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A new numerical-analytical method for solving physically nonlinear
deformation problems of axisymmetrically loaded cylinders made of
materials with different behavior in tension and compression has been
developed. To linearize the problem, the uninterrupted parameter con-
tinuation method was used. For the variational formulation of the lin-
earized problem, a functional in the Lagrange form, defined on the
kinematically possible displacement rates, is constructed. To find the
main unknowns of the problem of physically nonlinear cylinder defor-
mation, the Cauchy problem for the system of ordinary differential
equations is formulated. The Cauchy problem was solved by the
Runge-Kutta-Merson method with automatic step selection. The initial
conditions were established by solving the problem of linear elastic
deformation. The right-hand sides of the differential equations at fixed
values of the load parameter corresponding to the Runge-Kutta-
Merson’s scheme are found from the solution of the variational prob-
lem for the functional in the Lagrange form. Variational problems are
solved using the Ritz method. The test problem for the nonlinear elastic
deformation of a thin cylindrical shell is solved. Coincidence of the
spatial solution with the shell solution was obtained. Physically non-
linear deformation of a thick-walled cylinder was studied. It is shown
that failure to take into account the different behavior of the material
under tension and compression leads to significant errors in the calcu-
lations of stress-strain state parameters.
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Introduction

Axisymmetrically loaded cylinders are widely used in modern technology, for example, as pressure
vessels (hydraulic cylinders, gun barrels, nozzles, boilers, fuel tanks), battery housings, cylinders for the aer-
ospace industry, nuclear reactor pipelines, etc.

Many materials (light alloys, superalloys, gray cast iron, polymers, composites, etc.) are characterized
by different resistance to tension and compression beyond linear elasticity [1-3]. The problem of deformation of
bodies made of such materials becomes physically nonlinear. However, when studying the physically nonlinear
deformation of cylinders, scientists face certain mathematical difficulties associated with modeling the nonlinear
behavior of the material, developing methods of linearization, and solving nonlinear boundary value problems.

The study of physically nonlinear deformation (nonlinear-elastic, elastic-plastic problems, creep prob-
lems) of cylinders and cylindrical shells is studied in, for example, papers [4-19]. Only a few papers [11-19]
study the nonlinear deformation of cylinders and shells made from materials with different behavior in tension and
compression. Thus, in paper [11], the solution of the problem of nonlinear elastic bending of a cylindrical shell
made from material with different behavior in tension and compression was obtained by integrating the Cauchy
problem by the Runge-Kutta-Merson’s method with a simultaneous five-fold solution of the boundary problems
at each step for the original equations by the method of discrete orthogonalization. In the monograph [12, P. 1],
the problems of elastic-plastic and nonlinear-elastic deformation of thick-walled cylinders were reduced to the
solution of initial boundary value problems. The methods of discrete orthogonalization of S. K. Godunov and
movement along the load in combination with iterative refinement of the solution were used to integrate the equi-
librium equations. In the paper [13], a comparative analysis of the spatial and shell solutions of the axisymmetric
problem of creep and damage of a cylinder under the action of external pressure is performed. Both in the spatial
and in the shell formulation, the problem was reduced to an initial boundary problem. Integration by time was
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performed using the Runge-Kutta-Merson’s method, and boundary value problems at each step were solved using
the R-function method and the S. K. Godunov discrete orthogonalization method.

The theory and methods of calculating the nonlinear deformation of cylinders made of non-
traditional materials are currently being developed. The aim of the paper is the development of a numerical
and analytical method for solving the problems of physically nonlinear deformation of cylinders from mate-
rials with different behavior in tension and compression, based on the use of the uninterrupted parameter
continuation, Ritz and Runge-Kutta-Merson’s methods.

Formulation of the problem. Solution method

An axisymmetrically loaded isotropic hollow cylinder of finite length in a cylindrical coordinate sys-
tem Oroz is considered. Axis Oz coincides with the axis of symmetry.

