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UDC 539.3 A new numerical-analytical method for solving physically nonlinear bending prob-
lems of thin plates with complex shape made from materials that differently resist
BENDING OF PLATES to tension and compression is developed. The uninterrupted parameter continua-
WITH COMPLEX tion method is used to formulate and linearize the problem of physically nonlinear
SHAPE MADE FROM bending. For the linearized problem, a functional in the Lagrange form, given on

the kinematically possible displacement rates, is constructed. The main unknown

MATERIALS THAT problems (displacements, strains, stresses) were found from the solution of the
DIFFERENTLY RESIST | initial problem, which was solved by the Runge-Kutta-Merson method with auto-

matic step selection, by the parameter related to the load. The initial conditions
TO TENSION AND are found from the solution of the problem of linear elastic deformation. The right-
COMPRESSION hand sides of the differential equations at fixed values of the load parameter cor-

responding to the Runge-Kutta-Merson scheme are found from the solution of the

variational problem for the functional in the Lagrange form. Variational problems
are solved using the Ritz method in combination with the R-function method, which
snsklepus@ukr.net allows to submit an approximate solution in the form of a formula — a solution
ORCID: 0000-0002-4119-4310 structure that exactly satisfies the boundary conditions and is invariant with re-
Anatolii Pidhornyi Institute spect to the shape of the domain where the approximate solution is sought. The test
problem for the nonlinear elastic bending of a square hinged plate is solved. Satis-
factory agreement with the three-dimensional solution is obtained. The bending
problem of the plate of complex shape with combined fixation conditions is solved.
The influence of the geometric shape and fixation conditions on the stress-strain
state is studied. It is shown that failure to take into account the different behavior
of the material under tensile and compression can lead to significant errors in the
calculations of the stress-strain state parameters.
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Introduction

Experimental studies of the mechanical properties of many materials (gray cast iron, light alloys,
polymers, composites, etc.) testify to their unequal tensile and compression resistance beyond linear elastic-
ity [1-4]. The deformation diagrams of such materials are nonlinear and contain a small initial linear section
where the Young's moduli during tensile and compression are approximately the same. At a higher load, the
nonlinear nature of deformation, in which the diagrams of deformation during tensile and compression differ
significantly, is manifested. The different resistance of materials to tension and compression is one of the
effects of phenomenon the material deformation characteristics dependence on the kind of loading, which
was first systematized and analyzed in detail in [4].

Theories and methods of the stress-strain state of plates calculation in a physically nonlinear setting are
widely presented in the literature and continue developing. A fairly complete overview of the current state of the
problem of solving physically nonlinear problems of the theory of plates and shells made of materials with char-
acteristics that depend on the type of loading is presented in [4, 5]. Most often, in research, plates and shells of
canonical geometric shape are considered. For example, in papers [6—9], nonlinear-elastic and elastic-plastic de-
formation of rectangular plates, thick-walled cylinders, cylindrical and conical shells made from materials that
differently resist to tension and compression were studied for the first time. In this case, the discrete orthogonali-
zation methods of S. K. Godunov, uninterrupted parameter continuation, iterative methods and the Runge-Kutta-
Merson method for the integration of initial problems were used to solve physically nonlinear problems.

The analysis of the available literature showed that currently there are no papers devoted to the study
of physically nonlinear deformation of plates with complex shape made from materials that differently resist
to tension and compression.
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In the case of plates with a complex geometric shape, there is a need to use universal calculation meth-
ods, such as the finite elements method [10], the R-function method [11, 12], the "immersion" method [13], etc.

The purpose of the paper is to develop a numerical-analytical method for solving the problems of
physically nonlinear bending of thin plates with complex shape made of materials that differently resist to
tension and compression, based on the use of the R-function method.

Formulation of the problem. Solution method
An isotropic thin plate with a thickness /# and with an arbitrary shape Q is considered in a rectangular
Cartesian coordinate system O x; x, z. The plate is under the action of a transverse load of g=¢(x1, x,) intensity.
It is assumed that the strain tensor components & consist of "linear" ¢;;, which are subject to Hooke's
law, and "nonlinear" n; (elastic or plastic) components, i.e.

