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. new numerical analytical method for solving geometrically nonlinear bendin,
UDC 539.3 A [ analytical method for solving g ily nonl bending
problems of thin shallow shells and plates of complex shape is given in the paper.
METHOD OF SOLVING The problem statement is performed within the framework of the classic geometri-
cally nonlinear formulation. The parameter continuation method was used to lin-
GEOMETRICALLY Ily nonlinear formul Th hod d to
earize the nonlinear bending problem of shallow shells and plates. An increasing
Egg;ll_NEEN?SROBFE#IEIISG parameter t related to the external load, which characterizes the shell loading
process, is introduced. For the variational formulation of the linearized problem, a
SHALLOW SHELLS functional in the Lagrange form, defined on the kinematically possible movement
speeds, is constructed. To find the main unknowns of the problem of nonlinear
OF COMPLEX SHAPE bending of the shell (displacement, deformation, stress), the Cauchy problem was
. formulated by the parameter t for the system of ordinary differential equations,
Serhii M. Sklepus which was solved by the fourth order Runge-Kutta-Merson method with automatic
snsklepus(@ukr.net step selection. The initial conditions are found from the solution of the problem of
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geometric linear deformation. The right-hand sides of the differential equations at
fixed values of the parameter t, corresponding to the Runge-Kutta-Merson scheme,
were found from the solution of the variational problem for the functional in the
Lagrange form. Variational problems were solved using the Ritz method combined
with the R-function method, which allows to accurately take into account the geo-
metric information about the boundary value problem and provide an approximate
solution in the form of a formula - a solution structure that exactly satisfies all
(general structure) or part (partial structure) of boundary conditions. The test
problem for the nonlinear bending of a square clamped plate under the action of a
uniformly distributed load of different intensity is solved. The results for deflec-
tions and stresses obtained using the developed method are compared with the
analytical solution and the solution obtained by the finite element method. The
problem of bending of a clamped plate of complex shape is solved. The effect of the
geometric shape on the stress-strain state is studied.

Keywords: flexible shallow shell, complex shape, R-function method, parameter
continuation method.

Introduction

Thin shallow shells and plates are widely used as structural elements in aerospace engineering, me-
chanical engineering, energy, chemical industry and other industries. Theories and methods of calculating the
stress-strain state of shells, in particular, in a geometrically nonlinear setting, are thoroughly covered in the lit-
erature. Despite this, they continue developing. A fairly complete review of methods for solving linear and non-
linear problems of the theory of shells is done, for example, in papers [1-3]. In studies, plates and shells of a
canonical geometric shape in plan are considered most often. According to their results, it can be concluded
that it is possible to obtain the solution of the boundary value problem in an analytical form under certain con-
ditions of loading and fixing, but if the plate or shell have a complex geometric shape, it turns out to be impos-
sible. In this case, it is necessary to use universal methods that allow to find an approximate solution in areas of
complex shape, for example, the finite elements method [4-6], the R-function method [7, 8], the "immersion"
method [9], etc. In addition, the analysis of the available literature showed that the number of papers devoted to
the study of geometrically nonlinear deformation of plates and shallow shells of a complex shape in the plan is
quite limited. Which seems quite logical because the search for effective methods of linearization and solving
nonlinear problems of the theory of shells and plates of complex shape is currently ongoing.

The purpose of the paper is the development of a numerical analytical method for solving problems
of geometrically nonlinear deformation of thin shallow shells and plates of complex shape in the plan, based
on the R-function method.

This work is licensed under a Creative Commons Attribution 4.0 International License.
© Serhii M. Sklepus, 2022
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Problem statement. Solution method

An isotropic thin shallow shell of thickness / and arbitrary shape Q in the plan is considered in a rec-
tangular Cartesian coordinate system O x; x; z. The axis Oz is perpendicular to the shell plane. The tempera-
ture is constant. For thin shallow shells, it is assumed that the internal geometry of the coordinate surface z=0
is no different from the Euclidean geometry on the plane. Shell lifting arrow is /<0.2a, where a is the small-
est characteristic size of the shell. At the same time, the coefficients of the first quadratic form are taken as
A~=1, (i=1, 2), and the main curvatures of the coordinate surface are constant: k=const [3, 10]. The shell is

under the action of a transverse load of intensity equal to ¢} = ¢>(x,, x,).

