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Introduction

As is known, three-layer composite structures are widely used in aerospace engineering, which is ex-
plained by their high strength, rigidity, and low weight. With this in consideration, much effort has been made
to study their dynamic properties. Nonlinear vibrations of a viscoelastic composite shell of double curvature
with an elastic middle layer and a magnetorheological layer are studied in [1]. Nonlinear vibrations of compos-
ite three-layer shells of double curvature with a piezoelectric layer are considered in [2]. To derive the equa-
tions of motion, the high-order shear theory and von Karman theory of geometrically nonlinear deformation are
used. The nonlinear dynamics of a shallow shell of double curvature with honeycomb structure having a nega-
tive Poisson's ratio under the action of an explosion is studied in [3]. Geometrically nonlinear forced vibrations
of a cylindrical three-layer shell are modeled in [4], using a high-order shear theory. The article [5] studies the
nonlinear dynamics of three-layer cylindrical panels on an elastic foundation under the action of an explosive
load. Vibrations of a thin-walled structure of double curvature with honeycomb structure are studied in [6]. To
derive the equations of motion, the Hamilton’s variational principle is used. In [7], a finite element formulation
of the problem is considered taking into account the Green-Lagrange nonlinear deformation.

This paper presents a new mathematical model of the dynamic instability of the three-layer conical
shells with honeycomb structure made using additive FDM technologies. The deformation state of each layer
is described by five parameters (three projections of the middle surface displacements, two rotation angles of
the normal of the layer middle surface). High-order shear theory and geometrically nonlinear deformation are
used to describe the stress-strain state of the structure. The properties of dynamic instability of the structure
in the supersonic gas flow are numerically investigated.

This work is licensed under a Creative Commons Attribution 4.0 International License.
© Kostiantyn V. Avramov, Borys V. Uspenskyi, Iryna V. Biblik, 2022

6 ISSN 2709-2984. Journal of Mechanical Engineering — Problemy Mashynobuduvannia, 2022, vol. 25, no. 1



JMHAMIKA TA MILIHICTb MAIIINH

Problem formulation and main relations

The design of the three-layer conical shell is shown in
Fig. 1, a. The middle layer of the shell is ULTEM 9085 FDM honey-
comb structure and the top and bottom front sides are made of car-
bon fiber. One honeycomb cell is shown in Fig. 1, b. Its main geo-
metric parameters are as follows: /i, b, h., y, where A, is the honey-
comb wall thickness. The dynamic instability of the three-layer coni-
cal shells, which arises due to the interaction of the supersonic gas
flow with the structure, is considered. It is assumed that the material
of both the front layers during deformation and honeycomb structure
satisfy Hooke's law.

Three curvilinear coordinate systems that will be associated
with the middle surfaces of each layer are introduced. The curvilin-
ear coordinates of the top, bottom layers and honeycombs will be
denoted by (s, 9, z), (s, 0, z.), (s, 0, z,), where (s, s., s;) — longitudi-
nal coordinates directed along the generatrixes of the median sur-
faces of the corresponding layer (Fig. 1); 0 — circumferential coordi-
nate; (z,, z, z») — transverse layer coordinates; s,, S, S: AR AL .
coordinates of the left end side of the conical shell (with smaller ra-
dius); 5,2, 5.2, s,” — coordinates of the right end side (with larger
radius). One longltudinal coordinate & for the entire multi-layer con-
struction is introduced and is: &—sl—sl( ), i=t, b, c. The length of the
conical shell is denoted by L: L=sP—sV: i=t, b, c. The radii of curva-
ture of the layers middle surfaces are denoted by Re”; RY; j=t, b, c,
and Lamé parameters are AY: 4,9, These quantities are defined as

follows: Réj ) = (S;l) +&)tg(o); Rif ) =oc; j=t, ¢, by A‘f-" ) =1;
A5 = (5" + €)sin(g).
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Fig. 1. Design of the conical shell and

honeycomb structure

The honeycomb structure is transformed into an equivalent orthotropic layer as a result of its ho-
mogenization [8]. In this case, the elements of the stress and strain tensors of the honeycomb layer satisfy

Hooke's law:
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The top and bottom layers of the conical shell are orthotropic. They satisfy Hooke's law:
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The displacement projections of the top and bottom layers u,”, 1,”, u;”) can be presented as follows:
. . Z. . . .
u® =0 4 2 g 4 22y ) = [1 TRNNEE. - va 200+ 290 W =W i, b, (1)
(s, +9)tg(o)

where u(i) (O]
d)(’) (’) are rotation angles of the normal to the middle surface

Projections of the middle layer displacements ‘", 1,

(© , ()
Us

v, w" are projections of displacements of the middle surfaces points on coordinate axes;

are presented in the form:

