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In the European Union, in 2021, the share of green electricity produced by renewable energy sources
(RES), in particular hydroelectric power plants, wind turbines and solar power plants, was 38%, nuclear power
plants — 25%, and fossil fuels — 37%. In general, the share of "clean" energy in the world in 2021 reached
37.88% [1]. In the same year in Ukraine, renewable energy produced 14.7%, in particular 6.7% from hydroe-
lectric power plants and pumped storage plants, 8% from solar power plants and wind turbines, 55% from nu-
clear power plants, and 30.3% from thermal power plants [2].

With the post-war reconstruction and the development of Ukraine's energy system, the determining im-
portance for meeting the needs for highly maneuverable balancing and accumulative capacities should be given
to the pumped storage plants. Among modern electricity balancing technologies, pumped storage plants are the
most efficient and the most widespread in the world. They make up almost 94% of all balancing capacities [2].
Hydroelectric power plants can not only produce electricity as hydropower plants, but also consume excess elec-
tricity (for example, produced by nuclear power plants at night or wind turbines and hydroelectric power plants
during the day), pumping water from lower to upper reservoir, due to which they balance the load schedule [3].

The total capacity of hydropower pumped storage plants in the world is approximately 170 GW, in par-
ticular, more than 53 GW in Europe (Germany — 5.7 GW, France — 5.7 GW, Italy — 4 GW). The installed ca-
pacity of hydropower plants in the world increased by 25 GW in 2021, including 6.3 GW of new pumped stor-
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age capacities [4]. According to the International Hydropower Association, their capacity is expected to double
by 2030 [2].

In Ukraine today, the capacity of the pumped storage plants is only 2.0 GW. In Ukraine, there are
sites for new promising medium (capacity up to 300 MW) and large (capacity 500—1300 MW) pumped stor-
age plants with a preliminary total capacity of 10 GW. These are what can ensure the balancing of the Uni-
fied Energy System of Ukraine with its further development [2].

Hydraulic units with Francis turbine are installed at almost all pumped storage plants. The runner
blades of such turbines have a significantly spatial shape, which greatly complicates the design and further
optimization. A significant number of design and optimization methods have been collected, suitable both
for large Francis turbines [5], Kaplan turbines [6], and for microturbines [7]. Optimizing energy indicators
requires the presence of limited number of variable parameters describing the geometric and mode character-
istics of a hydraulic machine. To describe the shape of blades, both simplified methods using high-order
polynomials for individual sections [8] and complex, fully three-dimensional methods are used, for which
the geometric description does not depend on the mode parameters [9]. The initial approximation of geome-
try for optimization according to the given initial parameters of turbine can be obtained both with the help of
analytical methods and with the use of commercial or open-source software [10].

Studies of recent years show that one of the promising directions for increasing the efficiency of power
machines is the use of tangential and axial lean of runner blades [11, 12]. This approach affects structure of the
flow [13], pulsating characteristics of the flow [14], as well as energy indicators of the flow part.

In recent years, the frequency of runner rotation has been increasingly adopted as optimization parame-
ter [15], including as part of multiparameter optimization with a change in geometric characteristics [16, 17].

Optimization of the energy characteristics of turbine can be carried out both for one [17] and for two
or more mode points [18], including for both turbine and pump modes [19]. The goal of optimization can
also be cavitation coefficient [20] and erosion wear parameters [21].

There are different approaches to determine the target optimization parameters: more common is
numerical simulation of flow in calculation domain of turbine, which includes only the runner and the guide
vane [21], but some researchers insist on the mandatory inclusion of the stator columns and the draft tube in
the calculation domain [20].

The study of fluid flow in pump-turbines can be carried out both numerically and experimentally
[22, 23]. The numerical modeling of the flow allows researcher to significantly save the time and cost of de-
signing pump-turbine elements, obtain and analyze the flow structure in any cross-section of elements of
flow part. The experimental studies are a more reliable way to verify the obtained energy, cavitation and pul-
sation characteristics. In addition, they may reveal phenomena that, for various reasons, were not detected
during numerical experiments. This especially applies to non-stationary phenomena, which sometimes re-
quire careful selection of numerical modeling modes [24]. In most cases, experimental studies are conducted
to confirm calculated characteristics of developed or optimized turbine [22, 25].

The paper presents results of design and numerical study of the effect of tangential lean of runner
blades of Francis type pump-turbine at heads of up to 200 m.

As shown above, one of the promising directions for increasing the efficiency of Francis pump-
turbines is the spatial profiling of the runner blades with the help of the tangential lean. With this approach,
shape of edges and mutual position of cross-sections in the tangential direction changes due to the shift of the
hub cross-section in direction of rotor rotation (positive lean) or in opposite direction (negative lean). The
shape of sections itself remains unchanged. The shift can be carried out linearly relative to the height of run-
ner at the pressure edge or according to a polynomial law. This approach ensures obtaining the optimal shape
of the blade, which best interacts with the flow both in area of the leading edge and in channels of the runner
and when forming the flow at inlet to the draft tube.

