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The stress state of a homogeneous isotropic layer under the action of a spa-
tial static external load is studied. Two circular cylindrical supports are cut
into the body of the layer parallel to its borders. The supports and body of
the layer are rigidly coupled. The spatial problem theory of elasticity is
solved using the analytical-numerical generalized Fourier method. The
layer is considered in the Cartesian coordinate system, the supports are
considered in the local cylindrical coordinates. Stresses are set on the upper
and lower surfaces of the layer. The supports are considered as cylindrical
cavities in a layer with zero displacements set on their surfaces. Satisfying
the boundary conditions on the upper and lower surfaces of the layer, as
well as on the cylindrical surfaces of the cavities, a system of infinite inte-
gro-algebraic equations, which are further reduced to linear algebraic
ones, is obtained. An infinite system is solved by the reduction method. In
the numerical studies, the parameters of integration oscillatory functions
are analyzed, problems at different distances between supports are solved.
A unit load in the form of a rapidly decreasing function is applied to the
upper boundary between the supports. For these cases, an analysis of the
stress state was performed on the surfaces of the layer between the supports
and on the cylindrical surfaces in contact with the supports. The numerical
analysis showed that when the distance between the supports increases, the
stresses oy on the lower and upper surfaces of the layer and the stresses t,,
on the surfaces of the cavities increase. The use of the analytical-numerical
method made it possible to obtain a result with an accuracy of 107 for stress
values from 0 to 1 at the order of the system of equations m=6. As the order
of the system increases, the accuracy of fulfilling the boundary conditions
will increase. The presented analytical-numerical solution can be used for
high-precision determination of the stress-strain state of the presented prob-
lems type, as well a reference for problems based on numerical methods.

Keywords: cylindrical cavities in a layer, generalized Fourier method, Lamé
equation.

In mechanical engineering and the aerospace industry, it is needed to face the design of parts, which

fastening to each other is cylindrical incut. The calculation of such details is usually done using methods of
resistance of materials, construction mechanics or the finite elements method. That is, the calculation scheme
is either simplified or an approximate method is used. But such methods are ineffective when it is necessary
to have accurate values of the stress-strain state [1].

Analytical or analytical-numerical methods are used to increase the accuracy of calculation results. Thus,
in papers [2-5], problems are solved for a layer with cavities perpendicular to its boundaries. But these methods
cannot be used to solve problems of statics of spatial elastic bodies in the form of a layer with longitudinal cavities.

Furthermore, in case when cylindrical cavities are parallel to the layer boundaries, stationary problems
of diffraction of elastic waves, where the Fourier method is used in combination with the method of images, are
considered in papers [6-9]. But this approach does not allow to solve problems with more than three boundary
surfaces.

For spatial models with a large number of boundary surfaces and high accuracy of the stress state deter-
mination, the analytical-numerical generalized Fourier method is the most effective [10]. Based on this method,
the problems for a cylinder with cylindrical cavities or inclusions [11-14], for a half-space with a cavity [15], for a
layer with one cavity [16, 17], a layer with several cylindrical cavities [18], a layer with one [19] or with two in-
clusions [20] are considered. In the listed papers, the problems, boundary conditions and algorithms for the solu-
tion of which do not allow applying them to problems for a layer with cylindrical incut supports, are considered.
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The papers [21, 22], which solve problems for a layer with one cylindrical cavity [21] and for a layer
with a cylindrical pipe [22], are most relevant to the topic under consideration. The boundary conditions in
these papers allow to consider the proposed model as a layer with one incut support. But additional condi-
tions are required to take into account the second support.

Given the absence of a method for calculating problems for a layer with incut cylindrical supports in
the presence of similar calculation schemes in practice, the chosen topic is relevant and needs to be studied.

For a high-precision solution of the problem, the analytical-numerical generalized Fourier method
will be used in the paper.