€y = € TNy - (1
Kirchhoff's hypotheses are assumed to be correct. Then the deformations in the plate are related to
the displacements by relations

€11 TU — W5 By T Uy g = ZWagy,  Yig = 281 Tl TUyy —22W,p, €5 =0, ((=123), )

where u(x1, x2), ux(x1, X2), w(x1, X,) are displacement of the points of the coordinate surface along the axes
Ox,, Ox,, Oz respectively.
Stress and "linear" deformations e, are related by Hooke's law

E E
oy, =_—V2(el1 +V622), Gy =ﬁ(€22 +Vel1)a Oy, =2Gey,, G)

where E, v are Young's modulus and Poisson's ratio of the plate material; G = ﬁ is the shear modulus.

I+v
To formulate and linearize the problem of physically nonlinear bending of plates, the method of unin-
terrupted parameter continuation of the solution [14] will be used. A parameter ¢ € [to, t*], associated with an

external load, is introduced into consideration. Initial value =, is set in such a way that it ensures the deforma-
tion of the plate material within the limits of linear elasticity, and ¢ corresponds to the given load level g(t-)=¢ .
The derivative with respect to the parameter ¢ is marked with a dot above the symbol. Further, ac-
cording to the text of the paper, derivatives by parameter 7 will be called rates.
For the variational statement of the problem, we will use a functional in the Lagrange form, given on
the kinematically possible displacement rates, which for a three-dimensional body has the form [15]

L(¥,)=05 j j j &6 dV — j j Pv.ds. (4)
v s,
In our case, the functional (4) will be written by the following formula
Lty 1y, W) = O,SII J(dll(éll =M1 )+ 6as (€25 = M1pn )+ 615 (71 — 21y )M dxydlz — j gwdx,dx, , (%)
Q (h) Q

where the rates of the "nonlinear" components 7, ,, 1,,, M, are considered given for each fixed value of the

parameter and do not vary.
After differentiating relations (1)—(3) by parameter ¢ and substituting in (5), we obtain a functional in
the Lagrange form for the bending problem of a thin plate

L= 075.[_'-[‘41 (”1,1 + ”2,2)+ Aty 1t 5 + A (“1,2 + ”2,1)2 —2B, (”1,1Wv1 1+”2,2W922)_ 2B, (”1,1W722+“2,2W71 1)_ 2B;Ww; (”1,2 + “2,1)
o

.2 .2 . . .2 f f f (e .
+Dy (W’I 1‘*“"422)+ 2D, Wy +Dytingy e, — jj(Nl ithy 1 + Nty 5 + le(ul,z Ty, )}lxldxz +
o

[ [ i oy 20 i Y, — [ [ vty 6)
Q Q
where

ISSN 2709-2984. Journal of Mechanical Engineering — Problemy Mashynobuduvannia, 2023, vol. 26, no. 2 17



I[MPUKIIAIHA MATEMATHKA

A = dez, A, =Vv4,, A3:deZ’ Blzj.izdz, B,=vB,, B3=2Iszz,
W=V ) =V ()

Ez*
Dlzjmdz,Dzszl,D3=4.[Gzzdz; (7)
(n) (n)
lel = J.l_—z(nu +vn22)dz, N‘zfz = J-l_—z(nzz +vn11)dz > Nié = 2IGn12dZ >

(Y (Y ()

-, Ez . . - Ez . . - .
Miq:_[l 2(n11+vn22)dz, szzz 1 2(“22‘“”111)‘12 > Mé=2IGnlzde- (3

(h)" (n)" (n)

The stiffness parameters of the plate and "fictitious" forces caused by nonlinear components are cal-
culated by formulas (7), (8).

Solution of the variational equation 8L=0 gives the distribution of the displacement rates for fixed
values of the parameter £, at any point on the plate. The main unknown problems of nonlinear plate bend-
ing can be found by integrating the corresponding rates from the solution of the Cauchy problem by the load
parameter for a system of differential equations

du, du, . dw
- = u] s T & l/lz s T s
dt dt dt
de,, . . de,, . . dy, . . .
— =, —ZW,, —=Uy s —ZW,0y, ——==1U 5 +lUy, —2ZW,,,
dt L1 T 2,2 2 12 Tl 12
do E . . . ) . .
U= 3 (”1,1 TV, , _Z(Wan“‘VWazz)_ (1111 + VN, )),
dt  1-v
do E /. . . . ) .
2= 2 (uz,z vy - Z(W922+VW711)_ (nzz + anl))’
dt 1-v
do . . . :
2= G(”l,z tuy— 2ZW712_27112)’
dt
dng, _ . dny, _ . dng, .
= s = s = . 9
dt 1 _dt M2 _dt N2 )

The nonlinearity of the system (9) is due to the nonlinearity of the constitutive equations for
M, (k,1=12), which will be specified below. The initial conditions for the required functions are found

from the solution of the linear deformation problem at g(¢,)=q,. For this, it is possible to use a functional of
the form (6), in which the rates of the functions must be replaced by the functions themselves and it should
be assumed that the "fictitious" forces are N, /{z =0, M /{z =0 (k, =1, 2).

