APPLIED MATHEMATICS

DOI: https://doi.org/10.15407/pmach2023.04.050

UDC 539.3 The paper presents a study of the dynamics of the oscillatory dissipative system

of two elastically connected pendulums in a magnetic field. Nonlinear normal
STUDY vibration modes of the pendulum system are studied in the paper taking into
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OF THE MATHEMATICAL elastic element. A system with two degrees of freedom is considered. The

masses of the pendulums in that system differ significantly, which leads to the
MODEL possibility of localization of oscillations. In the following analysis, the mass

OF THE COUPLED ratio was chosen as a small parameter. For approximate calculations of mag-
PENDULUMS MOTION netic forces, the Padé approximation, which satisfies the experimental data the

most, is used. This approximation provides a very accurate description of

magnetic excitation. The presence of external influences in the form of mag-
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tests, which are an implementation of the Lyapunov stability criterion. The
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Introduction

Pendulum models are often used in nonlinear dynamics. One of the most important stages of studying
the dynamics of nonlinear systems with several independent variables is the study of nonlinear normal modes
of oscillations (NNMs). It is of great importance for engineering applications to establish the possibility of lo-
calization of oscillations, which sometimes harms the normal functioning of machines and devices. In addition,
it is important and difficult to study the oscillations of systems under the influence of magnetic forces.

In recent papers [1-3], a theoretical and experimental study of the dynamics of two coupled pendu-
lums in a magnetic field was conducted. In addition, the NNMs of oscillations in such a system without tak-
ing into account the influence of dissipative forces for the case when the masses of these coupled pendulums
differ significantly is considered in [4]. It should be noted that from now on, various aspects of the theory of
NNMs and various cases of its application are presented in many papers. The main elements of this theory
and references to papers can be found, in particular, in the reviews [5, 6] and the book [7]. It should also be
noted that the problem of localization of oscillations is very important both for theory and for engineering
practice. In view of this, it has been studied in recent decades in numerous papers, among which it is worth
to highlight the [8—10] ones.
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Based on the fact that there is a significant nonlinearity in the system, it is necessary to use asymp-
totic methods to analyze the forms of oscillations. Considering what has been said, the multiples scales
method, which can be successfully applied specifically to dissipative systems, as well as numerical simula-
tion, is used. In addition to the construction of vibration modes, their stability was studied, and conclusions
about the influence of changes in system parameters on its dynamics were drawn.

Main bod
. ?Fh}e’: studied mathematical model of the coupled pendulums move- _. '\N\'\'\'\N\‘ A

ment is shown in Fig. 1, where m=pm,=um; W is the ratio of masses of two
pendulums; ¢ is the conditional small parameter; e=1; m is the mass of the lar-

L7

ger pendulum; k, ==L; I = 4ms” is the stiffness of the associated elastic ele-

ment; k,* (¢, —¢,) is the moment of torsional deformation of an elastic ele-

ment; v is the magnetic excitation intensity; M, = — M, is the '
c ’ 1 ' Fig. 1. The coupled pendulums
moment of magnetic influence; C; , = % ; C12 1s the coefficient of resistance system

of viscous air forces (drag forces); C, = % ; C, is the coefficient of the damping moment created by the elastic

element; 7 sin is the moment of return of gravity; »* = % ; s is the distance between the center of mass of the
pendulum and the rotation axis. The system is described by a system of differential equations (1).
eny =eyM 0, —€CI —eC, (@) —py) — e sing; —k; (0, —¢,),
0y =YM 0, —€C50, —EC(9y = G)) =1 siNQ, —k; (9, — ).
It should be noted that the measurement units of the parameters are as follows: m is measured in kg,
s —inm, 7 —in N'm, / — in kg'm’, k; — in N-m/rad, ¢ — in rad (their values in degrees will also be given in

brackets, € and y — dimensionless quantities, and g=9.81 m/s?). In numerical calculations, the initial velocities
are zero: ¢,(0)=¢,(0)=0.