To formulate and linearize the problem of physically nonlinear deformation of cylinders, we will use the
uninterrupted parameter solution continuation method [20]. Let's introduce a parameter ¢ € [to, t*], which is re-

lated to the external load acting on the cylinder. In this case £, is the value of the parameter at which the deforma-
tion problem is linear, and ¢+ corresponds to the specified loading level. Let's mark the derivative with respect to
the parameter with a dot above the symbol . Further on derivatives by parameter ¢ will be called rates.

Let's assume that the components €, of strain rate tensor consist of linear ¢;; , which are subject to

Hooke's law, and non-linear n;; components, i.e

érr = érr + ﬁi‘r ’ ézz = ézz + 1;]zz ’ é(p(p = éq)np + pq)np ’ érz = érz + 1;]rz : (1)
After differentiating the Cauchy dependencies in cylindrical coordinates by the load parameter ¢ [21],

we obtain the relation between the strain rates and the displacement rates
é}'}" = u}',}' > é

oo = U Ir, € SUzzs V2= 28rz =Up TU (2)

where u#,, 4, are displacement rates along the axes Or and Oz.
Similarly, by differentiating Hooke's law [21] with respect to ¢ and taking into account (1), we obtain
the relation between stress rates and strain rates
c.Frr = k(ézz + éqxp - 1.1zz - ﬁ(p(p)+ kl(érr - T.1rr)

b

c-Fzz = k(érr + é(p(p - 1;Irr - T.1q>q>)+ }\‘l(ézz - ﬁzz)

b

c.s(p(p = 7\‘(‘én’ + ézz _f]rr _f]zz)+ 7\‘l(é(p(p _h(p(p)

b

drz = G(er - 2’ﬁrz)’ (3)

where A =L, A =A+2G; E, G, v are Young's modulus, shear modulus and Poisson's ratio of
(1-2v)1+v)

the material.

To describe the nonlinear behavior of the material, we use tensor-linear constitutive equations that
describe the different behavior of the material under tension and compression [22]

Co; + ALY,
My = ncg—lde[’f—“f BESI.J.J, (1,7=1.23), (4)

Ge2

where 6, =0, +6,, is the equivalent stress; o, = Bl;, 6,, =+ AI} +CI, ; I, = 8,0 »

and quadratic invariants of the stress tensor; 4, B, C — material parameters determined from experimental data.

If elastic-plastic deformation is studied, then relations (4) should be supplemented by the condition
of plasticity.

Consider the method of determining the parameters of the material 4, B, C in relations (4). For this,
it is necessary to have experimental data for material samples, for example, under uniaxial stress state and
under pure torsion.

Let’s assume that as a result of experiments on uniaxial tension (c;,>0) it is established that in the di-
rection of the applied load is

I, =c;0; are linear
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n =K,o01, ()
and on uniaxial compression (c,;<0) it is
M = _K7|G11|n . (6)
Similarly for pure torsion (c,,70) it is
201, = K015, (7)

where K, K , K, n are material constants.
In the case of a simple load, equations (4) can be integrated and written in the form

o Coy+ALS;

Y Ge2
From relations (8) for uniaxial tension, we will have
+1
In case of compression
— +1

For pure torsion

2y, =ofy(V2C (1)

Next, matching (5) and (9), (6) and (10), (7) and (11) in pairs, we get the following system of equations

Waxc+s)" =k, Wasc-8)"=k_, (2" =k,,

from which it is easy to find the material parameters
oy R 2
A=025 K+ K| —C, B=05 KM —K™1 |, C=05K"".

For the variational statement of the problem, we will use a functional in the Lagrange form, given on
the kinematically possible displacement rates, which for a rotation body has the form [12]

2n
A(l’.lr’ uz) = 05,[_[ I[drr (érr - 1;'lrr)—i_ dzz(ézz - T.'|zz)+ G(P(P(é(P(P - 1:'l‘P‘P)_‘_
Q0

2n
46, (1 ~2m rdrdzdo — [ [(BV4, + Bl )docad. (12)
xQ, 0
where 0Q, is the part of the border 6€2, to which surface loads are applied; P,°, P are normal and tangent
components of external loads; n, T are external normal and tangent to the contour 0Q,; u, =u,n, +u,n,,
u, =u,n, —u,n,; n,,n, are direction cosines of the normal .