As an object of the research, a model of the highly efficient Francis pump-turbine ORO170/5217,
which was developed at the IMEP and implemented on the first 4 hydrounits of the Dniester PSP, was
adopted. In the RK5217 runner, the suction edge is located in radial plane, the angle of inclination of pres-
sure edge in tangential direction is 10° in the direction of runner rotation. In order to study the effect of spa-
tial profiling of blades on the energy characteristics of the flow part in turbine mode, two modifications of
the runner, named RK5217M and RK5217M2, were designed using the tangential lean. In the RK5217M, the
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angle of inclination of the pressure edge is 45°, the hub section is shifted in the direction of rotor rotation by
12.8° relative to the original version, all others are linearly dependent on the height of runner. In the
RK5217M2, the angle of inclination of the pressure edge is -45°, accordingly, the hub section is shifted to the
side opposite to rotation by 18.2° relative to the original RK5217. Computer models of the original and
modified blades are shown in Fig. 1.

RKS5217M RKS5217M2
b

Fig. 1. Computer model of three variants of runners:
a— top view; b — side view

The numerical studies of the effect of spatial profiling of runner blades on the flow structure and energy
characteristics of flow parts in turbine mode were out using the /PMFlow software, developed by IMEP.

Modeling of a viscous incompressible fluid flow in the pump-turbine models is performed on the basis
of numerical integration of the Reynolds equations with an additional term containing artificial compressibility.

Turbulent effects were modeled using Menter's differential two-parameter model (SST). Numerical
integration of the equations was carried out using an implicit quasimonotone Godunov scheme of the second
order approximation in space and time.

The calculations were made for models with a diameter of 350 mm, which corresponds to the dimen-
sions of the studied models on the IMEP ECS-30 hydrodynamic stand. The calculation domain contains one
channel of the guide vane and one channel of the runner. The normalized hexagonal calculation mesh had
72x72x80=414,720 and 80x80x100=640,000 elements in the channel of the guide vane and the runner, re-
spectively, with thickening near the walls. The value of the indicator " did not exceed 10.

The study was conducted at head of 6 m (which was equal to the head of the planned experimental tests)
at three values of the reduced rotation frequency: 95; 91; 85 min™, which correspond to the minimum, design and
maximum heads at the Dniester PSP; in wide range of openings of guide vane: 12; 16; 20; 24; 28 and 34 mm.

In Fig. 2 is shown the pressure distribution in the middle meridional cross-sections of the runner chan-
nels for three variants of the 5217 series runner at rotation frequency of 91 min™ and opening of guide vane
610:24 mm.

At almost all values of head and guide vane openings, the most uniform distribution of pressure
isolines is observed in the RK5217M2 channel with negative tangential lean of blades. The lean in this run-
ner is expected to have some effect on the pressure fields in area of pressure edge near the hub, but leads to
the most favorable distribution in peripheral zone and along entire height of suction edge. The least uniform
pressure distribution is observed in the RK5217M channel with positive circular lean of blades.

Fig. 3 shows the distribution of velocity vectors in the middle meridional sections of the runner channels
for three variants of the 5217 series runner at rotation frequency of 91 min™ and opening of guide vane ;=24 mm.
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Fig. 2. Pressure distribution in the middle meridional section at design head (n;'=91 min™) and
opening of the guide vane a,=24 mm in turbine mode
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Fig. 3. Distribution of velocity vectors in the middle meridional section at nominal head (n;'=91 min™") and

opening of the guide vane ay=24 mm in turbine mode
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Fig. 4. Distribution of pressure in the middle cross-sections of blades of three variants of the 5217 series runner
at design head (n;'=91 min™) and opening of guide vane a;=24 mm in turbine mode
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Fig. 5. Distribution of the axial V,, radial V, and circular V,, components of velocity at the exit from runner at
nominal pressure (n;'=91 min™) and guide vane opening a,;~24 mm

The most uniform distribution of vectors along the runner channel is observed in flow part with the
RK5217M2. Unlike the other two runners, there are practically no secondary flows in it, except for zone of
pressure edge near hub, and the most uniform flow is formed at the exit from runner in the front of draft tube.

Fig. 4 shows the distribution of pressure graphs on the middle sections of blades of three variants of
the 5217 series runner with a rotation frequency of 91 min™ and an opening of guide vane @;=24 mm.

Analysis of the graphs leads to conclusions that the most uniform graphs at all values of pressures and
guide vane openings are observed for the RK5217M2. First of all, the pressure distribution in the area of lead-
ing edge on pressure side is improved and equalized relative to the original version of RK5217. Thus, the use of
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negative lean of blades leads to a better work of pressure and, as a result, should increase the efficiency of the
flow part. The pressure graphs on blades of the RK5217M with positive lean are the most uneven among other
runners of the 5217 series, especially at smaller values of guide vane openings. A characteristic feature of all
runners of the series is the small work of pressure in the inlet region of cross-sections at small values of guide
vane opening. With an increase in flow rate, the appearance of the graphs of all runners improves.