Problem statement 62
The elastic homogeneous layer has two cylindrical
cavities that are located parallel to its boundaries. Cavity
radii are R,, where p — cavity number.
Cavities will be considered in local cylindrical co-
ordinate systems (p,, ¢, z), layer — in the Cartesian coor-
dinate system (x, y, z). Layer boundaries are located at a

distance y=h and y=—}7 (Fig. 1).
It is necessary to find the solution of the Lamé equa- ) ) ) o
tion, provided that at the upper boundary of the layer stresses | Fig I. A layer with two incut cylindrical supports

FU (x,z}yzh = F(x,z) are given, and on the bottom one — stresses FU (x,2),_; = F’;lo (x,z), on the cavity

v

surfaces — displacements U ((pp,z} ook, =Ug((p p,z), where U — displacement in a layer;

F(7=2.G.{1 ° ;. d1vU+—U+ (nxrotU)} — stress operator;

el

F(x,z)=1 yxex +Ghey+r(yz) 6.

0( )= yxex-i_G ey+T£12)z’ (1)
Ug((pp, ) e +U( €, +U£ )ez,

known functions, which will be considered rapldly decreasing from the origin of the coordinates along the
axis z and x.

Solution method
The basic solutions of the Lamé equation for Cartesian and cylindrical coordinate systems are cho-
sen in the form [10]:
_'I:L (X, ¥z, H) = ngd)ei(}‘z+ux)iw;
(P, 0,z }\,) = N(P)[ (}\'p)ei 7\.Z+mq) . (2)

R,
Skm(p,(p,z A)=N, N )[(s1gn7» (]7»|p) M”""’] k=123;

1 4, o 1 i 1
N =2 N =2 (o1l v () VY =Krot(e3(1) ) NP -V
ng)=%{V(p§j+4(c—l)(v—53(2)§ﬂ; N3(p)=%rot(53(2) '); y=yA+p’, —o<hu<o,
P 2z

where I, (x), K, (x) — modified Bessel functions; Ek’m » Sy » — inner and outer solutions of the Lamé equation
(+)

for the cylinder, respectively; u ,Ef), u, ' —solutions of the Lamé equation for a layer; ¢ — Poisson's ratio.

The problem solution is given in the form [18]
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iB” (pp,(pp,z X)d?»+
L 3)
+ J- I(Hk x LV, Z5A },l) Flk(?u,u)-ﬁ,gf)(x,y,z;?u,u))dud?»,

where Skm<pp,(pp,z X) km(pp,(pp,z;k), u,E )(x,y,z;k, u) and ﬁ,({")(x,y,z;k, u) — basic solutions given by for-
mulas (2), and unknown functions H, (k, u) ,H i (k, u) , B,Ef’,,), (k) must be found from the boundary conditions (1).
The formulas [10] are used for transition between coordinate systems:
— for transition from solutions S +.m Of cylindrical coordinate system to layer solutions i by (at 1>0)
and u uk (at y<0)

§k’m (pp,(Pp,Z'k)z % J‘m/}_: e M ED, ﬁlgl) .@, k=1, 3;

N 4
22 —iux, £17,
S2 m(pp,(pp,Z A= j(d" ([ +7\‘2pr11-1(¢)$7\‘2ng) ii4u(l—6 —*3(?)).u’

where y =A%+’ , ;(x,u)z“T”, m=0x112,...;

— for transition from the layer solutions u ,£+) and u ,E_) to cylindrical coordinate system solutions Iik’m

i xy.2) =TS (1o, V'R, (=1, 3)

m=—oo

(5)
()(x ¥,z = Pl Z[l o:) - m u+yp 73) iyﬁz’m+4u(1—cs)1§3,m)] s

where Rk,m :Ek,m(ppak)'ei(m(perkz); gl,n(p,}\,) e I (xp)-i-l 1 (}\,p) (é 7\}:1 +e J,
P

bolp) =2, a3 1)tz ool o] 100+ 401,600 o)
P

53,” (p,)= —[Ep 1, (Xp)kiJr €, i (kp)} ; €,, €,, €. are unit vectors in the cylindrical coordinate system;
p

— for transition from the solutions of the cylinder with the number p to the solutions of the cylinder
with the number ¢