(1)

Considering the fact that we are studying the be- e
havior of the system when the angles of rotation of the pen- —— Approximation of magnetic influence
dulums are not very significant, we will use the expansion 8821
of sine in the Maclaurin series. In the expansion, we will
use only terms not higher than the third order.

We will use the Padé approximation of the mag-
netic effect in the form (2).
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where ay, a1, a», by, b, are coefficients of the model obtained — + =+ -
using the least squares method in order to satisfy the experi- olrad)
mental data the most [1-3]. A comparison of this approxima-

. . . . - Fig. 2. Experimental data of the magnetic moment
tion with experimental data is shown in Fig. 2. s P 4 &

in comparison with a numerically consistent model

The solution (1) is given in the form of an expansion by a small parameter

Q) =P + 80y +0(e%) ; (%) =(P20+8(P21+0(82) ) (3)
where @19, (¢ 1s the solution of the generating linear system; @y, ¢, is the solution of the first approxima-
tion for a small parameter .
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The multiples scales method is used [10]. In accordance with it, the following time scales are intro-
duced, namely:

Iy=1;1,=¢1;1=0,t, “4)
where T — is the fast time; 7 is the slow time.

When performing the standard transformations of this method, the systems of equations (5) and (6)
are obtained. These systems correspond to the first two approximations with a small parameter &:

_kl* (@10 —P2) =0,

e aZ(P i . (5)
2 20
® =—r -k — .
0 oT? P9 —k; (P29 —Py9)
82(p * * a(p * *
“m(z) 50 = medgl -G = =W Q1 —k; (0 —9yy),
| oT; oT, o
g
az(P az(p * * aq) « 1 N
2 20 21 20 3
;| 2 +—2L=yM ~—C _r L e _ ,
O( 071,07, 6T02 mags 2 oT, (9, 6 ®39) =k (02 — 1))

Q10 =Py = A4, (T})cos(T, +Vv) is the solution for (5), which corresponds to coupled (in-phase) vibration
mode. The magnetic moment acting on the first pendulum is represented by the Fourier series according to
relation (7) (for the magnetic effect on the second pendulum we will use the coefficients 4, i = (0,6) ).

x 1{ g, . .
M = ~—| =22+ ~cosi(Ty +vVv) |, 7
mag, ][ 2 ;gl (0 )J ( )

4

n/2 3 .
where g, == jsign«pm)[ao +Mjcos(i(% F V)T, i=(06).
TS 1+ b,9;4 + 5,0y,

To prevent the appearance of secular terms in the solution of the system of equations (6), we exclude
terms containing functions cos(7, +v) and sin(7, +v) in the right-hand side of these equations, and as a
result we obtain the equations (8) and (9).

ov vy r A
cos(T, +V): 20°4,—+-(g, +h)+—L=0; 8
(Ty ) 0 lﬁTl I(gl 1) g 3
. . 2 aAl * *
sin(7, +v): 20)06_T+A1(C1 +C,)=0. 9)
1

(CI+CDT, (Cr+CT (Cr+CT,

- Tm2)T _ Al B EAS SR 2 24,1720
It follows that 4, =e 205 Y =M@ 203 +%e o} ; where A4,

I(C, +C)) 16(C, +C,)

is the arbitrary constant determined by the initial deflection of the pendulum. A comparison of the analytical
solution with the numerical one, which is applied to the base system (1) using the Runge—Kutta method of the
4th order, is carried out for the initial values of the variables that are set from the analytical solution. Such a
comparison shows the good accuracy of the analytical approximation at sufficiently small values of the p
parameter, and for such values of the initial angles of the pendulums, which do not exceed approximately 60°.
To study the influence of the parameters and initial conditions of the system on the stability of the in-
phase mode, the parameters are fixed as follows: y=0.1; k=1; m=1; s=1.5; C;=3.1x 10°; C=7.2x10";
C,=13.736x107, and parameter 45, which is responsible for the initial angle of the pendulum, will be set as an
array of elements located at equal intervals in the range from -2 to 2. In addition, the value of the ratio of the
masses of the two pendulums will change in the range from 0.01 to 0.25. The number of elements in the
given arrays is 50 and 25, respectively. Based on this, a study of the growth of the number of instability
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nodes in relation to the duration of the simulation time of the system behavior with the specified parameters
was carried out. The analysis showed that the number of instability nodes stops increasing after the duration
of the system simulation of 1000 seconds. Both with a simulation duration of 1000 seconds and 6000 sec-
onds, the number of unique angle values does not exceed 28. Therefore, studying the stability of the model,
we will limit ourselves to a simulation time of 1000 seconds.

