

— the number of parallel processes may not equal the number of cores (threads);

— acceleration of calculations is almost linearly dependent on the number of parallel processes.

For example, the parallelization of the calculation process of the flow part consisting of 18 stages for 9
processes when using a computer with 8 cores (threads) gave an acceleration of the calculation time by 7.1 with
the maximum theoretically possible acceleration of 8.

To construct the spatial shape of the blade row of the axial flow part, the method of analytical profil-
ing [20], in which the blade is defined by an arbitrary set of flat profiles described by curves of the 4™ and 5"
orders, was used. As the initial data, we used a limited number of parameterized values, such as: profile
width, number of blades, inflow angle, effective outflow angle from the row, etc. The meaning of these val-
ues, in most cases, is generally accepted in turbine engineering. The method allows to obtain full spatial
shape characteristics of a wide class of axial turbines flow parts very fast, which makes it convenient and
effective when it is needed to solve the problems of gas-dynamic design and during the improvement of tur-
bomachines.
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Research object

One of the latest modifica-
tions of turbines of the K-300 se-
ries, namely K-325-23.5, was
taken as the object of research. The
turbine uses a nozzle steam distri-
bution system [21]. HPC consists
of a regulating stage and 11 im-
pulse type pressure stages (Fig. 1).

The following values were
set as the boundary conditions for
the gas-dynamic calculation: total
pressure and temperature at the
HPC inlet (behind the control Fig. 1. Meridional section of the HPC of K-325-23.5 turbine [21]

valves)are 22.6 MPa and 808 K, respectively, static outlet pressure — 3.92 MPa, and the mass flow rate —
277.7 kg/s [22-24]. End-to-end calculations of the original design of the HPC (12 stages) were performed on
difference grids with a total number of cells of about 10 million.

Figures 2—5 show the isolines of the static pressure in the mid-tangential section.
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Fig. 2. Static pressure isolines in Fig. 3. Static pressure isolines in the  Fig. 4. Static pressure isolines in the
the mid-tangential section: mid-tangential section: mid-tangential section:
a — 1" stage stator blade (SB), a— 4" stage SB, b — 4" stage RB a— 9" stage SB, b — 9" stage RB

b — 1% stage rotor blade (RB)
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P pa Table 1. Energy characteristics

Ii:iiéiii of the new HPC by stages
o Stage | Efficiency, | ro, | Power,
P no. % % MW
Il‘iiiiii 1 61.37 0.10 | 13.71
s 2 70.08 | 0.05] 9.23
i 3 82.02 0.04 | 873
i 4 80.92 0.05 8.51
Pyl 5 81.75 0.05 8,32
otren 6 82.78 0.09 | 827
e 7 83.31 0.08 8.09
8 83.65 0.08 8.26
9 83.46 0.08 8.23
10 84.84 0.13 8.43
a b 11 8582 [ 0.15] 8.10
Fig. 5. Static pressure isolines in the mid-tangential section: 12 86.35 0.28 | 9.31

a— 12" stage SB, b — 12" stage RB

From the given results, it can be seen that even at the nominal operation mode, the efficiency of the
first (regulating) and second stages is very low and equals to 61.37 and 70.08%, respectively (Table 1). This
is due to the very high loading of the first stage and the nonaxial flow angle into the second stage. The ob-
tained level of gas-dynamic efficiency in the 1* stage, taking into account the peculiarities of its design (par-
tiality), is standard, and the second one is very low. So, for the rest of the stages, the efficiency value is in the
range of 80-86%, which is an acceptable value for the impulse type stages. The total efficiency of the initial
flow part of the HPC is 85.9%, and the power is 107.2 MW at the nominal mode.

Results and discussion

The new version of the HPC was developed in such a way that it would fit into the dimensions of the
original flow part. The values corresponding to the initial HPC were set as the boundary conditions for the
gas-dynamic design: total pressure and temperature at the HPC inlet (behind the control valves) are
22.6 MPa and 808 K, respectively, the static outlet pressure — 3.92 MPa, the mass flow rate — 277.7 kg/s.