If the deflection arrow can be compared with the shell thickness (wy,,,>0.254), then to state the prob-
lem, it is necessary to use the nonlinear theory of shells, which takes into account large deflections.
The displacements of the shell points along the axes Ox;, Ox,, Oz is defined by expressions [3, 10]:

vl(xl, X,, Z)= U —2W,, vz(xl, Xy, z)= Uy —ZW,,, v3(x1, X, z)= w, (1)

where u;(x1, X2), ua(x1, X2), W(x1, X,) are the displacements of coordinate surface points of the shell along the
axes Oxi, Ox,, Oz, respectively.

With the usual simplifications for thin shallow shells and taking into account nonlinear members,
which are significant in the case of large deflections and small deformations, the latter ones are related to
displacements by the following nonlinear relations [3, 10]:

_ 2 _ _ 2
€ =y, — W, Hhw+0,5w,;, €y, = Uyy = ZW,p +k,w+0,5w,3,

Vi =28, =ty 5 ity — 2204wy Wy, €5 =0,(i=12,3), )

Stresses and strains are related by Hooke's law

E E
01121_V2(811+V822)a Gzzzﬁ(gzz‘*‘vgu)v o, =Gy 3)

Here E, v are Young's modulus and Poisson's ratio of the shell material, G = % is the shear modulus.

1+v

One of the most common methods of analyzing the nonlinear deformation of mechanical systems is
considered to be tracking of their deformations development process with changes of any characteristic pa-
rameter. Equations describing the nonlinear behavior of deformed systems contain a parameter or can be given
in a form that includes a parameter, for example, related to load, time, or any other parameter that quantitatively
characterizes the deformation of the system and explicitly or implicitly contains in the equations.

To linearize and state the problem of geometrically nonlinear deformation of shallow shells and
plates, the parameter continuation method [11], which in our case is naturally associated with the external
load, will be used. The increasing parameter ¢€[t,, ¢«| characterizing the shell loading process is considered.
In this case, £, is the value of the parameter at which the deflections are small, and therefore, the problem of
deformation is geometrically linear, ¢« corresponds to the given level of shell loading ¢, (t*)z q. . For the ex-
ternal transverse load, the linear law

qz(t):q20+tqzl’ (4)
where t€[0, t].

It should be noted that since the elastic problem is being solved, the final result does not depend on

the load path and other load laws can be taken.

After differentiating relation (2) by the parameter #, formulas relating the derivatives of deformations
and displacements are obtained

€)1 = Uy — Z2W,  Hh W+ Wy Wy, €5y =1y 5 — 2W,0y Hh W Wiy Wy,
Yip =281, =ty iy — 220,10+ W, Wey +W,, Wy (5)

In this case, the dot above the symbols denotes the full derivative of the argument ¢. Further, the de-
rivatives of ¢ will be referred to as rates.

If the rotation angles w; are considered as given functions, then the relations (5) are linear.

After differentiating Hooke's law (3) by ¢ and taking into account (5), for the stress rates we write
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Gy = —1 > (”1,1 + Vi, , —Z(W,11+VW,22)+(k1 + vk, )w+ Wy Wy +VW,, w,z),

5y = — (1.5 + iy, = 2(spy vty )+ (ky + VI Wi Wiy iy VW, 0 ),

&1y = Gl 5 + iy, — 223,14, Wiy F W35 0 ) (6)

For the variational problem statement, the principle of virtual work for quasi-static problems [12] is
used. The corresponding functional in the Lagrange form, written with respect to the rates of displacements
for a three-dimensional body, has the form [12]

1(3)=05[[[(6utw + om0 - [[ Brds . (1.1, k. 1=1,2,3), (7
v s,

where v, are kinematically possible displacement rates.
Considering that v'l.,j~w,f <<1, (i,j=1, 2), and neglecting terms of higher order of smallness in ex-

pression (7), for a flexible thin shell we will have

L=05[[ [(Guty + 0105 +0203 + 20,00, 0,y Mz = [ [ goivdd, , (k, =1, 2) ®)
Q (h) Q

By substituting (5), (6) into (8) and integrating over z, we obtain a functional in the Lagrange form
for the bending problem of a flexible shallow shell

L=L+1L,, 9)
where L, (i, iy, ), L, (i, 11, W) are "linear" and "nonlinear" parts of the functional, which are determined by

the following formulas:

1, =0l i, 2, + 928 + k2 2+ Dby 4 2,y + it s + oy, )+ K P4 i+, -
Q

—-2B, (I;ll,lw’l 1+1§12,2W,22+v'v(k1w,11+k2vi/,22 ))_232 (u1,1W322+a2,2W’1 1'*‘"."(]‘1"."’22 +k2W’11))_2BSW’12 (L.ll,2 +ily, )+
4Dy 02, 2D i+ D, My, — [ [ vt (10)
| \War1 W5 HWo 11 Wanp tD3W,p5 - [aX,dX, q.wax,dax,
Q

2 .2 2 .2 . . . . . .
L, = 095”[1‘11(""’1 Wi+ W,y Wy +2w,, 10y W, +2w,, uz’zw,z+2w(klw,l oy ey W,y Wiy ) )+
Q

+24, (w,1 Uy y Wy +W,y 1y W, + w(klw,2 W,, +k,w,, w,1)+ Wy Wy Wy w,2)+
Ay (0,2 0.2 4w,2 30,242y Wy bWy v, Nt 5 + 11y )+ 200, Wy Wy Wy )=
3o Woy +W,5 Wy 51 Wag tWoy Wy Nty 5 + Uy 51 Wiy Wy W,y
—-2B, (W’l Wy Wy +W,5 W,y szz)_sz (W’l Wy Wyt W,y Woo W,y )_2B3W»12 (W’l Wyt W, W»1)+

+ i W o WR A2 i W Wy Jddix, (11)

where Q is the domain in which an approximate solution to the problem is sought; 4, = lizdz , A, = VA,
(Y

2
A= dez, B = le—szz B,=VB,, B, =2szdz, D, = leZ dz, D,=vD, D,=4[Gdz,
(n) Y (n) (Y (n)
fu= .[Gndza S = .[Gzzdz s Ju= .[Glzdz-

(n) (n) (h)

Here, rotations w,j, w, and stresses 61, G, 01, are considered to be preset for each fixed value of the
parameter ¢ and do not vary.
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The main unknown functions at each point of the shell for the values £~0 can be found from the solu-
tion of the Cauchy problem in terms of the parameter ¢ for the system of ordinary differential equations,
which will be written in the following generalized form

Lo _F(G) (e=111), (12)

where G={G}={u;, w, w;, &;, 6;}, (i, j=1, 2). The right-hand sides of equations (12) have the form: F =u,,
E=u,, F,=w; F,=w,, F;=W,,; F; (k=6, 7, 8) are determined by formulas (5); F (<=9, 10, 11) by formulas (6).

The initial conditions for equations (12) are found from the solution of the problem of linear defor-
mation at ¢.(0)=¢.o. To solve it, the functional in the form (10) can be used, replacing the rates of the func-
tions with the functions themselves.

The most famous methods for solving initial problems include the Euler method, the Adams-
Bashforth method, and the Runge-Kutta methods of varying degrees of accuracy. In this paper, we will solve
the initial problem for the system of equations (12) using the fourth order Runge-Kutta-Merson (RKM)
method with automatic step selection [13].

The right-hand sides of the equations, with fixed values ##0 corresponding to the RKM scheme, are
found from the solution of the variational problem for the functional (9). Variational problems will be solved
using the Ritz method combined with the R-function method [7], which allows to accurately take into ac-
count geometric information about the boundary value problem and provide an approximate solution in the
form of a formula — a solution structure that exactly satisfies all (general structure) or part (partial structure)
of the boundary conditions.

Numerical results
The bending of a clamped square plate [14] subjected to uniformly distributed transverse loads is

considered as a test example. The plate dimensions are: side length 2¢=7.62 m, thickness #=0.0762 m. Elas-
tic characteristics of the material: E=2.1x10° MPa, v=0.316.

The clamped boundary conditions have the form Table 1. Non-dimensional deflections W
w=0,w,,=0,u4,=0,u,=0, in the center of the plate
and the corresponding solution structure q | Analytical | FEM | RFM

17.8 0.237 0.2392 | 0.2356

. 38.3 0.471 0.4738 | 0.4676
In this case, @y, D,, D5 are the undefined components of the 63.4 0.695 0.6965 | 0.6903

solution structure; the function w=wm(x;, x,) is constructed using the 95.0 0912 0.9087 | 0.9042
R-function theory [7] and satisfies the conditions: ®=0, ®,=-1, on 134.9 1.121 1.1130 | 1.1110

the boundary 6Q, ®>0 — inside Q (n — is the external normal to the | _184.0 | 1.323 | 1.3080 | 1.3090
contour 0€2). 245.0 1.521 1.5010 | 1.5040

In the case of a square plate, the function ® has the form 318.0 1.714 1.6880 | 1.6930
_ 402.0 1.902 1.8860 | 1.8720
O=0O; Ay O, ,

. 2 . .
Ww=0"0,,u =0d,,u, =0d,.