Sinpy9,730.)= ni e (o, e k=1, 2, 3
b p,)= 1) K, (0, ) (o),
b, (o, )= (1Y K, (10, )’ ( 2): ©
B0 0= U R ) Bl )2 o) R, 1 )

where a,, is the angle between the axis x, and segment / - K ( )=(sign(x))" - K (] |)

V @-U

To meet the boundary conditions on the upper and lower boundaries of the layer, we find the stress for
the right part of vector (3). We equate the obtained vector at y=A given as Fho (x,z) , and at y=h given as
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F; (x,z), represented by the double Fourier integral. Basic solutions S’kw (p PO p,z;k), with the help of the
transition formulas (4), will be rewritten in the Cartesian coordinate system through basic solutions
ﬁ,(;)(x, y,z;?»,u) at y=h and ﬁ,g+)(x, y,z;?»,u) at y—-z . In this way, we get three equations for the upper
boundary of the layer (one for each projection) and three equations for the lower boundary of the layer with 12
unknowns H, (), H, (), BZ) (), BX),(.).

From this system of equations, we find H, (A,u) and H,(A,u) by B (n).

k,m
To satisfy the boundary conditions on the surface of each cavity p, the right-hand part of (3) will be
rewritten using the transition formulas (5) and (6) in the local cylindrical coordinate system of each cavity p

through basic solutions Rk,m, Si.m- The resulting vector, at p,=R,, equals to the given as U 2 ((p p,z), repre-
sented by the double Fourier integral. As a result, for each cylinder with the number p, we will get three infinite
systems of linear algebraic equations with respect to B (k), which contain H, (k, u) and H i (k, u).

k,m

In this way, we will get 12 integro-algebraic equations with 12 unknowns H, (X, u), H i (X, u), B,Ef’rz (X)

Excluding the previously found from these equations H, (k, u) and H i (k, u) by B,Ef’rz (X) and getting rid of series
over m and integrals over A, we will get 12 infinite linear algebraic equations of the second kind to determine the
unknowns B,Ef’rz ().

We will apply the reduction method to the obtained infinite systems of equations, as a result of which we
will find the coefficients B,Ef’rz (1). Now B (1) will be substituted in the expression for H, (A,u) and H, (A,u).

k,m
Thus, all unknowns of expression (3) will be found.
The numerical solutions of the infinite system presented in the paper by the reduction method
showed its convergence, which satisfies the boundary conditions with high accuracy.

Numerical studies of the stressed state
There are two cylindrical cavities in the elastic isotropic layer (Fig. 1). Poisson's ratio of the layer
(ABS plastic) is 63=0.38, modulus of elasticity is £;=1700 N/mm’. Geometric parameters of the model are:
R,=Ry=5mm, h=12 mm, & =12 mm, 0,,=0, o;5=. We will set the distance to the cavities in two versions
L12:L13:15 mm and L12:L13:30 mim.
—2

Normal stresses in the form of a unit wave G(yh)(x, z)=-10" (22 + 102) -(x2 +10? Tz , and zero tangen-

tial stresses r(y’;) = r(y};) =0 are set at the upper boundary of the layer, stresses G(f)(x,z) = T(yi)(x,z) = ’ngl;)(x,z) =0

are given at the lower boundary of the layer. 05
The infinite system was truncated by the parameter ’ _ 50, - 1=
m=6 (the number of terms of the Fourier series and the order | & 0.0 F==r—r= fﬁﬁ\7 1:;?’ =
of the system of equations). E 05 P X 2|4 ’ .
The integrals were calculated using Philo's quadra- ;:“3 " \\ /& 3
ture formulas. The accuracy of meeting the boundary condi- | * -1,0 37
tions with the specified m and the specified geometric pa-
rameters is not less than 10 at values from 0 to 1. This cor- -1, A0 30 20 10 0 10 20 30 40
responds to paper [16], where a detailed analysis of the con- T T 3
vergence of the equations with respect to different values of Distance, mm
m for a layer with cavities was carried out. Fig. 2. Stresses on the upper and
Fig. 2 shows the schedule of specified stresses ¢, and lower surfaces of the layer:
their corresponding stresses o, on the upper and lower sur- 1 —given as o,;
faces of the layer at z=0. 2 — o, on the upper boundary at L,=L;3=15 mm,;
When increasing the distance between supports, [ > — Oxon the upper boundary at L,,=L13=30 mm;
stresses o, grow on the upper and lower surfaces of the ‘;7 oxon tl}lle llower t;)ounc(iiary at Iilz:_LL”:_g% mm;
layer. At L,=L,5=30 mm maximum stresses o, on the upper ~ o on the lower boundary at £;=L;=30 mm
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surface of the layer exceed the specified values (Fig. 2, line 3). Also, at L;,=L;3=30 mm, a significant in-
crease in stresses o, is observed on the upper and lower surfaces of the layer near the supports.