The new HPC flow part consists of a regulating and 17 reactive type stages, a total of 18 stages. In con-
trast to the original design of the flow part, the regulating compartment of the new HPC is designed without a
mixing chamber in order to reduce losses [25]. An increased axial distance between the first and second stages
is applied to compensate for the absence of a traditional mixing chamber. When designing a new flow part, to
ensure optimal loading of the stages, their number and distribution of thermal drops were chosen so that the
value of u/Cy was approximately equal to 0.7 (except for the regulating stage) [26]. The value of the outflow
angle of the flow from the stages was designed close to the axial direction. The construction of the meridional
contours, as well as the determination of the position of the stages in them (Fig. 6) was carried out using simpli-
fied (one-dimensional) methodologies. These methodologies are used to determine: the number of stages, aver-
age diameters, thermal drops and stage heights. At the next stages, using 3D CFD methods, the design of the
stages was carried out separately, as well as the final end-to-end calculations and the entire HPC refinement. To
obtain the final flow part of the HPC, it was necessary to consider, on average, 5—7 options of each stage sepa-
rately and 3 HPC options as a whole. End-to-end HPC calculations (18 stages) were performed on difference
grids with a total number of cells of about 15 million.

Figure 6 shows that the meridional contours are smooth, without overlapping, which helps to avoid
the appearance of circulation zones (flow separations) in places of a sharp change in the shape of the merid-
ional contours [27].

Fig. 6. Meridional section of the new HPC
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Figures 7-11 show the isolines, and Figures 12—-16 show the distribution diagrams of static pressure
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Fig. 11. Static pressure isolines in the mid-tangential section:
a— 18" stage SB, b — 18" stage RB
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Fig. 14. Distribution of static pressure on the surfaces of the blades in the mid-tangential section:
a— 10" stage SB, b — 10" stage RB
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Fig. 15. Distribution of static pressure on the surfaces of the blades in the mid-tangential section:
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Fig. 16. Distribution of static pressure on the surfaces of the blades in the mid-tangential section:
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From the given results, it can be seen that due to the use of smooth blade profiles described by
curves of the 4™ and 5" orders the distribution of static pressure on the blades is rather monotonic. This indi-
cates a high level of gas-dynamic perfection of the flow part, which is confirmed by the values of the integral
characteristics given in Table 2. Table 3 shows the total gas-dynamic characteristics of the original and new
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HPC. The efficiency of the first (regulating) stage is about 77%, while for the rest of the stages it is in the
range of 92-95%. The total efficiency of the developed flow part of the HPC is 93.5%, and the power is
116.7 MW at the nominal mode. The increase in the efficiency of the new flow part in comparison with the
original one will amount to 7.6% and 9.5 MW in terms of efficiency and power, respectively.

Conclusions
On the basis of variational calculations of three- Table 2. Energy characteristics
dimensional turbulent steam flows, a three-dimensional of the new HPC by stages
model of the spatial shape of the new HPC flow part of the | Stage no. | Efficiency, % | ro, | Power, MW
K-325-23.5 steam turbine has been developed. The research %
was carried out using the developed at IPMach NAS of 1 76.91 0.22 9.21
Ukraine methods and software systems for gas-dynamic 2 91.98 0.46 5.48
calculation and design of flow parts. 3 92.94 0.46 5,61
The results and analysis of calculations of the final 4 93.84 0.47 5.76
version of the initial and new flow parts of the steam tur- 5 93.55 0.46 5.84
bine K-325-23.5 HPC are presented. The new flow part 6 93.76 0.49 >.67
consists of one regulating and 17 reactive type stages, in ; gggi 832 gég
contrast to the original design with 12 stages. 9 9 4'1 G O. 16 6’39
The total efficiency of the developed HPC flow part is 10 9 4: 10 O: 16 6: 5
93.5%, and the power is 116.7 MW at the nominal mode, 1 0434 046 661
which is by 7.6% and 9.5 MW higher than the original turbine. 12 94.47 047 6.73
The proposed approach and the gained experience 13 9463 0.47 6.80
can be used in the development and modernization of the 14 94.76 047 6.91
HPC flow parts of other powerful steam turbines that are in 15 04.62 0.48 6.16
operation or can be installed at TPPs and CHPPs both in 16 94.82 0.47 6.63
Ukraine and in other countries.s (Fig. 2, 3). 17 94.92 0.46 6.78
Acknowledgements 18 93.03 047 717
The authors are grateful to the National Academy of .
Sciences of Ukraine for flglnding the research described in};his Table 3. Integral Chamcwﬁs_tws of HPC
article within the framework of the budgetary theme II-6-19 HPC Mass flow | Efficiency, | Power,
"Conversion of k-300 series turbines to work with supercritical type rate, kg/s % MW
steam parameters in order to increase their efficiency and ma- initial ;3;; ggz 1(1)23
neuverability" of the target research program of the NAS of dif;z:/nce +0'0 +7' 6 +9'5
Ukraine "Intelligent Environmentally Safe Energy with Tradi- - - -
tional and Renewable Energy Sources ("New Energy")".
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Po3pooka nporounoi yactunu LIBT peakTuBHOTr0 THIY mapoBoi Typoinm cepii K-325-23,5
HA OCHOBi BUKOPHCTAHHS CY4YaCHHUX KOMII'IOTEPHHX TeXHOJIOTiH

