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PACKING NON-EQUAL HYPERSPHERES INTO
A HYPERSPHERE OF MINIMAL RADIUS

The problem of packing different hyperspheres into a hypersphere of minimal radius is
considered. All hypersphere radii are supposed to be variable. Solving the problem is reduced
to solving a sequence of mathematical programming problems. A special way of construction
of starting pointsis suggested. A smooth transition from one local minimum point to another
providing a decrease of the objective value is realized using the jump algorithm is fulfilled.
Then, solution results are improved due to reduction of the solution space dimension by step-
by-step fixing radii of hyperspheres and rearrangements of hypersphere pairs. Non-linear
mathematical programming problems are solved with the IPOPT (Interior Point Optimizer)
solver and the concept of active inequalities. A number of numerical results are given.

Pacemampusaemcs 3a0aua ynakoéku pasmuvix 2Unepuiapos 6 2UNepuiape MUHUMAaibHo20 paou-
yea. Cuumaemcst, 4mo paouycol 6cex SUNepulapos aeisiomcs nepemernvimu. Pewenue 3a0auu
CBOOUMCS K PeUleHUIo NOCIe008amMeNIbHOCMU 3A0aY MAMEeMAmuiecko20 npocpamMMUposaHus..
Hcnonvzysa jump-ancopumm, 6blNOAHAEMC NAABHBIN NEPEX00 Om O0OHOU MOYKU JOKATbHO20
MUHUMYMA K Opyeoll, 8 KOMOPOU YMeHbUIaemcsl 3HaueHue yenesou Qyukyuu. B oanvreluem
pe3ybmamsl peuleHus: Yayuumaomes 61a200aps YMEHbUEHUIO PA3MEPHOCMU NPOCHPAHCMEA
pewienutl 3a cuem uKrcayuu paouycos 2unepuiapos U Nepecmanosku nap sunepulapos. Ilpu-
6€0€HO HECKONIbKO YUCTEHHBIX NPUMEPOS.

Posensioaemvcs 3a0aua ynaxkoexku pizHux 2inepkyiv y inepkyio MiHIMaibHo2o padiyca. Bea-
Jrcaemscs, wjo padiycu 6cix einepkyivb € 3minHumu. Posze’szanns 3adaui 3600umecs 00
PO36’S13aHHsL NOCAIO0BHOCMIE 3A0aY MAMEMAMUYHO20 NPOSPAMYBANHS. Buxopucmogyioyu jump-
aneopumm, UKOHYEMbCS NAAGHULL Nepexio 6i0 OOHIEL MOUKU IOKATbHO2O0 MIHIMYMY 00 IHUIOL, 6
SAKIU 3MEHULYEMbCSL 3HAYEHHSA Yinbosoi QyHKYIl. B nodanvuwiomy pezyibmamu po3s si3anHs no-
KpaugyomsCsi 3a805KU 3MEHUEHHIO PO3MIPHOCII NPOCHOPY PO38 S3KI8 3a PAXyHOK Qikcayil
paoiycig 2inepkyiv ma nepecmaHoéxku nap ecinepkyav. Haeedewi Oekinbka ducenbHUX

npuKnaois.
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Introduction

Packing hard hyperspheres in two and three dimensions has application in studying proper-
ties of many materials, for example, simple fluids, colloids, glasses, and granular media [1]. In
higher dimensions hard hyperspheres are used to investigate properties such as geometrical frustra-
tion and the geometry of the crystalline state [2]. Packing hyperspheres may be used in the numeri-
cal evaluation of integrals, either on the surface of a sphere or in its interior [3]. The problems arise
in digital communications and storage, including compact disks, cell phones, and the Internet
[3,4].

Many studies of randomly packed hyperspheres in higher dimensions are performed using
Monte Carlo Method for Molecular Dynamics simulations [2]. In order to reach higher packing
fractions a compression algorithm [5] or a particle scaling algorithm [6] is used.