In formula (12) the rates of the nonlinear components 1,,., M., NeesN,- are considered given for

each fixed value of the parameter ¢ and do not vary.
Substituting (2), (3) into (12) and integrating along the angular coordinate, we obtain the following
functional:

-2

A=0s(] {x{u,{, +i?, +”—2j +Gla, . +u25,)2+2x(u,,,uz,z +Mﬂrdrdz_
Q r

r

N f{u U el S 7 PR )}rdrdz — [(B0d, + B Jaecr (13)
r
Q 5Qp
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where N = (it + M1 +110))s N = (ki + 20 + 100 ), N = (g + 20,y +9122)), N =267,
are "fictitious" forces caused by nonlinear components of deformation.

Solution of the variational equation dA=0 gives the distribution of the displacement rate fields for
fixed values of the parameter £, at any point of the cylinder. The main unknown problems of nonlinear
deformation can be found by integrating the corresponding rate fields from the solution of the Cauchy prob-
lem with the parameter ¢ for a system of ordinary differential equations of the form

du, . du, .
=u,, =U,,
dt dt
dS,,r . dszz . dg(p(p lx.lr d'Y de . .
=u, ., =u,,, —=-L, “EZ=D2_T_u tu,.,
a7 At YT At dt a7
do ) . . ) . .
7}7 = 7“1 (Srr - 1/lrr)"' 7“(822 + Sq)(p Mz — n(p(p)9
do . . . . . .
dtzz = 7“1(822 N )+ A‘(Srr + S(p(p My — n(p(p)’
do ) . . ) . .
d(:q) = }bl(g(p(p - %@)Jf 7‘(8/‘1’ tEe, My — nzz)’
do,, : .
dt = G(er _2nrz)’
dn,.r . dpzz . dp(p(p . dpr .
—_— . = , = N Z = . 14
e T TN T T e = (14)

The nonlinearity of the system (14) is due to the nonlinearity of the constitutive equations (4). The
initial conditions for the sought functions are found from the solution of the problem of linear elastic defor-
mation. For this purpose, we can use a functional of the form (13), in which we replace the rates of the func-

tions with the functions themselves and assume that the "fictitious" forces are N/ =N / = N({ =N ,fz =0.

We will solve the initial problem for the system of equations (14) using the Runge-Kutta-Merson’s
method with automatic step selection [23]. To calculate the right-hand sides of equations (14) at fixed values
>y, corresponding to the Runge-Kutta-Merson’s scheme, it is necessary to solve the variational problems
for the functional (13) five times at each step. Variational problems were solved using the Ritz method.

Numerical results

As a test example, the non-linear elastic deformation of a thin cylindrical shell made of gray cast
iron CY 15-32, which is loaded with an internal pressure of P;,,=4 MPa, is considered. The shell is rigidly
fixed on one edge and free from fastening and effort on the other. The geometric dimensions are as follows:
length /=0.2 m, the radius of the inner surface 1=0.195 m, the radius of the outer surface ,=0.205 m.

For gray cast iron, the equality of the modulus of elasticity under tension and compression on the ini-
tial linear sections of the deformation diagrams was experimentally established. At a higher load, the nonlin-
ear character of the deformation, in which the diagrams of deformation under tension and compression differ
significantly, is manifested [1].

Young's modulus and Poisson's ratio of the material are: E=1.07x10° MPa, v=0.22. Material con-
stants for nonlinear component deformations [12, P.1]are: K,=1.53x10"** MPa™, K =8.1x10™"** MPa™,
K¢=9,07x10"** MPa™, n=4.4.