The stability of the associated vibration mode depending on the parameters A3, | is analyzed by nu-
merical implementation of the Lyapunov stability criterion, which was proposed and described in [11]. The
stability of the vibration mode is determined by orthogonal deviations from its trajectory in the configuration
space, and the initial conditions for deviations from the trajectory are determined by the initial values of the
angles of the two pendulums on the oscillation form as ¢, ,(0) =1,01-¢,,(0) . After that, the specified devia-

tions when changing time are calculated. The instability of the vibration mode is detected when the deviations
according to the modulus |$1,2 (t)| exceed the values p|(p1,2 (0)| . As shown in [11], the values p can be chosen

in a sufficiently wide range of numbers exceeding 1.
In this paper, it is set that p=1.1. Taking into account
that we study the stability of vibration modes depend-
ing on the parameter values A3, y, then on the corre-
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>

lected as As€[-2, 2], ue[0.01, 0.25]. The results of the ;
calculations are shown in Fig. 3, where the regions of 0
instability are highlighted. H

The examples of stable and instability grid
nodes from Fig.3 are considered. It is set that Fig. 3. Instability regions of the coupled mode
01(0)=30.14°, 2(0)=30.454° and the corresponding val- on the plane of parameters ¢,(0) and u depending
ues are p={0,01, 0,1}. The result of such simulation is on the system simulation time

shown in Fig. 4.

The results of the calculations demonstrate that the coupled mode is unstable at small values of the
parameter 1, if the initial values of the angles are small. This follows from the fact that at small initial angles,
the influence of magnetic forces significantly exceeds the influence of elastic forces in the system. In other
words, an increase in the value of the mass proportionality factor leads to a decrease in the trajectories wan-
dering in the configuration space near the mode.

The next step is to study the influence of the distance from the center of mass of the pendulums to
the rotation axis on the mode stability. To do this, it should be noted that the parameter s€[0.1, 4]. 25 equi-
distant points from a given range are considered. The result is shown in Fig. 5.

The values of p are set in Fig. 5 legend. The three-dimensional Figure 6, which depicts the regions of
instability of the studied vibration modes in the space of parameters @,(0), , s is considered as well.

The in-phase mode is more pronounced at a greater distance between the center of mass and the rota-
tion axis with a considerable initial deviation of the pendulums, since the influence of the magnetic moment is
smaller. This mode is observed when both the distance and the mass of the smaller pendulum increase. How-
ever, with a significant increase in the ratio of the pendulums, regions of instability appear even at significant
distances, as we can see in Figs. 6 and 7. We will give an example of instability in Figs. 8 and 9, respectively.

In Fig. 7, ¢,(0)=-52,8515°% ¢(0)=—-52,88°, s=2,2125; u=0,25. At the same time, in Fig. 7, one can see
the occurrence of beating, which is the result of the addition of natural and forced oscillations near the reso-
nance, at the same initial energies. The amplitude of the oscillations changes from a minimum value equal to
the difference of the initial amplitudes to a maximum, which is equal to the sum of the amplitudes of the ini-
tial oscillations, and again to a minimum value. The beating period is the repetition time of this process.

The influence of the coupling coefficient k;€[0,01, 1] is studied. From the specified range, 25 equidis-
tant points were considered. Regions of instability in the space of parameters @,(0), u, &; is constructed in Fig. 8.