We will solve the initial problem for the system of equations (9) using the Runge-Kutta-Merson
(RKM) method with automatic step selection [16]. To calculate the right-hand sides of equations (9) at fixed
values £>1,, corresponding to the RKM scheme, it is necessary to solve the variational problems for the func-
tional (6) for five times at each step. Variational problems were solved using the Ritz method in combination
with the R-function method [11].

Numerical results

As a test example, nonlinear elastic bending of a square (2ax2a) hinged plate made of gray cast iron
CY 15-32 is considered. The geometric dimensions are as follows: a=0.05 m, thickness #=0.01 m.

For gray cast iron, the equality of the modulus of elasticity under tensile and compression on the ini-
tial linear sections of the deformation diagrams was experimentally established. At the same time, beyond
the limits of linear elasticity, the diagrams differ significantly and depend on the type of loading [1].
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Young's modulus and Poisson's ratio of the material: £=1.07x10° MPa, v=0.22. Tensile strength is
0,=150 MPa. It should be noted that under compression the strength limit for cast irons is higher than under
tensile by approximately 2.5-4.5 times [17].

The plate is under the influence of a transverse load

q(x1 , Xy ) =q, cos L cos 22
2a 2a
where ¢,=8.0 MPa.
A linear law for the amplitude of the external load is set as
q0(t)= qo1 + 1405 » (10)
where t € [0, t*].

To describe the nonlinear behavior of the material, tensor-linear constitutive equations that describe

the dependence of the material characteristics on the type of loading [18] are used
Co, +AlS,
M, = V(Ge)c'xe(”—ly+ 360} : (11)

GeZ

Here o,=0,,+0G, is a equivalent stress; o, =BI,, o, =AI} +Cl,; I =tr(c)= 8,0, ,

I, = tr(62)= 6,0, (i,j=1, 2, 3) are linear and quadratic invariants of the stress tensor; 4, B, C are material

parameters determined from experimental data.
The simplest approximation for the function v(ce) in (11) may be a power dependence [18]

n—1

v(o,)=no;
Parameters A, B, C, n for the gray cast iron CY 15-32 material were found from the data of basic ex-
periments on tensile, compression and torsion, which are given in [5] (Part 1)
2n n 2n

A=-1.024-10" MPa ", B=1.148-10" MPa ", C=2.891-10"° MPa "I, n=4.4.

If the elastic-plastic deformation is studied, then relations (11) should be supplemented with the con-
dition of plasticity [4, 5, 18].

The kinematic boundary conditions for hinge fixation have the form

w=0,u_=0, (12)

where u_=u,n, —u,n,; ny, n, are direction cosines of the external normal » to the contour of the plate 0Q.

The structure of the solution satisfying condition (12) can be written as follows:

w=o0®,, i =0,D, +0d,, 1, =0, D, +od,,

where ®@,, i=1, ..., 4 are undefined components of the solution structure; function w=w(x;, x,) is obtained us-
ing the R-function theory and satisfies the conditions [11]: ®=0, ®,=-1 on the border 0Q2, ®>0 inside Q. Re-

quirement of function ® normalization to the first order (®,=-1) in some cases is not required.
For a square plate, the function has the form

O=0; Ay Oy,

where o, =2L(a2 —xzz), 0, = L(c12 —xlz), and symbol A, denotes the R-conjunction [7]:
a

2a
Sino 12 =f1+f2_\/f12+f22-

In the numerical implementation the undeﬁned components of the solution structure were given in
the form of finite series ®,(x,, x,,?) ZC @( (’) xl, x, ), where C ()(¢) are undefined coefficients, which

are found at each step by the Ritz method; 7 is the fixed value of the load parameter; {f @ } are systems of

n
linearly independent functions. Power polynomials of the form x1 x2 were used as {f (’)} Rates of equivalent
stresses G, in the constitutive equations, at each step by ¢, were assumed to be constant and were calculated

from the values of stresses and stress rates in the previous step.
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Tables 1-3 compare the results of calculation of deflections and normal stresses obtained in a three-
dimensional setting (3D) [7] and using the R-function method (RFM). The spatial solution is obtained by
expanding the unknown functions into trigonometric Fourier series. Linearization was performed by move-
ment along the load in combination with iterative refinement of the solution. Tables 1, 2 show data for de-
flections and stresses on the lower surface of the plate (z=A/2) in section x,=0, and Table 3 shows stress dis-
tribution across the thickness in the center of the plate.

