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UDC 629.735.33.023.4.001.24 | At the stage of designing thin-walled aircraft structures, to simplify calculations, their
cross sections are idealized. To do this, the section with the skin and the longitudinal

DISCRETIZATION elements reinforcing it is replaced (When determining normal stresses) by a discrete
OF THIN-WALLED one, consisting of concentrated areas at characteristic points. In this case, the equality
SECTIONS of the moments of inertia of the initial and discrete sections is preserved. Such idealiza-

tion is used in the calculation of thin-walled rods for normal and shear stresses (Wag-
WITH VARIABLE ner model). For sections consisting of a system of rectangular strips of constant thick-
WALL THICKNESS ness, discretization allows to set approximate values of normal and shear stresses and

accurately find the locations of the singular points of the bending center (in an open
Mykhailo M. Grebennikov c?ntour) and the center of rigidity (in a closed one). 7"he discrete model of a strip con-

sists of three lumped areas: two at the edges and one in the center. The paper proposes
to extend the discrete model to sections in which the skin thickness changes according
to a linear law. In addition to the rectangular strip, it is possible to use elongated tri-
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Oleksandr G. Dibir angles and trapezoids, replaced by three and four concentrated areas, respectively. The
ag.dibir@gmail.com possibility of using a discrete model for calculating some thin-walled sections of open
ORCID: 0000-0002-2366-6353 and closed contours is considered. The section of an open contour is studied - the prob-

. . lem of transverse bending without torsion of a channel having flanges with a linearly
Anatolii O. Kyrpikin variable thickness. Differences in the flows of tangential forces calculated from the
anatolkirpikin@gmail.com exact and discrete models are shown. The coincidence of the results in determining the
ORCID: 0000-0001-8883-0663 position of the bending center according to two models was established. When studying

the application of a discrete model to a closed contour, its simplified option is pro-
posed. The problem of transverse bending without torsion and finding the center of
rigidity in a section with a contour line in the form of a trapezoid with front and rear
walls of constant thickness and upper and lower skins and a similar section with a con-
tour in the form of a rectangle was considered. Differences in the flows of tangential
Jorces calculated by exact and discrete models are established. For a closed section in
the form of a rectangle, the decrease in the moment of inertia for torsion due to the
redistribution of material in the cross section was studied separately. It has been estab-
lished that when finding the position of the center of rigidity, the discrepancy between
the results of the exact and discrete models in sections with geometric parameters close
to real ones was less than 1% for a rectangular contour, and 4% for a trapezoidal con-
tour. The results indicate the possibility of extending the application of the discrete
model of thin-walled cross section to the design calculations of thin-walled rods with
variable skin thickness, representing practical structures.
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Introduction

To simplify the calculations of thin-walled rods, their cross sections are idealized [1], replacing the
actual cross section with a skin, and the cross section is reinforced with longitudinal elements when deter-
mining the normal stresses by discrete elements, in which there are only concentrated elements at character-
istic points of the cross section. At the same time, it is necessary to ensure the exact or very close equality of
the axial and centrifugal moments of inertia of the cross section.

A similar idealization is used in the calculation of thin-walled rods for normal and tangential stresses.
At the same time, Wagner's model is used with a shell that does not work for normal stresses [1, 2]. If the thin-
walled section consists only of rectilinear strips of constant thickness, a technique called discretization [3, 4] is
used, in which each strip is replaced by three concentrated areas (at the edges and in the middle) while main-
taining the exact correspondence of the axial and centrifugal moments of inertia in the original transverse sec-
tions. The presence of reinforcing elements on the walls of the section is taken into account separately.
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© Mykhailo M. Grebennikov, Oleksandr G. Dibir, Anatolii O. Kyrpikin, 2024

34 ISSN 2709-2984. Journal of Mechanical Engineering — Problemy Mashynobuduvannia, 2024, vol. 27, no. 3



JMHAMIKA TA MILHICTb MAIIIMH

The use of discretization in the calculation of tangential stresses naturally leads to errors in their de-
termination, but it ensures the accurate establishment of the most important parameters of the cross section:
the position of the bending center (open cross section) and the center of stiffness (closed section), simplify-
ing the search for their location [4-6].