Fig. 3 shows stresses o, on the support surface located on the right (p=2) at z=0.

When the distance between the supports increases, the maximum stresses 6, on the surfaces of the cylin-
ders decrease (Fig. 3), shifting to the horizontal axis in the direction of the load.

Stresses o, graphs on the surface of the support located on the left (p=3), are symmetrical to Fig. 3
relative to the vertical axis (71/2).

Stresses 6, and o. graphs almost coincide with each other and have the same appearance as stresses
o,, only with smaller values. So stresses Gy max—=-0.08794 MPa (at ¢=2.74889, L,=L3=30 mm), Gy, max=-
0.26128 MPa (at =2.356, L,=L5=15 mm), G, m.x—-0,0886 MPa (at ¢=2.74889, L,=L5=30 mm), Gy, max=-
0,26548 MPa (at ¢p=2.356, L,=L;3=15 mm).

Fig. 4 shows stresses T,, on the support surface located on the right (p=2) at z=0.

When increasing the distance between supports, stresses T,, on the surfaces of the cylinders increase
(Fig. 4).

Stresses graphs 1,, on the surface of the support located on the left (p=3), are symmetrical to Fig. 4
with respect to the vertical axis (n/2) and with a different sign.

0.4
0.2 & 03 AN
& o f TS = 2 | 7] N
= N/ g 02 3
6 0,2 N e RIZANIAN
o \ /L 4 0.1 e N ™~ ~
2 04 L £ 00 E=C / /\ =
B h @ i
-0,1
06 W4 w2 3WA n 5wA 6w/d T4 In WA W2 3WA T SwA 6m/A T4 2m
Angle of rotation, rad Angle of rotation, rad
— —L12=30 L12=15 — —LI12=30 L12=15
Fig. 3. Stresses a6, on the cavity surface p=2 Fig. 4. Stresses t,, on the cavity surface p=2

Conclusions

An analytical-numerical method for solving the spatial problem of the theory of elasticity for a layer
rigidly connected to two circular cylindrical supports cut into it is proposed. The problem is reduced to an
infinite system of linear algebraic equations, which allows the reduction method to be applied to it. Numeri-
cal studies give reasons to claim that its solution can be found with any accuracy by the proposed method,
which is confirmed by the high accuracy of the fulfillment of the boundary conditions.

The presented comparative analysis shows that in the given model the stresses o, increase as the dis-
tance between the supports increases on the lower and upper surfaces of the layer, as well as stresses t,, on
cavity surfaces.

The suggested solution method allows to obtain the stress-strain state for a layer with only two longi-
tudinal circular cylindrical supports. For further development of this method, the number of supports can be
increased and cylindrical inhomogeneities between the supports can be added.
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AHaJIi3 HANIPYKEHOT0 CTAHY 1IAPY 3 IBOMAa HWIiHAPUYHUMHU BPi3aHUMH OMOPAMU

B. 0. MipomnikoB, O. b. Casin, M. M. I'pedennikoB, B. ®@. [lemenko

HamionansHuii aepokocMiunuii yHiBepeuTeT iM. M. €. )KykoBcbkoro «XapKiBChbKHH aBialliftHUN iHCTHTYT»,
61070, Ykpaina, XapkiB, Bys. Ukanosa, 17