() _, () (c) () 3,00 . ()_ z (©) (c) (c) 3.,(0).
l/llc =u" +ZC(I)1L +z \VlC +z 'ch 5 Uy _(l—i—((l)_l,_—g)tg((p)Jvc +Z(|)2L +z \VzC +z ’YZL ;
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The designations of relations (1) and (2) coincide. To determine the expansion parameters (1), the
following boundary conditions are used:

Gsz z,=0,5h, = GOZ z,=0,5h, = 0’ Gsz z,=-0,5h, = GOZ z,==0,5h, = 0’ (3)

where £, h;, are top and bottom layer thicknesses.
The conditions for the continuity of displacements between layers have the following form:

u’(z, ==0,5h)=u'"(z, =0,51,) ; u”(z, =0,5h,) =u'”(z, =—0,5h,) ; i1, 2, 3, 4)

where 4. is the middle layer thickness.

Components of expansions (3), (4) w1, w2, i, v, w19, 11, v, 12, wy
mined from the conditions (3), (4).

The general case of geometrically nonlinear relations describing the deformation of arbitrary shells
was published in [9]. These relations are used in expansions (1), (2). Then the relation between deformations
and displacements takes the following form:

()

c (c
» W2

) are deter-

&) _ () @) 27.() 3p.0) . @) _ () (i) 27.() 3.0 .
€y =&g0tZkotzik + 27k, €9 =€y + 2k + 2 kel 27 ke s

S8 i"vs,1
&) _ () () 27.() 3pG) . @) _ () @) 27.(0) 3p.00) .
85‘6 - 839,0 + Zi 50,0 + Zi kse,l + Zi ks@,Z s Ssz - 8sz,O + Ziksz,O + Zi ksz,l + Zi ksz,Z s
' ' i 2.3 3.6) . :
e, = S(GZZ),O + Ziké?,o +z ké?,l + 2z ké;),z ; =t ¢, b;
(¢)
kz,LO . (5)
For brevity, the coefficients of these expansions are not given.

The formula by which the potential energy of the shell top and bottom layers is calculated takes the
following form:

o =2l 42

c

Ss

U, =05 [ (G184 + Croo” + 20,6060 + 208 +2C,” +2Cs56()) x
4;

z
x| 1+——1 (s +&)sinodedddz, ; i=t, b, 6
( e é)tg@](, £)sin o dEdbdz, ©6)
where A4; is the region of the layer middle surface.

Expansions (5) are used to determine potential energy (6) with integration over z;. As a result, the po-
tential energy is presented as a double integral:

U, =05[ (0 + 1 + 11 ks + &) sin @z i, b. %
Al

The coefficients of expression (7) II\?, II?, IT1¥ depend on the expansion coefficients (5). How-
ever, for the sake of brevity, these dependences are not given.
The formula for calculating the potential energy of a homogenized middle layer takes the following form:

U, =0,5|(Cy 18" + Creig” + Cipe'd? +2C 81 egy) +2C1581 ) +2C58008') +2C 8% +2C55810% + 2Ce()) x

S zz
A4

i

Z.
x| 14— |(s\" +&)sinpdEdBdz, . 8
Expansions (5) are used to determine the potential energy (8). Then the potential energy formula (8)
is presented in the form (7).
The kinetic energy of each layer separately can be presented as follows:

215 0,58,
r=05[[ | pi(uf“z+a5”2+a§”2)[1+—<1) J(sflua)simpdadedzi; i=t,c, b, )
0 5 ~0,5%, (s;" +E)tgo

. . . o oul”
where p; is a construction layer material density; ) = 6_1
t
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Expansions (1), (2) are used to find the kinetic energy (9) with integration over z;. As a result, the
following expressions for the kinetic energies are obtained:

ZKS;Z)
T.=0,5 j J’ (AD + AD + ADY (5O +&)sinodEdO ; i=t, ¢, b, (10)

0 5

where values Ay”, A", A4?, depend on a®, v, W

(i)
The pressure p acting on a conical shell in the supersonic gas flow is described by the piston theory [10]:
_ 1p.M 2 law, ow, M*-2  ow,

= cosf +
VM? -1

t . _ W[
i " w0 v, o m@m] "

where [ is the angle of attack; p., is the flow static pressure; M is the Mach number; y is the adiabatic index;

a., is the sonic speed; R(&) =(s" +&)sing .