Skoge et al [1] present a study of disordered jammed hard-sphere packings in four-, five-,
and six-dimensional Euclidean spaces. They use a collision-driven packing generation algorithm
and obtain the first estimates for the packing fractions of the maximally random jammed states.
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Morse et al [7] investigate granocentric model for polydisperse sphere packings polydis-
perse sphere packing in high dimensions.

A method of packing equal hyperspheres into a given hypersphere, based on increasing
problem dimension is considered in [8]. In this paper, we adopt the jump algorithm (JA) developed
for unequal circle packing [9] to solve the problem of packing unequal hypersphere into the hyper-
sphere of minimal radius in space of dimension greater than 3. JA allows to transit from one local
minimum point to another one so that a hypersphere radius decreases.

The paper considers the following problem.

Let there be hyperspheres

S, :{(xl,xz,...,xn)eR" IZH:(X,- —x,)’ = ()’ SO}
p

where v, =(x;,%,;..,X,;) is center coordinates, 7, is radius of S, iel={l1,2,..,N}, and a

ni

hypersphere S:

S(p)= {(xl,xz...,xn)e R": Zx,f -p°< 0}
k=1

of radius p where p is variable.

A hypersphere S; translated by a vector v; is denoted by Si(v:). A vector
v=1, Vs, ..., vy) € R™ defines a location of § ;» 1 € 1, in the Euclidean n-dimensional space R"

We without loss of generality suppose that

<k <..<Fy, FK<Fy. (1)

Problem. Find such a vector v ensuring a packing of hyperspheres Si(v;), i € I, without

their mutual overlappings within the hypersphere S(p) that radius would be minimal p = p".

1. A mathematical model and its characteristics
A mathematical model of the problem can be stated as

p =minp,s.t. Y=(v,p) € W R, (2)
where t=Nn + 1,
W={¥eR :®,;v,v,)20,0<i<jel,®(v,p)20,iel}. €))

Inequality @, (v,,v,)= z; (x;; — xkj)2 -(r+ Pj)z >0  guarantees non-overlapping

2 .
o (Xi =x;)" 20 provides a

hyperspheres S; and S; and inequality ®,(v,,p)=(p—7)>— z

placement of S;(v;) within S(p).

The mathematical model (2)—(3) possesses the same characteristics as that of the
mathematical models considered in [9], i. e. local minima are reached at extreme points of W, the
matrix of the inequality system in (3) is strongly sparse, the number of inequalities specifying W is
1 2 n(n—1)/2 + n and the problem stated is NP-hard. Thus, a global minimum of the problem can
be in general reached theoretically only.

To tackle the problem (2)—(3) with advantage one needs to construct starting points
belonging to the feasible region W, to compute local minima and to carry out a directed non-
exhaustive search for local minima.

2. Generating starting points and searching for local minima
First of all, we suppose that radii 7; of hyperspheres S;, i € I are variables and form

a vector = (ry, ra, ..., r,) € R" [8]. In this case X= (v, 7) € R""" ! is the vector of all variables.
Thus, the inequalities in system (3) take the form
D, (v;,v,,15,1;) 20, 0<i<jel, DO,(v,,1,p) 20, iel.
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Let p=p">0 and rn=0, iel. We give v* in a random way so that vi# eSP"), iel.
Then X* =(",0).
In order to construct a point (v,p’) € W on the ground of the point (v*,p°) we solve the

problem

N
Y(r)=max ¥(r)= maxzri ,st. X=(,r)eDc RV @)
=1
where
D={X RN, (Dl.j.(v,-,vj,ri,rj)zo,0<i<je]’q)i(vi,ri’po)zo, s
0, (r)=F~r>0,r>0,icl}.

Whence, problem (4)—(5) ensures an increase of the hypersphere radii limited by their
initial values due to inequalities @,(7;) >0, ie /.