Table 1. Deflections w*1 04, m Table 2. Normal stresses 61, MPa Table 3. Normal stresses ¢;;,, MPa
x/a | 3D | RFM x/a| 3D | RFM in the center of the plate
0.0 | 2.60 | 2.48 0.0 | 107.0 | 92.2 2z/h 3D RFM
02 | 247 | 235 0.2 | 104.0 | 91.0 -1.0 | -168.0 | -164.9
04 |209]| 1.99 04 | 93.7 | 86.6 -05 | -77.8 | -76.9
0.6 | 1.51 | 143 0.6 | 757 | 71.7 0.0 10.7 11.6
0.8 | 0.79 | 0.75 0.8 | 433 | 434 0.5 71.5 78.5
1.0 | 107.0 | 922

From the Table 3, it can be seen that the influence of different behavior of the material under tension
and compression is manifested in a significant difference in the absolute values of stresses in the tensiled and
compressed regions. At the same time, membrane stresses appear in the plate, and the neutral surface shifts
toward the compressed fibers.

From the above results, it can be concluded that the method proposed %
in the paper provides a satisfactory match with the results of the three- U
dimensional solution. The maximum relative error for deflections is 5.3%,
and for stresses — 13.8%. -a

Next, we will consider a square hinged plate and a plate with complex
shape made of gray cast iron CH 15-32 material under the action of a uniformly
distributed load ¢=6.0 MPa (Fig. 1). The rectilinear sections of the plate with
complex shape contour are hinged, and the circular corner cutouts are free from
fixation. Geometric dimensions: 2a=2b=0.1 m, »=0.02 m, #=0.01 m.

The area border equation shown in Fig. 1 has the form

(9:((91 o CO2)/\0 (((93 No (94)/\0 (035 No (’06))20’ (13)

=== -=-
! |
|

|
|

S
]
-l
|
)

Fig. 1. Plate with circular cutouts

where , =2Lb(b2 —xzz), ®, =2L(a2 —xlz), 0, =2L((x1 —a)2 +(x2 —b)2 —rz),
a r

1 ) ) 1 2 ) 1 > )
0, =§((x1 +a) +(x2 —b) —rz), P =;((x1 +a) +(x2 +b) —rz), 0 =;((xl —a) +(x2 +b) —rz).
In this case, the structure of the solution can be written as follows:
w=0,P,, 4 =0,0,, u, =0,D,, (14)
where o, =, A, ®,.

It should be noted that since the structure of the solution (14) satisfies only the kinematic boundary
conditions, the function ® defined by the formula (13) is not included in the structure and is used only for
finding the coordinates of the nodes of the integration grid over the area Q when calculating the Ritz matrix.

Fig. 2 shows graphs of the dependence of the deflections in the center of the plate with complex
shape on the intensity of the transverse load ¢. Solid lines correspond to the nonlinear solution, and dashed
lines — to the linear solution. Fig. 3 shows similar graphs for a square plate.

Figs. 4, 5 show the results of calculating the absolute values of stresses in the center of a plate with
complex shape and in the center of a square plate. In the figures, the number 1 corresponds to the stresses on
the upper surface (z=-#/2), and the number 2 — on the bottom surface (z=A/2). Dashed lines show the linear
solution.
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Fig. 2. Deflections in the center of the plate with complex shape Fig. 3. Deflections in the center of the square plate
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Fig. 4. Stress in the center of the plate with complex shape Fig. 5. Stress in the center of the square plate

In the numerical calculations, both in the test one and in this example, the load in formula (10) was
taken as: go;=1.0 MPa, q<>2=10'l MPa, and the initial step and the given calculation error in the RKM method
were equal to: At=107, &=107.