A linear law for the load is assumed as

P

o (0)= R +2Py, (15)
where t € [0, t*].
The origin of the coordinates is placed on the fixed edge. Then the kinematic boundary conditions
will have the form
u, =u, =0 for z=0. (16)

Sequences of coordinate functions, which satisfy the conditions (16), can be written as:
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u,,:ZCDl, MZ:Zq)z,

Nl NZ
where  @,(r,z,1)= ZC,gl)(t)fn(l)(r, z), ®,(r,z1)= ZC,gz)(t)fn(z)(r, z); C,(}) , C,Sz) are indefinite
n=1 n=1

coefficients, which are found at each step by the Ritz method; # — some fixed value of the load parameter;

{f (l)}, {fn(z)} are systems of linearly independent functions. In this paper, bicubic Schoenberg splines were

n
used as {fn(l)}, {fn(z)}. Spline systems were built on a regular grid N,xXN,, where N,, N, is the number of dis-

cretization segments along the axes Or and Oz, respectively.
Rates of equivalent stresses G, in the constitutive equations were assumed to be constant at each step

by ¢ and were calculated from the stress values and stress rates in the previous step.
Figs. 1, 2 show graphs of changes of radial w=u,(ro, z) and axial u,o=u.(ro, z) displacements of the mid-

Hh—n

dle surface of the shell r =7, = along the axis Oz.

Dashed lines show the results obtained within the framework of the theory of shells [11], using rela-
tions (4), and solid lines show the results obtained using the method developed in the paper. When using it for
the loading in formula (15), the following parameters were accepted: P;=0.02 MPa, P,=10" MPa, and the ini-
tial step and the given calculation error in the Runge-Kutta-Merson’s method were equal to: Az=107 e=10".

From Figs. 1, 2, it can be seen that the results of the shell displacements calculation, obtained by the
shell and spatial models, almost completely coincided.
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Fig. 1. Radial displacements along the shell axis Fig. 2. Axial displacements along the shell axis

Next, the nonlinear deformation of a thick-walled hollow cylinder made of the material CH 15-32,
loaded with internal pressure of P;,,=22.0 MPa was considered. Geometric dimensions were: /=0.2 m,
r1=0.18 m, ,=0.22 m.

The ends of the cylinder are free of loading and fixed in such a way that the radial displacements are
equal to zero. The origin of the coordinates is placed in the center of the cylinder. Then the kinematic bound-
ary condition will be written as

u, =0 for z=%//2. (17)
In this case, sequences of coordinate functions have the form
i, = ((1/2)2 - zz)CI)l, i, = z®, . (18)

In formulas (18), the second expression is not related to the satisfaction of boundary conditions, but
only ensures the fulfillment of symmetry conditions for axial displacements.

Fig. 3 shows graphs of changes along the axis of the cylinder of the radial displacements of the mid-
dle surface, and Fig. 4 — graphs of the distribution of axial stresses 6,,=6,,(71, z) on the inner surface of the
cylinder. The solid lines show the results obtained on the basis of the constitutive equations (4), and the
dashed lines show the results based on a simplified model built only on experimental data obtained during
uniaxial tension [12].
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Fig. 3. Radial displacements along the cylinder axis Fig. 4. Axial stresses along the cylinder axis

For loading, the following parameters were taken in formula (15): P,=1.0 MPa, P,=0.1 MPa, and the
initial step and the given calculation error in the Runge-Kutta-Merson’s method were equal to: Af=107, e=107.

The graphs given in Figs. 3, 4 show that failure to take into account the different behavior of the ma-
terial under tension and compression leads to significant errors in determining the components of the stress-
strain state.

Spline systems in both solved problems were built on a regular dimensional grid N.xN,=5x10. At the
same time, the total number of coordinate functions was equal to 208.