'A. B. Pycanos, *B. I'. Cy6orin, > B. JI. [lIBenos, ' P. A. Pycanos, "* C. A. Ilaabkos, > I. A. ITa;ibKkoB,
'M. O. Yyraii

'THcTHTYT npo6ieM MammHOGYAyBaHHs iM. A. M. ITizroproro HAH Ykpainy,
61046, Ykpaina, m. Xapkis, Byin. [Toxxapcekoro, 2/10

2 AKXITIOHEpHE TOBapUCTBO «YKPaiHChKI €HEPreTUUHI MallInHN», 61037, Ykpaina, M. Xapkis, np. MockoBcbKHit, 199

Ilpeocmasneno pezyiomamu 2a300UHAMIYHO20 NPOEKMYBAHHA HOBOI NPOMOUHOI YACMUHU YUTIHOPA 8UCOKO20
mucky (LBT) peaxmugnozo muny Kondencayiinoi naposoi mypoinu cepii K-300. IIpoeckmysanns UKOHAHO 3 BUKOPUC-
MAHHAM KOMNWIEKCHOT Memo9donocii, aKy peanizosano 6 npozpamuomy xomniexci IPMFlow. Memoodonozis micmumo
2A300UHAMIYHI PO3PAXYHKU PI3HUX DI6HIE CKAAOHOCMI, A MAKOIC MemoOou AHALIMUYHO020 NOOYOVE8AHHSI NPOCMOPOBOL
Gopmu 10namMKOBUX MPAKMIE HA OCHOBI OOMENHCEHOI KINbKOCMI napamempu3o8anux eeauyutn. B 3D pospaxynkax myp-
OyIeHmHUx meuiti 6PAX06aHO PeaibHi MEPMOOUHAMIYHI 1aACMUoCcmi 600U U 800aHoi napu. Ha zaxmounomy emani
npogedero ckpizni 3D pospaxynku L[BT, wo ckradaemvcs 3 18 cmynenis, 6 akux 3acmoco8anH0 mMexHoI02i0 napaieis-
Hux obuuciens. Ilokazano, wo 6 pospobnenomy L[BT 3a paxyHox 3acmocy8ants peakmueHux CmMynemie iz cy4achumu
2NA0KUMYU NPOPIIAMU MA MOHOMOHHUMU MEPUOLOHATLHUMU 00800aMU OOCASHYMO CYMMEBGO20 NPUPOCMY KoepiyicHmy
KOpUCHOT 0ii ma nomyalcHocmi.

Knwuosi cnosa: naposa mypbina, yuninop 8uUcoKo20 MucKy, HpOMOYHA YACMUHA, peakmughe o0I0NAYeHHs,
npocmoposa meuis, po3paxyHKo8i 00CIi0NCEeHHS.
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