It follows from the construction of X* that X* € D. So taking starting point X* we solve
problem (4)—(5) and obtain a local maximal point X = (v,7).

Note that in addition to the characteristics of problem (2)—(3), problem (4)—(5) possesses
the properties.

1. Inequalities ¢;(r,) >0, i€, in (5) imply that if

Y, ©)
i=1 =1
then 7 =7 and spheres S, ie/, are packed into S(p”). This means that the point X isa global
maximal point of problem (4)—(5).

2.If Y(r)<b, and X is a global maximal point of problem (4)—(5), then spheres S;,
i € I, can not be packed into S(p°).

3. Value p° can be always chosen such that the attainment of a global maximum is

guaranteed.
Let W(r)=b. The point (v,p") is not in the general case a local minimal point of problem

(2)~(3). So, taking starting point (v,p"), we calculate a local minimal point (v°,p") of problem
(2-3).
4. Transition from one local maximum to another one

Let X =(v,7) be a local maximal point of the problem (4)~(5) and W(r) = Zj\;?z <b,ie.
at least one of the inequalities 7, —7>0, i eI, is not active. We consider the auxiliary problem by
analogy with the 2D case [9]

N
max ¥V (r) = Zrl.” st XeM cR™NY (6)
=

M={X eR™™, @, (vv,1,1) 20,0<i < e L, @, (v,1,p") 20, o
Wi (1) = T =172 0, W0 (1) = =1y +7; 20,0 € 1,
where r =max{r,iel}=r, and r,. =min{r,iel}=7. Note that the feasible region M
differs from D in (4)—«(5) by the inequalities ()20, W, ()20, iel, instead of
0;(r)=r—r>0, >0 in (5). This means that radii >0, ie/ take any values from the
segment [r, . .7 ].

min > " max
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It is proved [9] that there exists the steepest ascent vector Z° at the point X for problem
(7)~(8) that ¥(X +Z°)> ¥ (X).
Let (v°,p") be a local minimal point of problem (2)—(3). We compute

1 A+2 1 At+2
}/;}L:AI_ — ;;:}:I 1— — , l’el’;\,zojl,.---
2 2

and assume that sphere radii are equal to rl.}”, i € 1. Then problem (2)—(3) takes the form
p=minp s.t. ¥ =(v,p)e W* <R 9)
where
Wh={y eR"" @} (v,v)20,0<i<jel,®!(v,p)=0,iel},
n 2 n
q)z)'}(viavj) = Z(xki _xkj) _(rik + rj}h)z > CD,}-L(V,"P) = (p_rl_x)z _Z(xi _xki)2 .
k=1 k=1
Since r* <7, iel, then the point (v°,p°) e W" and (+v°,p°) is not a local minimal point
of problem (9). So, taking starting point (v’,p"), we solve problem (9) and define a local minimal

point (\30,50). Since 27:1 rf <b (see (6)), then, tackling problem (4)—(5) for starting point

X0 = (\30,rx) e D, we compute a local maximal point X = (v*,7*). Two cases are possible:
¥(r*)=b and ¥(7")<b.

If W(7*)=b,then " =7, iel, and hence (\7%,50) e W (3). Since the solution spaces of
problems (2)—(3) and (4)—(5) are different, then (GK,BO) in general is not a local minimal point of
problem (2)—(3). So, taking starting point (GX,BO), we solve problem (2)—(3). As a result, a new
local minimum point (v',p') is computed. In the case a local minimal point (\% " 51) of problem (9)
for the starting point (v',p') is defined again and so on until ¥(7")<b becomes, i.e. we have
ZL}? <b, X" =@",7*) and (»*,p") & W after \ iterations.