To study self-vibrations, the method of given forms is used [11]. In this case, kinematic boundary
conditions are taken into account and force boundary conditions are not. If the side of the shell s=sV is
clamped, then the kinematic boundary conditions

— D

=y y =05

() — D
Wl o =V o

i=Si i

sp=s) =¢§') o =0.

C C—¢
§;=5; §;=5;

Equations of motion

Let’s derive a dynamical system with a finite number of degrees of freedom, which describes the instabil-
ity of the three-layer conical shell during its interaction with the supersonic gas flow. To do this, the method of
given forms is used. Self-vibrations are expanded in terms of natural forms of linear vibrations of the structure

WO =S, @ )g., (0 cosn0) + g, .,y (Dsin(n0)];
j=1

N¢1

0= X, ©ax o (0000 + 4,0y, x, -, Osin(10)];
=

N¢2

U = z Y ; (é)[‘li,zNHsz +;(#)cos(nb) + Gi2N, +Ny +N,, +) ) sin(n@)];
j=1
) NU
u' = Z:,Ui,_/ (&)[q,‘,zsz +2Ny 42Ny, +) (1)cos(nb) +q; 5, +Ng +Ny, +N, +j ®) sin(ne)];
=

NU
o _ : o
v = zUi,_/ (&)[‘Ii,zzvﬁzzv(,,l +2Ny, 42N, +) (¢)cos(nb) + Qi 2N, + Ny +Ny, +N, +N, + j (0) sm(ne)], i=t, ¢, b, (12)
=1

where q is the vector of generalized coordinates;

q=[q5 12N, +2N, +2N,, +2N, +2N, 3 43,105 32N, 42N, +2N,, 42N, 42N, 1=[q,>qn.1

N- is the number of the structure degrees of freedom; W, (&), Xi(§), Yi (&), U (&), Vi (E) — eigenfrequency of
the structure.

Expansion (12) is introduced into (7), (8) and the required integration is performed. As a result, the
formula for calculating the potential energy is obtained in the form of a polynomial with respect to general-

ized coordinates: Uy = A,(q), where A,(q) is the sum of polynomials of degree 2. Expression (12) is used
in (9), (10) and integration is performed. The kinetic energy takes the following form: Ty = ,(q), o,(q) is

the quadratic polynomial in generalized velocities. The generalized forces corresponding to the aerodynamic
pressure are found (11). Then the virtual work is presented as:
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275" N

J’ j pow (s +&)sin o ded0 = z 0,54,
(1>
where 3w is the virtual displacement; 0O, is the generalized force.
Expression (12) is used in (11). Then we present the generalized forces in the following form:
2N, 2N,
lejl - ZG(I)qu J +zr(1)/q1 J 5 Ql LJ1+N,, ZG(IJrN /ql J ZF(I+N /ql Jj+N,, a]l 1 ]vw~
j=1
The Lagrange equations of the structure motion take the followmg form:
Mq+Kq=Gq+TIq, (13)
where G is a aerodynamic stiffness matrix; I' is a aerodynamic damping matrix.
As it can be seen from the results of numerical simulation of system (13), most of the elements of the
matrix M are close to zero. This is due to the fact that the top and bottom layers are very thin, and the middle
one has low density. To describe this fact, the main matrices and vectors of system (13) are presented as

M, M, Ku Ky

Then the next elements of the matrix, which are very small, can be considered zero: M, =0; M,,=0;
MleO.
Equation (13) can be presented as
M, q, +K,q, =Gq, +I'q,, (14)
where K|, =K, - K, K, K,,.
The stability of the trivial equilibrium state ¢,;=0 of the dynamical system (14) is studied. The ob-
tained linear dynamical system has the solution (q,,q,)=(q,,v) = P.exp(At), where A is the characteristic

exponent.
This solution is introduced into the dynamical system (14). Then the generalized eigenvalue problem
is obtained:
RAP. = 3P.,

E 0 0 E . — .
where R = ; 3= ; E is the identity matrix.
0 M, G-K,, T

The values of A determine the stability of the trivial equilibrium state.