1L, 1(, Table 2. Non-dimensional stresses G,
where o, =—(a - X5 ), o, =—(a - X ), and symbol A, denotes
2a 2a

in the center of the plat
the R-conjunction [7]: £, Ay o = fi+ fo = S7+ 15 - q | Analytical | FEM | RFM
During the numerical implementation, the undefined com- 17.8 2.6 2414 | 2530
38.3 5.2 5.022 | 5.212

ponents of the solution structure were given in the form of finite
63.4 8.0 7.649 | 7.893

series @, (x;, x,,2)= > C()/,"(x, x,), (=1, 2,3), where C(r) [ —957 11 0254 | 10535

o 134.9 13.3 12.850 | 13.155
are the undefined coefficients that were found at each stgp by the 184.0 159 15420 | 15.754
Ritz method; ¢ is a fixed value of the load parameter; {fn(’)} — Sys- 245.0 19.2 18.060 | 18.440
tems of linearly independent functions. Power polynomials of the | _318.0 21.9 20.741 | 21.197

form xlkx; were used as {fn(i)}- 402.0 25.1 23.423 | 24.000
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Tables 1, 2 show the results of the calculation of non-dimensional deflections Wz% and normal

2
in the center on the lower surface of the plate, at z=0.54, depending on the value of the

— 4oja
stresses o), = e

x4
non-dimensional load g = 16q2f . In this case, the analytical solution of Levy [15], who solved the problem

using a double Fourier series (Analytical), the results obtained by the finite element method (FEM) [14] and
the R-function method (RFM) are given. In formula (4) it was assumed that: ¢.;=¢.;=10” MPa. The initial
step and the specified calculation error in the RKM method were, respectively, equal to: A=10", e=10~.
The analytical results and the results of FEM were obtained on the basis of %
the first-order shear deformation theory (FSDT). i
The results listed in the Tables 1, 2 show that the method proposed in ‘
the paper provides a close match with the results obtained by other methods. -
Next, the bending of clamped plate with circular corner cutouts un-
der the action of a uniformly distributed load is considered (Fig. 1). Geomet- L
ric dimensions are: 2a=2b=7.62 m, r=1.5 m, #=0.0762 m. Elastic constants

are the same as in the test example. Fig. 1. The plate with circular
The equation of the boundary in Fig. 1 can be written as follows: cutouts
o= ((91 No (92)/\0 ((CO3 No (94)/\0 ((95 o 0‘)6))2 0,
1 1 1
where o, =E(b2 —xf), o, :Z( g —xlz), o, =§((xl —a) +(x, -y —rz),
1 1 1
0, = ;((xl +a) +(x,-b) - rz), 05 = ;((xl +a) +(x, +b) - rz), 0 = ;((xl —a) +(x, +b) - rz).

Figs. 2, 3 depict the non-dimensional central deflections w and normal stresses G,; as a functions of
the load parameter ¢ . The solid lines show the results for a complex-shaped plate, and the dashed lines show

the results for a square plate. As expected, the corner cutouts make the plate more rigid, reducing the level of
deflections and stresses.

2,0
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12 -
|= 10
0,8
0,6
0,4
02 -
0,0

0 50 100 150 200 250 300 350 400 450 0 50 100 150 200_ 250 300 350 400 450

q q
Fig. 2. Non-dimensional deflections Fig. 3. Non-dimensional stresses
in the center of the plate in the center of the plate
Conclusions

A new numerical-analytical method for solving geometrically nonlinear problems of bending of thin
shallow shells and plates of complex shape in the plan, which is based on the R-function method and the pa-
rameter continuation method is developed in the paper. First, the test problem was solved, a coincidence with
the analytical solution and the solution by the finite element method was obtained, and secondly, the problem
of bending of a clamped plate of complex shape was solved. The influence of the geometric shape on the
stress-strain state has been studied.
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MeTton po3B’si3aHHA TeOMETPUYHO HETiHITHUX 3a1a4 BUTMHY TOHKHX IOJIOTHX 000JI0HOK CKJIaHOI (hopMHu
C. M. Ckaenyc