Conclusions

A numerical-analytical method for solving the problems of physically nonlinear deformation of cyl-
inders from materials with different behavior in tension and compression has been developed. The method is
based on the joint use of uninterrupted parameter continuation, Ritz and Runge-Kutta-Merson’s methods.
The test problem of the deformation of the cylindrical shell was solved, and a coincidence with the shell so-
lution was obtained. The calculation of nonlinear elastic deformation of a thick-walled hollow cylinder under
the action of internal pressure was performed. It is shown that failure to take into account the different be-
havior of the material under tension and compression leads to significant errors in the results of the stress-
strain state parameters calculation.
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HeuniniitHe nedopMyBaHHs WUJITIHAPIB i3 MaTepiajiB, 10 HEOAHAKOBO ONMMPAIOTHCS PO3TATY i CTHCKY
'0. 3. Maaimun, "2 C. M. Ckienyc
! InctutyT Mexaniku iM. C. I1. Tumomenka HAH Ykpainu, 03057, Ykpaiuna, m. Kuis, By Hecreposa, 3

? [ncTHTYT Ipo6IeM MamMHOGyxyBanHs iM. A. M. [ixroproro HAH Ykpaiuu,
61046, Ykpaina, M. Xapkis, By:. [loxkapcekoro, 2/10

Pospobneno nosuii uucenvho-ananimuuHuil Memoo po36 a3Y6anHs (PI3UYHO HENHIUHUX 3a0ay 0eqhOpMY6aHHs OCe-
CUMEMPUYHO HABAHMANCEHUX YUWIIHOPIG I3 Mamepianis, w0 HeOOHaK080 ONUPAIOMbCsL po3msiey | cmucky. /s nineapuszayii
3a0a4i BUKOPUCTIAHO MEMOO HENePeEPEHO20 NPOOOBIICEHHS 30 napamempoMm. [l eapiayitinoi nocmaHo8Ku 1iHeapu308aHoi
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3a0aui nobyooearo gyukyionan y goopmi Jlacpansica, 3a0aHull Ha KIHEMAMUYHO MONCIUBUX WIBUOKOCIAX nepemiujerb. s
3HAXOOMHCEHHS! OCHOBHUX HeGI0OMUX 3a0ayi (DI3UUHO HENIHILIH020 OepOpMYBAHHA YUNIHOpa copmynvosaro 3adawy Kowi ons
cucmemu 36UHAHUX Ougeperyianbrux pieHsHs. 3adauy Kowi pose’sizano memooom Pywnre-Kymma-Mepcona 3 agmomamuy-
HUM 8U60pom Kpoky. Tlowamrosi ymosu 6cmano6mo8anucs Wasxom po3ea3anHs 3a0a4i JHIHO-NPYHCHO20 OeqhopMYBanHsL.
Tpasi yacmunu ougepenyianbrux picHsaHb npU GIKCOBAHUX 3HAUYEHHAX NAPAMEMPA HABAHMAICEHH, WO GION0GI0aOmb cxe-
mi Pynre-Kymma-Mepcona, 3natideno i3 po3g’sizky eapiayiiinol 3adaui o gyukyionana y gopmi Jlaspansca. Bapiayiini
3a0aui po3e’s3ano memooom Pimya. Po3g’si3an0 mecmogy 3a0auy 05t HeHIUHO-NPYIHCHO20 0eOPMYSAHHS. MOHKOT YUTIHO-
puuroi 0bonoHKu. OmpumMaro 30ie nPoCcMopo60o20 Po38 A3KY 3 000NOHKOBUM. [loCciioxnceno QizuuHo Heniniline 0eqhopmyeanHs.
mogcmocminno2o yuninopa. Ilokaszano, wo Heepaxysanms pizHoi nogediHKy Mamepiany 3a po3msazy i CMUCKy npu3e00ums 0o
SHAYHUX NOXUOOK Y Pe3yIbMamax po3paxyHKy napamempis HanpysIceHo-0eqpopmosano2o cmamy.

Knrouosi cnosa: moscmocminHull yuinop, pisHOONIPHICMb po3msiey i CIUCKY, I3udHO HeliHiliHe deopmyean-
H5l, MEMOO HeNnepepaHO20 NPOO0BICEHHS 30 NAPAMEMPOM.
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