Jocnioscyemoest nanpyoicenuii cman 00HOPIOHO20 i30MPONHO20 Wapy npu Oii RPOCMOPOBO20 CIMAMUYHO2O0 30~
BHIUWHLO2O HABAHMAIICEHHS. []6] KpY208i YUNIHOPUYHI ONOPU 8PI3aHi 8 MINO WAPy NApaneibHo 1o2o mexcam. Onopu ma
Mio Wapy #opcmKo chpsadxceni misxc coboro. Ilpocmoposa 3a0aua meopii npyscHocmi po3s ’a3yemuvcsi 3a 00NOMO2010
AHATTMUKO-YUCENbHO20 Y3a2anbHeno20 memody Dyp’e. Illap pozensioaemuvcs 6 0exapmositl cucmemi KOOpoOuHam, ono-
pu — y JoKanvHux yuninopuunux. Ha eepxuiit ma HudcHiti nogepxuax wapy 3aoaui Hanpysicenns. Onopu po3enaoaromscs
¥V 8uenA0i YUIiHOPUYHUX NOPONCHUH Y WaApi 13 3A0AHUMU HA IX NOBEPXHAX HYIbOBUMU NepeMilyeHHAMU. 3a00801bHAOYU
CPAHUYHUM YMOBAM HA 8EPXHIll I HUMCHINI NOBEPXHAX WAPY, d MAKOHC HA YUNTHOPUUHUX NOBEPXHAX NOPONCHUH, OMPU-
MAHO CUCMeMU HEeCKIHYEHHUX [HmMeepo-aneeOpaiuHux pisHsHb, AKI 8 NOOAIbULOMY 36€0eHI 00 NIHIHUX aleeOpaiuHux.
Hecxinuenna cucmema posg’azyemocsi memoOoom pedykyii. ¥V uucenvhux 00CHiONCEHHAX NPOAHANIZ08AHO Napamempu
IHmMeepy8anHs KOIUGHUX (PYHKYIU, p036 a3aHi 3a0ayui npu pisHux siocmawnsx midc onopamu. OOUHUYHE HABAHMANCEHHS
¥ 6U2nA0L WEUOKO Cnadaryoi QYHKYI npuUKIadeHo Ha 6epXHill meci mioic onopamu. [isa yux eunaokie npogedeHo aHa-
N3 HANPYICEHO20 CMAHY HA NOBEPXHAX WAPY MIJC ONOpaMu Ma HA YUITHOPUUHUX NOBEPXHAX, WO KOHMAKMYIOMb 3
onopamu. Hucenvrutl ananiz noxkaszas, wo npu 30LIbUWEHHI GIOCMAHI MINC ONOPAMU 3POCAIOMb HANPYICEHHS Oy HA
HUDICHITL A 6EpXHill NOBEPXHAX wapy U HANPYHCEHHS Ty, HA NOBEPXHAX NOPOUCHUH. Buxopucmanns anarimuxo-
YUCenbHO20 MemOody Oan0 MONCIUBICIMb ompumamu pesyasmam i3 mounicmio 107 ons snavens nanpyocens 6io 0 0o 1
npu nopaoky cucmemu pieHano m=~6. Ilpu 36invuenni nopsaoKy cucmemu MmoyHiCmos UKOHAHHS 2PAHUYHUX VMO8 3DOC-
mamume. [Ipedcmasnene aumanimuko-4ucenvHe po36 sA3aAHHA MOHCe BUKOPUCMOBYBAMUCA O BUCOKOMOYHO20 BU3HA-
YeHHsl HANPYIHCEHO-0ehOPMOBAHO20 CIMAHY NPEOCTNABLEHO20 MUNY 3a0al, a MAKOJIC K emaionne 0as 3a0ay, wo 6asy-
JOMbCA HA YUCETbHUX MEeMOOax.

Knrouoei cnoea: yunindpuuni noposicnunu 8 wapi, yzaeanrvrenuii memoo @Pyp’e, pisnanns Jlaue.
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