Numerical analysis

The eigenfrequencies of the three-layer conical shell are studied. The shell clamped on both sides
and the cantilevered structure are considered. The honeycomb structure is made using FDM technology from
ULTEM 9085 material. The mechanical parameters of ULTEM 9085 material were determined experimen-
tally. The results of these experiments are presented in the article [12]. A finite element modeling of the hon-
eycomb structure was carried out to determine the mechanical properties of an orthotropic homogenized me-
dium. In this paper, this approach won’t be considered. Instead, the results of mechanical properties model-
ing will be presented. The geometric parameters of the honeycomb structure (Fig. 1, b) were taken as fol-

lows: /,=6.1054 mm; /,=3.0527 mm; 6=60 °; /=10 mm; E=0.4 mm, where ch is the wall thickness of the

honeycomb structure; /. is the height of the honeycomb structure. Engineering constants of homogenized
honeycomb structure take the following numerical values:
E11=2.91 MPa; E,,=2.91 MPa; E3;=215.10 MPa; v;,=0.971; v,3=0.0051; v,5=0.0042;
G12:1.1 18 MPa, G23:391 MPa, G13:391 MPa, pL:253189 kg/m3 (15)
The engineering constants of the top and bottom layers are:
E~160-10° Pa; E,=160-10° Pa; v,,~0.32; v,,=0.0136; G,,=800-10° Pa;

G.—=G,~4 10° Pa; p=p;=1400 kg/m’. (16)
The conical shell has the following values of the structure geometric parameters:
o=n/12; 5."=2.354 m; 5."=2.33 m; 5,"=2.313 m; h=h=10> m; h=107 m. (17)
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The first ten natural vibration frequencies

. . . . . Table 1. Natural vibrati ]
of this structure are given in Table 1 in ascending able 1. Natural vibration frequencies

order of natural frequencies. The second column n | N | 0. Hz | opgy, Hz | 0

. . . . 1 [ 270 | 411.83 | 421.98 0.024

shows the dimension of the generalized eigenvalue
. . . 2 | 240 | 430.10 | 438.45 0.019

problem for calculation of frequencies and vibra-
. . 3 | 240 | 448.56 | 455.76 0.015

tion shapes. The third column shows the natural
. . . . 8 | 270 | 450.22 | 460.61 0.022
frequencies obtained by the Rayleigh-Ritz method. 71270 1 45141 1 26227 | 0023
The fourth column shows natural frequencies ob- 6 1270 145754 | 26782 | 0.022
tained in the ANSYS software package. The natu- 9 | 270 | 45846 | 46699 | 0.018
ral frequencies spectrum is extremely dense. So, 4 | 240 | 46024 | 46750 | 0.015
there are ten natural frequencies observed in the 5 | 240 | 46271 | 471.14 | 0018
range we[411.83; 478.42] Hz. 10 | 240 | 478.42 | 482.81 | 0.0091

The dependence of the first natural fre-
quency on the number of waves in the circumferen-
tial direction is shown in Fig. 2 with a solid line. We

Table 2. Results of calculation of the cantilevered shell
natural vibration frequencies

emphasize that the minimum natural frequency is n | Ne | 0,Hz | oppy, Hz 5
— . : 1 | 210 ] 40946 | 417.15 0.018
observed at n=1. In isotropic shells, the first natural o,
. 2 | 210 | 409.58 | 409.90 | 7.8-10
frequency is observed at a much larger number of 7.
. . . . 3 |1210| 36595 | 353.16 0.036
The linear vibrations of the cantilevered
. . . ) . 4 | 210 | 307.81 | 292.54 0.050
conical shell are investigated. The side with a lar- 5 1210 1 271.49 | 265.06 0.020
ger radius (Fig. 1) is clamped, while the side with a 6 1210 126210 | 26429 | 0.006
smaller radius is free. The geometric dimensions of 7 1210 | 274.41 | 280.20 0.020
the three-layer shell have the form (17). The me- 8 | 210 | 302.77 | 307.97 0.016
chanical characteristics of the top and bottom lay- 9 | 210 | 342.96 | 345.00 0.006
ers have the form (16), and the mechanical charac- 1012101 391.95 | 389.58 0.006

teristics of the middle layer have the form (15).

The results of calculating the natural vibration frequencies are given in Table 2. Designations of the columns
of the Table 1 and Table 2 are the same. As follows from Table 2, the natural frequencies obtained by the
two methods are close. The dependence of the first natural frequencies on # is shown in Fig. 2 by dotted line.
So, the minimum natural frequency is observed at n=6. It’s better to remind that the minimum natural vibra-
tion frequency of the clamped shell is observed at n=1.

The linear vibrations of the cantilevered conical shell are qualitatively different from the vibrations of the
conical shell clamped on both sides, which follows from the eigenfrequency of the cantilevered shell. The free
edge of the cantilevered shell makes intense vibrations. In the shell clamped on both sides, this edge is at rest.