In Fig. 9, we will demonstrate several examples of the region of instability on the plane at different
values of parameters ¢,(0) and . and at fixed values k; (values are given in the legend to the diagram).
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Fig. 11. Instability regions of the in-phase mode
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depending on the simulation time of the system

The influence of the dissipation coefficients on the stability of the associated form of oscillations should
also be studied. The values of all friction coefficients from the range of C, , .€[107, 10"'] (25 points from the

specified interval were considered) are provided. Th
rameters @,(0), u and in the space of parameters ¢,(0)

e regions of instability will be derived on the plane of pa-
, 1y C1.2,- The results are shown in Figs. 10-11.

Fig. 10 depicts the decrease in the number of instability nodes when increasing values C; ..
Now, a study of the localized vibration modes will be conducted. It can be analytically represented

after introducing the time transformation ¢ = Jet. Then system (1) takes the form (10).
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Hop, = SYM;agl —eC§, —£C, (¢, — p,) —ewr sing, —k, (¢, —9,),
P, = gzyM:;ag2 —e2Cyp, —€°C. (9, —¢,) —&r sing, —&k, (¢, —@,).
Similarly, just as in the case of the in-phase mode, fast and slow time scales will be introduced accord-
ing to the multiples scales method. The found functions will be expanded by a small parameter €, similar to

formulas (3) and (4). Two systems corresponding to two approximations with a small parameter are written as
follows:

(10)

o°¢ .
“C‘)g 6T;O =—k; (10— Pr)>
el 5 ‘ (11)
¢
oT;
gy , 9 J : e e L . :
2 20 11 10 10 20
My | 2————+—— |=YM,,,, —C, —Co| o | 9y — K (9 — ),
J. ( oT,0T, oIy ¢ orT, or, o7, 12

3(2 82(on n az(le

oT o o1’ J: _”*(on _kl*((on = 0y9)-
004, 0

*

k, . . . . .
020=0, @,0 = 4,(T})cos(T, +V), 0)(2) = - is the solution of (11). The magnetic moment is given in
1

the form (7). Again, terms containing cos(7, +v) and sin(7;, +v) are excluded, therefore

cos(T, +v): 2uw§AIQ+1gl—uAl(r*+k,*)=O; (13)
o1, 1
. 2 aAl * *
sin(7, +v): 2ucooﬁ+/ll(C1 +C,)=0. (14)
1
4, (CI+CT, B €L,
It follows that 4, =e ke y=— 18 _e M +%.
C +C, 2w,

When studying the influence of parameters 45, which is determined by the initial angles of the pen-
dulums, and p for the localized mode, we came to the same conclusions as when studying the in-phase mode.
As the value of the pendulum masses ratio increases, the deviations near the mode decrease and the localized
mode becomes more defined. It is clear that at small initial angles the localized mode does not exist, since
the influence of the magnetic moment is very significant.

Conclusions

A stable in-phase (coupled) vibration mode does not exist over the entire range of initial conditions.
It is unstable at small initial values of the deflection angles of the pendulums, if the masses of the pendulums
differ significantly. An increase in the pendulum masses ratio leads to a decrease in the trajectories wander-
ing near the mode. The in-phase mode is more pronounced at a greater distance between the center of mass
and the rotation axis, since the influence of the magnetic moment is smaller. This mode is observed when
both the mass of the smaller pendulum and the distance increase. In most of the considered cases, at large
values of the distance from the rotation axis to the center of mass of the pendulum and the mass ratio coeffi-
cient, an increase in the value of the coupling coefficient leads to stabilization of the in-phase mode and a
decrease in the trajectories wandering near such a mode. An increase in dissipation does not always force the
trajectories into an vibration modes.