The graphs shown in Figs. 2-5 show that the presence of corner cutouts in the plate that are free
from fixation leads to an increase in deflections and stresses, and failure to take into account the different
behavior of the material under tensile and compression significantly affects the calculation results.

Conclusions

A new numerical-analytical method for solving the problems of physically nonlinear bending of
plates with complex shape made from materials that differently resist to tension and compression has been
developed. The method is based on the joint use of R-function method and methods of uninterrupted parame-
ter continuation and Runge-Kutta-Merson.

The test problem was solved, a match with the spatial solution was obtained. The calculation of the
nonlinear elastic bending of the plate of complex shape with combined fixation conditions was performed.
The influence of the geometric shape and fixation conditions on the stress-strain state was studied. It is
shown that failure to take into account the different behavior of the material under tensile and compression
leads to significant errors in the results of the calculation of SSS parameters.
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YV ecmammi po3pobneno Hosuill YuCenbHO-AHATIMUYHUL MEMOO PO36 S3AHHA (DIZUYHO HENIHIIHUX 3a0ay 32UHY
MOHKUX NIACMUH CKIAOHOI hopmu i3 Mamepianis, o HeOOHAK08O ONUPAIOMbCA po3maey I CImucky. s nocmanogxu i
nineapuzayii 3a0aui Qi3UYHO HEMIHITIHO20 32UHY GUKOPUCMOBYBABCL MEMOO HeNnepepeHO20 NPOO0GICEHH: 3a napamem-
pom. [[na nineapuzosanoi 3adaui no6ydoearno @yHkyionan y gopmi Jlacpansica, 3a0aHutl Ha KIHEMAMUYHO MONCTUBUX
weuokocmsx nepemiujenvb. OcHOGHI HegiOOMi 3adaui (nepemiujenHs, Oeopmayii, HANPYIHCEHHS) 3HAXOOUNUCS I3
PO38 3Ky noYamko6oi 3a0aui, AKa po3e azyeanacs memoodom Pynre-Kymma-Mepcona 3 agmomamuynum eu6opom Kpo-
Ky, 3a napamempom, noe si3anum i3 HasawmagiceHHam. Ilouamxosi ymosu 3Haxoounucs i3 poss 3Ky 3a0ayi JHItHO-
npyscroeo deopmyeanns. Ilpagi vacmunu oupepeHyianbHux pigHsaHb Npu QIKCOBAHUX 3HAUEHHAX NAPAMEMPA HAGAH-
maoicents, wo 8ionogioarome cxemi Pynre-Kymma-Mepcona, 3naxoounucs i3 po3e’s3Ky eapiayiinol 3a0aui 0ns QyHK-
yionana y gopmi Jlacpanoica. Bapiayiuni 3adaui po3é szysanucs memooom Pimya 6 noconanni 3 memooom R-ghynkuyiil,
AKUL 00360J18€ ROOAMU HAOIUNCEHUL PO36 A30K Y GUSTAOL POPMYIU — CIMPYKMYPU PO36 A3KY, SIKA MOYHO 3A0060NbHIE
SPAHUYHUM YMOGAM I € IHEAPIAHMHOIO CMOCOBHO ¢hopmu obracmi, e GIOULYKYEMbCA HAOMUINCEHUT PO38 A30K.
Po36’azano mecmosy 3a0ayy 015t HEAHIUHO-NPYHCHO2O 32UHY KEAOPAMHOI wapHipno onepmoi naacmuny. Ompumano
3a006inbHULL 3012 13 MPUSUMIDHUM po36 s3koM. Po36 s3ano 3a0auy 3euny niacmunu cKiaoHoi popmu 3 KOMOIHOBAHUMU
ymMogamu 3akpinaenus. JocnionceHo eniue eeomempuiHoi popmu i yMO8 3aKPINIeHHs HA HANPYICEHO-0ehopMOEaHUl
cman. [lokazano, wo He8PAXY8aHHs PI3HOT NOBEOIHKU MAMeEPIaLy 3a po3msa2y i CHUCKY MOJiCe NPU3BECMU 00 CYMMEGUX
ROXUBOK Y PO3PAXYHKAX NAPAMEMPIE HANPYIHCEHO-0ePOPMOBAHO2O CIMAHY.

Knrouosi cnosa: mouxa naacmuna, QizuuHo HeHIUHUL 32UH, CKIAOHA Gopma, memood R-yrxyiil.
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