The dynamic instability of the conical shell clamped on both sides is studied. The first ten natural
frequencies of its vibrations are given in Table 1. In expansions (12), the following number of terms was
chosen N, =N, =N, =N,=N,. When calculating the regions of dynamic instability, N, were taken

equal to 2; 3; 4. To calculate the dynamic instability of a trivial equilibrium state, the characteristic expo-
nents were determined from the eigenvalues problem.

Fig. 3 shows the boundaries of the region of the shell dynamic instability on the plane of parameters
(poc(”), n), obtained for two values of the Mach numbers AM/=1.5 and M=5 and for the number of terms in ex-
pansion (12) N,=3. The minimum value of n at which buckling occurs corresponds to #n=1. It should be em-
phasized that critical pressures are observed in isotropic shells at a much larger number of n. The parameters
at which there is a loss of stability are called critical. So, with an increase in the Mach number M, the value
of the critical pressure decreases.

The effect of the angle of attack on the critical pressure p,,” was studied. For this, the analysis of
dynamic instability was carried out for different values of the angle B and for one value of the number of
waves in the circumferential direction n=1. The results of such analysis are shown in Fig. 4 (solid line). So,
as the angle P increases, the value of the critical pressure increases.

The dynamic instability of a cantilevered truncated conical shell was studied. The natural vibration
frequencies of such shell are given in Table 2. The boundaries of the region of dynamic instability on the

(cr)
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plane of parameters (p,”, n) are shown in Fig. 5. The solid line in this figure shows the boundary of the re-
gion of dynamic instability at M=1.5, and the dotted line shows the boundary of the region at M=5. Thus, as
the Mach number increases, the value of p..” decreases.

As follows from the calculation results, the minimum critical pressure is observed at n=1. The de-
pendence of the critical pressure p,.“” at n=1 on the angle of attack f was studied. The results of such calcu-
lations are shown by the dotted line in Fig. 4. As the angle [ increases, the critical pressure increases.

500 - @1, Hz 4.00£106 | 1, Pa
450 Clamped  3.50E+06
. shell 3,00E+06
400 N »
\* 4 2.50E+06
350 \ R4 2,00E+06 -
300 L ,Namﬂevered 1,50E+06
h 2PN ¢ shell 1,00E+06
250 -
5,00E+05 ™
—u 14
200 000100 B
0 2 4 6 8 10 12 0 2 4 6 8 10 12 14
Fig. 2. Dependence of the first natural frequency o, Fig. 3. Areas of dynamic instability of the structure
on the number of waves in the circumferential direction n trivial equilibrium
1.00E+06 - pot?, Pa -
o Clamped 3506406 1 p, Pa
9,00E+05 shell ’
8.00E405 Ry 3.00E406
7.00E+05 ——
6.00E+05
5,00E+05 _m 2.00E+06
4.00E+05 - 1.50E+06
3,00€405 e
: B B 1.00E+06
2.00E+05 Cantilevered
1.00E+05 shell 5.00E+05
0.00E+00 T T T T 0.00E+00 — : : 5 : L
0 10 20 30 40 50 60 p,o 0 ) i 6 g 10

Fig. 4. Dependence of critical pressure on the angle of  Fig. 5. The boundary of the region of dynamic instability
attack for the cantilevered shell

Conclusion

A mathematical model of the dynamic instability of the conical shell with honeycomb structure
made using additive technologies has been developed. The deformation behavior of each layer is described
by five parameters (three projections of displacements of the layer middle surface and two rotation angles of
the normal to the middle surface). High-order shear theory is used to describe the stress state, and the method
of given forms is used to obtain a dynamic instability model.

Using the Rayleigh-Ritz method, the linear vibrations of the cantilevered and conical shell clamped
on both sides are investigated. It has been numerically established that the minimum natural frequency for
vibrations of the shell clamped on both sides is observed when the number of waves in the circumferential
direction is 1, and for vibrations of the cantilevered shell, it is observed when the number of waves in the
circumferential direction is 6.