In this situation (¥(r")<b) we compute the steepest ascent vector Z° at the point X*
for problem (6)—(7), calculate points

X'=X+(1/2)2°, yel ={0,1,2,...,q <o} (10)
define m, for which X" € M . Then, making use of X" =(v",r")e M we compose the ascending
sequence according to (1)

Lt <L <. (11)

Since V(r™)>V(r) may occur, then, on the ground of sequence (11), we compute

rm

0 = min{r",7;}, jel. This ensures the inequality V("°)<V(f)  where
" =", 1",...,r"") . Based on sequence (11), we construct two points: X" = (™, ¥™) where

~m _ m :m_mO . . m o _ ~mowm ~mo_ooomo TYmo_ o m .
J Vs T = , jel,and apoint X" =(",r"™) where Vi =V, 8 —ril_,]el.

If V(r)> V(%’”) >V (r"), then the new steepest ascent vector Z° at the point X" for
problem (7)—(8) is calculated. Taking X =X", we build a new point X" = X+ (1/2)"Z° (see
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(10)) and derive new points X" = (\7'",1;'”) and X" =(¥",7") in accordance with sequence (11)

and so on. The iterative process is continued until either V(%’”) =V(r) or V(%’”) V(M) <V(F)
occurs.

If V(%’”) =V(r),ie. = 7., i €I, then taking starting point (v.",[i"), we tackle problem

1

(2)-(3) and calculate a new local minimal point (v°,p°). The process is repeated until

V(%'”) <V (r*)<V(F) becomes and next, we go to Subsection 5.3.

Note that JA executes a smooth transition from one local maximum to another one of
problem (4)—(5).

5. Decrease of the problem dimension and rearrangement of hypersphere pairs

Reduction of the solution space dimension is realized by means of sequencial fixing initial
values of sphere radii without fixing their center coordinates in the same manner as in [9].

Rearrangements of pairs of spheres whose radii are slightly distinguished allow to improve
the objective value of problem (2)—(3). An algorithm executing such rearrangements is described in
[10].

In order to obtain a good approximation to a global minimum of problem (2)—(3) we repeat
the step-by-step procedure consisting of the construction of a starting point and the search for a

local minimum of problem (2)—(3) with JA v times. As a result local minimum points (v*,p*"),
teT={1,2,..,v<10} are computed.
Then we single out a local minimal point (v*,p*°) corresponding to

p* =min{p*,feT}. The point (v*°,p*°) is taken as an approximation to a global minimum of
problem (2)—(3).

6. Numerical examples

We solve a number of instances for different number of hyperspheres in the Euclidean
spaces of dimensions from 4 to 13.

The Interior Point Optimizer (IPOPT) exploiting information on Jacobians and Hessians
[11], and the concept of & -active inequalities [8,12] are used to solve non-linear programming
problems.

The algorithms were coded in Delphi and performed using an AMD Athlon 64 X2 6000+
(3.1Ghz) processor.

The average runtimes (hours) for the instances are presented in Table 1. Rows of the table
correspond to the space dimensions and columns correspond to the numbers of hyperspheres. In-
stances considered may be downloaded from the webpage: http://f-bit.ru/uploads/295485.zip.

Table 1. The averaged runtimes depending on the space dimension and the number of hyperspheres

Space dimension Number of hyperspheres
n N=30| N=40 | N=50 | N=60 | N=70
4 0.5 2 4 10 18
5 0.7 3 6 16 24
6 1 5 9 20 36
7 2 8 15 30 36
8 3.5 12 30 — —
9 6 18 39 — —
10 10 24 48 — —
11 14 30 — — —
12 18 37 — — —
13 24 48 — — —
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Conclusion

Algorithm JA which expoits the assumption that radii of all hyperspheres are variable is
adopted for higher dimensional spaces. Smooth transitions between local maximal points proveding
a growth of the objective values. The algorithm is especially effective if neighbor initial radii of
hyperspheres are slightly distinguished.

A decrease of the problem dimension by means of sequential fixing sphere radius values
and rearrangements of hypersphere pairs allow to improve results.

Numerical results are presented.
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