It is proposed to expand the use of the method of discretization of a thin-walled cross section consist-
ing of rectilinear strips by considering strips in the form of not only elongated rectangles, but also elongated
trapezoids and triangles.

Discretization of strips

An elongated triangular strip, as well as a rectangular one, fulfilling the requirement for the equiva-
lence of the three indicated moments of inertia, will be represented by three concentrated areas: two at the
edges (f5 at the base of the triangle and f, at its apex) and one at the center of gravity of the triangle f..

By combining a triangular strip with a rectan-
gular one, we get a discrete model for the strip in the
form of an elongated trapezoid (Fig. 1).

In practical calculations, the discrete model of
a rectangular strip for sections of a thin-walled rod con-
sisting of such strips finds sufficient application [4—6].

The proposed discrete models of strips with
linearly varying width along the length can be useful
in the development of new types of profile sections
for reinforcing panels in aircraft structures. These are
cross sections with an open contour. For the cross sec-
tions of a thin-walled rod with a closed profile, these
models appear to be in demand when developing new
structural and technological solutions for the main
spar of a helicopter, the tip of a wing of a light air-
craft, and caisson parts of aircraft structures.

The application of the proposed discrete models
of strips with a width that varies linearly along the length
is considered. The error introduced by discretization in
the calculations of thin-walled sections is estimated. Fig. 1. Discrete models for stripes

fi=b8/6
Fu=2b5/3

fmb 5,24
J=3b5y/8
Ji=b5/12

Sttty
S e
S5

JiTta

Open contour research

When studying a thin-walled section of an open contour, we will consider the problem of transverse
bending (without torsion) of a channel, the thickness of the shelves of which varies linearly. Fig. 2 shows
three options of the cross section of the channel: the left and middle sections with shelves of variable thick-
ness, and the third one, shown for comparison, has a constant thickness of shelves. The section is symmet-
rical about the x axis and has general data /=40 cm, =20 cm and 6=1 cm. The purpose of the calculations
was to determine the flows of tangential forces g, in shelves and find the position of the bending center. The
moment of inertia about the x axis for all sections was ,=29333.3 sm*.

For an accurate analytical solution, expressions for the current static moment at the starting point of
the contour coordinate ¢ bypass were obtained. The said coordinate was located at the upper free point of the

channel: for the left section S (¢)= %(61‘ + %tzj , for the middle one — S, (¢) = 2(2& - %z‘zj and for the

right one —S (¢) = ?t . The graphs are shown above the images of sections and determine the type of graphs

of the flows of tangential forces ¢, in the shelves.
Parts of a discrete section model including the top shelf for three sections are shown at the top of
Fig. 2. The concentrated areas marked there will be respectively:
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Based on the obtained concentrated areas for the three models, the values of the current static moment
Sy(f) were obtained in the areas of the upper shelf. Graphs Si(f) are shown in Fig. 2 over the corresponding
graphs of the exact solution. As can be seen, the differences in the results in the graphs for the exact and dis-
crete models are significant, but acceptable for the design calculation. There will be the same discrepancy in the
magnitudes of the flows of tangential forces g,. It is clear that the discretization for strips with linearly varying
thickness did not affect the difference in the results for g,. Further, of course, the discretization for strips with
linearly varying thickness has little effect on the graphs S.(¢) and on the difference in results for g,.