For all boundaries of the region of dynamic instability of the clamped and cantilevered three-layer
shell, the minimum value of the critical pressure is observed when the number of waves in the circumferen-
tial direction is n=1. As the Mach number M increases, the value of the critical pressure decreases. In the
cantilevered conical shell, the critical pressure is less than in the shell clamped on both sides.
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JnHamMivyHa HecTilKicTh TPHIIAPOBOI KOHIYHOI 000JI0HKH i3 CTIILHMKOBHM 3alI0BHIOBavYeM,
BUTOTOBJICHUM AJTUTHBHUMH TeXHOJIOTisIMH

K. B. ABpamoB, b. B. Ycnencokuii, 1. B. Bioaik

[acTUTYT IpOOIIeM MamHOOYAyBaHHS iM. A. M. Ilinropaoro HAH Ykpainaw,
61046, Ykpaina, M. XapkiB, ByJ. [Toxkapcbkoro, 2/10

Ompumano mamemamuiny mMooeib OUHAMIYHOL HeCMIUKOCMI MPULUAPOBUX KOHIYHUX 0OOOHOK i3 CIMITbHUKO-
BUM 3AN0BHIOBAYEM, BULOMOBLEHUM 3d OONOMO20I0 AOUMUBHUX TMEXHON02il. [JuHamiyna HecCmilKiCMb 8UKTUKAHA 83d€-
MOOi€I0 000M0HKU 3 HAO38YKOBUM 2a306um nomoxom. Cepedniil wap KOHCMPYKYIl € CMITbHUKOBUM 3AN0BHIOBAYEM,
AKULL 20MO2EHIZYEMBbCA 8 OPMOMpOnHe 00HOPiOHe cepedosuue. Bepxuiil ma HudicHill wapu 060I0HKU 8ULOMOBAAIOMbCS
3 gyenennacmuky. Koaueanna xoncmpyxyii onucyromoca n'amnaoysimoma He8iOOMUMU, A KOXCEH Wap KOHCMPYKYil —
n'amema HeBIOOMUMU: MPbOMA NPOEKYIAMU NepeMiujenb cepeOUHHOT NOBePXHI wapy i 080Ma Kymami nO8OPOmY HOp-
mani cepeOunHoi nosepxwi wapy. nsa onucy oeghopmayitinoco cmany KOHCMPYKYii UKOPUCMOBYEMbCA 3CY8HA Meopis
BUCOK020 NOPSOKY. 38 30K MIdC HANPYAICEHHAMU | OehopMAYIAMU BUPAINCAEMBCSL CIYNEHEeGUM PO3KIAOAHHAM 3d none-
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PEUHOI0 KOOPOUHAMOIO adic 00 ii KyOiyHuUX cmynenis. [isi OmpuManHa cucmemu 36UdaiHux OugepenyianbHux pieHsHb,
WO ONUCYIOMb OUHAMIYHY HECMIUKICMb, GUKOPUCTOBYEMbCL MEMOO 3a0anux gopm. /s oyinku OUHAMINHOT HeCmIliKo-
cmi po3paxogyiomucs XapakmepHi NOKA3HUKY i3 pilleHHsl Y3a2albHeHOi npobaemMu 61ACHUX 3HaYeHb. JJocioxHcyiomscs
6/1ACHI KOUBAHHS KOHCMPYKYii memodom Penesi-Pimya. V koHconvbHill 00010HYI MIHIMAIbHA 8IACHA YACMOMA CROCHE-
pieaemuvcsi npu YUCH X8Ulb 8 006000680MY HANPSIMKY, W0 OOPIHIOE 06, a 6 3aweMeHill 3 060X CMOPIiH 000NI0HYI MIHIMA-
JIbHA 6ACHA YACMOMA — NPU YUCTT X6UTb 8 00800080MY HANPAMKY, Wo OopisHioe 1. 3a donomoeoio uucenbnozo moode-
JIHOBAHHSL OOCTIONCYIOMBCS 6AACTIUBOCE OUHAMIYHOL HeCMIUKOCMI MPUBIATIbHO20 CIMAHY PIGHO6a2U KOHCmMpPYKyiil. Ana-
JI3YIOMbCsl KOHCOLHI ma 3awemiieni 3 000x 60kig obononku. Ilokasano, wjo MIHIMATbHUL KPUMUYHUL MUCK CROCMeDi-
2aEMbCsL NPU HUCTT X8UTL 8 06600080MY HANPAMKY, Wo OopieHioc 1. Jlocnioncyemves 3anencHicms KpUmuuHo20 muckKy
60 yucna Maxa i kyma amaxu. Bcmanosneno, wo npu 36inewenni yucia Maxa i Kyma amaxu KpumudyHutl muck naode.

Knrouoesi cnosa: ninitina ounamiuna cucmema, mpuiaposa KoHiuHa 000J0HKA, XAPAKMePUCMU4Hi NOKAZHUKU,
yucna Maxa.
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