Like the in-phase mode, the localized mode does not exist over the entire range of the initial deflec-
tions of the pendulums. As the value of the pendulum masses ratio increases, the deviations near the mode
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decrease and the mode becomes more defined. It turned out, as for the related mode, that localization mani-
fests itself when the connection and the distance between the center of mass and the rotation axis of the pen-
dulums increase, or when both the connection and the proportionality factor of the pendulum masses in-
crease. Large coefficients of masses proportionality along with large values of bounding and distance with
increasing friction coefficients reduce the trajectories wandering near the localized mode, or pull the trajecto-
ries to this mode.
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JociixkeHHs cTIHKOCTI MaTeMaTHYHOI MO/ieJIi pyXy NOB’SI3aHUX MASTHHUKIB
IO. E. Cypranoga, 0. B. MixJin

HamionansHuit TeXHIYHUN YHIBEPCUTET «XapKIBCHKUH MOTITEXHIYHAN 1HCTUTYT»
61002, Ykpaina, M. XapkiB, Bya. Kupnudosa, 2

Y cmammi npeocmasneno 0ocniodxcenns OuHaAMIKU KOAUBATLHOI OUCUNAMUBHOL CUCTHEMU 080X NPYICHO
108 A3aHUX MASAMHUKIG Y MASHIMHOMY NOL. J{OCTIONHCeHO HeiHIlUHI HOPMATLHI MOOU KOIUBAHL MASAMHUKOBOT CUCTeMU
3 Ypaxy8aHHAM ONOpy cepeoosulld, MOMEHMY OeMNnpy8anHs, CMBOPEHO20 NPYICHUM eremenmom. Posenanymo
cucmemy 3 080MA CMYNeHAMU CBOOOOU, 6 SAKIll MACU MASMHUKIG CYMMEBO PO3PIZHAIOMbCS, WO NPUBOOUMb 00
MONCIUBOCMI NOABU JOKANIZAYTT KOAUBAHb. Y HACMYNHOMY OOCHIONCEHHI CNIBBIOHOWEHH MAC 00pAHO SK MATUll
napamemp. /s HAOAUNCEHUX PO3PAXYHKIE MASHIMHUX CUN 8uKopucmosyemuvca anpoxcumayis Ilade, axa Haiibinviue
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3A0080IbHAE eKCnepUMeHmManbHum oanum. Lle nabnuscenus 3abesneuye 0ysice MOUHUN ONUC MACHIMHO20 30Y0)CEHHSL.
Hasienicme 306HiwHix 6naugie y @ueisioi MASHIMHUX CUl [ PI3HO20 MUNY HABAHMAICEHb, 5IKI ICHYIOMb 8 6a2amvox
[HOICEHEPHUX CUCMEMAX, 3HAYHO YCKIAOHIOE AHANI3 MOO KOAUBAHb HemMiuHux cucmem. I[Iposedeno Oocniodcenns
HENHIUHUX HOPMATLHUX MOO KOJUBAHL Y OAHIll CUCMEMI, NPUYOMY OOHA 3 MOO € NOG SI3AHUM DENCUMOM, d Opyed —
JoKanizosanor. Moou korueanv no6y008aHo memooom bazamvox macuma6is. Bueueno sax pezynaphy, maxk i CK1aoHy
noeediHKy npu 3MiHI napamempis cucmemu. Bnaue yux napamempis 00CHiONCEHO 0N MANUX [ 3HAYHUX NOYAMKOBUX
KYMI8 HAXUY MAAMHUKA. AHanimuynuil po3e s30K, saKuti 6azyemvcsi Ha memooi Pynee-Kymmu uemeepmoeo nopsoxy,
NOPIGHAHO 3 pe3yTbMaAmamy YUCenbHo20 MoOeniogants. Ilouamkoei ymosu 0st po3paxyHKy MO0 KOIUBAHb GUHAUAIUC
aHanimuyHum po3se 'a3kom. Hucenvhe MoOento8anHs, siKe CKIA0AemMvbcsi 3 no6y00su hazosux oiazpam, mpacKmopii y
KOHicypayitinomy npocmopi ti amMnaimyOHo-4acCmomHUX XapaKxmepucmux, 0036015€ OYiHUMU OUHAMIKY CUCTNEMU, WO
Modice Oymu 5K pe2yisipHo, MakK i ckiaonow. CmIUKICmb pejcumie KOAU8aHb 00CAIOHNCEHO 3 OONOMO20K) MeCcmis
YUCeNbHO20 aHani3y, AKi € peanizayicio Kpumepito cmitikocmi Jlanynoea. Ilpu yvbomy cmilikicms pesjicumis KoausaHb
BUBHAYUAEMbC  WIISAXOM  OYIHKU OPMOSOHANbHUX —GIOXUNIEHb GIONOGIOHUX MPAEKMOPIN  PENHCUMIE8  KOAUBAHb Y
KOH@hi2ypayitinomy npocmopi.