In Fig. 5 the distribution of the axial V'z, radial V7 and circular Vu components of speed at the exit
from runner at rotation frequency #/'=91 min"' and guide vane opening @;=24 mm is shown.

In almost all modes studied, the use of negative tangential lean of the RK5217M2 blades led to a notice-
able improvement in the distribution of speed components: the axial and circular components at the exit from
runner change by width more smoothly, which creates better conditions at the inlet to draft tube. Such changes in
the structure of flow should lead to an increase in overall efficiency in wide range of operation of the hydraulic

unit in generator mode. At the exit from the 94 P

RKS5217M with a positive lean of blades, the most
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Conclusions

1. A method of spatial profiling of Francis pump-turbine runner blades is proposed, which is based
on the application of blade lean in tangential direction and allows changing flow structure in flow part of the
Francis pump-turbine and its energy characteristics.

2. The dependence of the flow structure and the efficiency values in flow parts on tangential lean of
pump-turbine runner blades in turbine mode was numerically determined.
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3. The negative tangential lean of the RK5217M2 blades led to an improvement in the flow structure
and the efficiency level, while the positive lean in the RK5217M led to their deterioration.

4. According to the results of numerical studies, it was established that the flow part model with the
RK5217M2 in terms of energy performance exceeds the original version with the RK5217, therefore, after
experimental verification on a hydrodynamic stand, it can be recommended for implementation in the project
of hydrounits no. 5-7 of the Dniester PSP.
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YV yucenvnuii cnoci6 0ocniodxceno eniug npocmoposozo nPOPINIOBanHs 3a OONOMO2010 KOJIOBUX HABANIG JIONA-
metl padianbHo-0CbOBUX POOOUUX KOIC HAcOC-mypoin 3 Hanopamu 00 200 m Ha cmpyKkmypy NOmoKy i eHepeemuyHi xa-
paxmepucmuxu. Ax GUXiOHuil eapianm nputiHamo mMooeib NPOMoOUHOL YACMUHU padiaibHO-0Cb080I Hacoc-mypoinu JJHi-
cmposcokoi TAEC. Cnpoekmogarno 06i HO8I jonamesi cucmemu, wjo GiOPI3HAIUCA 8i0 GUXIOH020 6apiaHma 63AEMHUM
PO3MAULYBAHHAM DO3PAXYHKOBUX Nepepizie y KON08OMY HANPAMI: i3 NOUMUBHUM | HE2AMUBHUM HABAJIOM, NPU YbOMY
¢opma camux nepepizie 3aruwanacs nesminnor. Moodemosanns Hecmuciugoi meuii 8'a3Koi piounu 8 PO3PAXYHKOBGUX
obaacmsax, wo MiCmunu no 0OHOMY KAHALY HANPAMHO20 anapama i poboyoeo Kolecd, mpboX 8apiaHmie npomoyHUX
YACMUH BUKOHAHO 304 OONOMO2010 npocpamuozo komnaexcy IPMFlow na ochosi uucenvnoeo inmeepysanis pieHsHb
Petinonvoca 3 dodamrosum 4aeHom, wo MiCmums wWmyuny cmuciugicme. /i 8paxyeanHs mypoyienmuux egpexmis
3acmocosana ougepenyianvua osonapamempuuna mooeis mypoyienmuocmi SST Menmepa. Hucenvne inmezpysanis
PIBHAHL NPOBOOUMBCSL 3 GUKOPUCTNAHHAM HEA8HOI K8A3IMOHOMONHOT cxemu [00yHO8a Opy2020 NOPSOKY MOYHOCMI 3a
npocmopom i wacom. Jocniodicents npogedeHo 01 mooenel 3 diamempom pobouoeo koneca 350 mm 6 wupokomy oia-
NAa30Hi BIOKPUMMIE HANPSMHO20 Anapamy npu NpuéeoeHux Yyacmomax 00epmanHs, wo 6ionogioarms MiHIMAIbLHOMY,
HOMIHATTLHOMY § MAKCUMATLHOMY Hanopam ua cmanyii. Hagedeno nopieHaHHs NOAi8 MUCKY i 8eKMOPIi8 weUOKOCHmi 8
Kanaiax poooyux Kojic, entop mucky Ha JORAmsx KOJic, po3nooil KOMIOHEHM WEUOKOCI HA 6X00i Y 6IOCMOKMYBAIbHY
mpy6y, a maxoxc KKJ[ mpeox eéapianmie npomounux uacmuH. 3pobieHo 8UCHOBOK, WO HAUKPAWI XapaKmepucmuKu
MaAe po3paxyHkosa oobaacme 3 HO8UM pobouum xoarecom PK5217M2 3 neeamunum 6myaKoeum Koa08UM HABAIOM. 3a-
NAAHOBAHO eKCHePUMEHMANbHI O0CIONCEHHS MPbOX KOAIC HA 2IOPOOUHAMIUHOMY CTEHOI.
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