[acTUTYT IpOOIIeM MamHOOYAyBaHHS iM. A. M. Ilinropaoro HAH Ykpainam,
61046, Ykpaina, M. XapkiB, By [loxkapcbkoro, 2/10

Y ecmammi npedcmasneno nosuil uucenbHO-aHATIMUYHUL MEMOO PO38 A3AHHI 2e0MeMPUYHO HeNHIUHUX 3a0ay
BUSUHY MOHKUX NOJL02UX 00O0NOHOK i naacmuH cKiaoHoi gopmu. Ilocmanoeky 3a0aui UKOHAHO Y PAMKAX KIACUUHOT
2e0MEeMPUYHO HeIHItHOI nocmanosku. [l aineapu3ayii HeiHiiuHoT 3a0ayi ueuny noIo2ux 000J0OHOK I NIACMUH 8UKO-
PUCTO8YBABCA MemOoO NPOO0BIHCeHHs 3a napamempom. Beederno 3pocmarouutl napamemp t, nos ’a3anutl i3 308HiUHIM
HABAHMANCEHHAM, AKUL XAPAKMEPUZVE NPoyec HABAHMAXCEHHA 00010HKU. [ eapiayitiHoi nOCmaHo8Ku JiHeapu3o8a-
Hoi 3a0aui nobydosano gyuxyionan y ¢opmi Jlacpanica, 3a0anuti Ha KiHEMAMUYHO MONCIUBUX UBUOKOCMSX NepeMi-
wenv. J[sl 3HaxX00HCeHHsT OCHOBHUX HeGI0OMUX 3a0adi HeNiHIH020 8UeUHY 0DONOHKU (nepemiwents, degopmayii, Ha-
npysicenns) cghpopmynvosano 3adavy Kowi 3a napamempom t 0 cucmemu 36udainux oupepenyianvHux pieHsaHb, Wo
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po3ss’azysanacs memooom Pynre-Kymmu-Mepcona 3 asmomamuynum eubopom Kpoxy. Ilouamxogi ymosu 3Haxoosamocs
i3 p038 A3KY 3a0aui eeoMempudHo iHiuHo20 depopmysanns. [Ipasi uacmunu ougepenyianvHux pieHaHbs npu Qikcosa-
HUX 3HAYeHHAX napamempa t, wo gionosioaroms cxemi Pynre-Kymmu-Mepcona, 3naxoounucs i3 po3e sizKy eapiayiunol
3adaui ons Qyukyionana y gopmi Jlaepamnsca. Bapiayivini 3a0aui poss’azysanucs memooom Pimya 6 noconanni 3 me-
mooom R-ghynkyiil, wjo 00360/15€ MOYHO 8PAXYSAMU 2eOMEMPUUHY THPOPMAYI0 NPO Kpatiosy 3adavy i nodamu HaOIu-
JHCeHUTl PO36 A30K Y 6UeNA0l POpMYaU — CIMPYKMYPU PO38 A3KY, AKA MOUHO 3A0080MbHSE BCIM (3A2AbHA CMPYKMYpPaA)
abo yacmumi (vacmrkosa cmpykmypa) epanuunux ymos. Pose’sazano mecmogy 3a0auy onsi HeHiUHO20 USUHY K8AOPA-
MHOI JHCOPCMKO 3aKPINeHol Niacmunu nio OI€r PIGHOMIPHO PO3NOOIIEHO20 HABAHMANICEHHS PI3HOI IHMEHCUBHOCMIL.
Pesynomamu ons npoeunis i nanpysicensb, OMpumMaHi 3a 00NOMO20i0 pO3POOAEH020 MEMOOY, NOPIGHANI 3 AHANIMUYHUM
PO36 A3KOM | PO36 SI3KOM, OMPUMAHUM MEMOOOM CKIHYeHHUX eflemenmis. Po3e’azano 3adauy eucuny scopcmo 3axpin-
JIeHOT naacmuHu ckiaonoi popmu. JJocniodnceno 6niue 2eomempuyHol popmu Ha HANPYHCEHO-0ePOPMOBAHUL CINAH.

Knrwuosi cnosa: enyuxa nonoea 06010uka, cknaona opma, memoo R-@yuryiti, memoo npooosdicenHs 3a na-
pamemponm.
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