Knrouosi cnosa: nog'szani masmuuxu, MAazHimui Cuiu, HeAiHIHI HOPMAIbHI MOOU KOJIUBAHb, Memoo 6a2ambox
Macwmabie, cmitKkicme.

Jliteparypa

1. Polczynski K., Wijata A., Awrejcewicz J., Wasilewski G. Numerical and experimental study of dynamics of two
pendulums under a magnetic field. Proceedings of the Institution of Mechanical Engineers. Part I: Journal of Sys-
tems and Control Engineering. 2019. Vol. 233. Iss. 4. P. 441-453. https://doi.org/10.1177/0959651819828878.

2. Wijata A., Polczynski K., Awrejcewicz J. Theoretical and numerical analysis of regular one-side oscillations in a
single pendulum system driven by a magnetic field. Mechanical Systems and Signal Processing. 2021. Vol. 150.
107229. https://doi.org/10.1016/j.ymssp.2020.107229.

3. Polczynski K., Skurativskyi S., Bednarek M., Awrejcewicz J. Nonlinear oscillations of coupled pendulums sub-
jected to an external magnetic stimulus. Mechanical Systems and Signal Processing. 2021. Vol. 154. 107560.
https://doi.org/10.1016/j.ymssp.2020.107560.

4. Surganova Yu. E., Mikhlin Yu. V. Localized and non-localized nonlinear normal modes in a system of two coupled
pendulums under a magnetic field. International Journal of Non-Linear Mechanics. 2022. Vol. 147. 104182.
https://doi.org/10.1016/j.ijnonlinmec.2022.104182.

5. Mikhlin Yu. V., Avramov K. V. Nonlinears normal modes for vibrating mechanical systems. review of theoretical
developments. Applied Mechanics Reviews. 2010. Vol. 63. Iss. 6. 060802. https://doi.org/10.1115/1.4003825.

6. Avramov K. V., Mikhlin Yu. V. Review of applications of nonlinear normal modes for vibrating mechanical sys-
tems. Applied Mechanics Reviews. 2013. Vol. 65. Iss. 2. 020801. https://doi.org/10.1115/1.4023533.

7. Kerschen G. (ed.) Modal Analysis of Nonlinear Mechanical Systems. Vienna: Springer, 2014.
https://link.springer.com/book/10.1007/978-3-7091-1791-0.

8. Manevitch L. I., Smirnov V. V. Limiting phase trajectories and the origin of energy localization in nonlinear oscil-
latory chains. Physical Review E.2010. Vol. 82. Iss. 3. 036602. https://doi.org/10.1103/physreve.82.036602.

9. Vakakis A. F., Gendelman O. V., Bergman L., McFarland D. M., Kerschen G., Lee Y. S. Nonlinear targeted
energy transfer in mechanical and structural systems I. In: Solid Mechanics and its Applications. Vol. 156.
Springer, 2008. P. 1-1033.

10. Nayfeh A. H., Mook D. T.  Nonlinear oscillations. John Wiley & Sons, 1995. 720p.
https://doi.org/10.1002/9783527617586.

11. Mikhlin Yu. V., Shmatko T. V., Manucharyan G. V. Lyapunov definition and stability of regular or chaotic vi-
bration modes in systems with several equilibrium positions. Computers & Structures. 2004. Vol. 82. Iss. 31-32.
P.2733-2742. https://doi.org/10.1016/j.compstruc.2004.03.082.

58 ISSN 2709-2984. Journal of Mechanical Engineering — Problemy Mashynobuduvannia, 2023, vol. 26, no. 4