However, the discretization turns out to be useful in finding the position of the bending center of a sec-
tion of a thin-walled rod of an open profile. Here, as it was shown in [4-6], calculations of exact and discrete
sections coincide for cross sections made of strips of constant thickness. For the sections shown in Fig. 2, when
using the fictitious force method (at the same time, the lower point of the channel wall was taken as momen-
tary), the position of the bending center, which is indicated in the same figure (on the x axis and at a distance ¢
from the contour line of the wall), is determined. The results of the two solution methods coincided and were
compiled for the left section ¢=7,273 sm, for the average one — ¢=9,091 sm and for the right one — ¢=8,182 sm.

Therefore, the proposed discretization can be useful in the calculation of the cross sections of a thin-
walled rod of an open contour, its application is especially beneficial when finding the position of the bend-
ing center of an open contour.

Research of a closed loop

Moving on to the use of the proposed discretization model of strips with a linearly variable width in the
cross sections of a thin-walled rod with a closed contour, we will indicate some difficulties that arise in this case.

First of all, we emphasize that when calculating the flows of tangential forces, there were no prob-
lems with the use of this discrete model. The results of calculations based on the exact and approximate dis-
crete models are quite similar (this will be shown below), and the approximate calculation can be used to
estimate the value of tangential force flows g.

Difficulties are associated with finding the position of the center of rigidity in a closed thin-walled
section. The problem is that it is necessary to calculate the torsional stiffness of the section and a series of
integrals over sections [3, 4]. This may affect the error when calculating using a discrete model.
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The torsional stiffness of a single-locked section of a thin-walled rod is calculated as follows:

Qz
GITZTa (1)

Gd
where Q is the doubled area of the closed loop; ¢ is the contour coordinate; G is the material shear modulus;
&=0(¢) is the skin thickness, in the considered model it is a linear function.
Integrals used in calculations have the form

q(t)dt
Go (2

It was set that G=const (this is true for most problems). Then the calculation of torsional stiffness
GIr can be carried out using a discrete model according to the given formula, which does not pose any diffi-
culties with a linear change in thickness.

However, when obtaining the given integrals using an exact calculation method, certain computa-
tional inconveniences arise (g(#) — power function), especially when conducting parametric studies at the ini-
tial stages of designing structures.

A discrete model is useful to overcome these inconveniences.

In order to study the issue of the possibility of applying a discrete model, the problem of determining
the position of the center of rigidity of a closed cross section of a thin-walled rod was considered.

Fig. 3 shows a section, the contour line of which has the

shape of a rectangle, and has front and back walls of constant thick- t“ N | I
ness, as well as upper and lower skins with variable thickness, | ¢ O e et
which changes linearly and coincides with the thickness of the walls | — %V—————
at the extreme points. - B -

The calculation of the section (Fig. 3) was carried out using B -
the exact method and the basic (Fig. 4) and simplified (Fig. 5) op- Fig. 3. Rectangular section

tions of the discrete model.
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In the model (Fig. 4), the thickness of the upper and lower Fig. 4. Discrete model
skins varies linearly along the length of the contour line, and inte- S By O
grals of the type §% The simplified model (Fig. 5) additionally Fp4l7 Fosy Fio Fy

includes the constancy of the thickness on the contour sections to | =
eliminate the need to calculate the specified integrals. For example, Y
thicknesses Jp1, 0,2, Op3 represent the average thickness of the corre-
sponding part of the contour; their values are used at "calculation"
of the specified integrals.

The performed calculations showed that the use of two dis- Fig. 5. Simplified discrete model
crete models leads to approximately the same results.

A
s~

Y

Fig. 6 shows the graphs of tangential force flows in the section (Fig. 3 with the following parameters
B/H=2.5 and 6,/6,=2) in transverse bending of a thin-walled rod without torsion, when the transverse force 0, is
applied in the center of rigidity. At the same time, it turned out that the ratio of the maximum values of the flows
of tangential forces ¢ on the front and rear walls of the section was 1.74 with an exact solution, and 1.71 with the
use of a discrete model.
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The error of the discrete model in determining the
position of the center of rigidity for a rectangular section

was also compared (Fig. 3) X, = x;; , where x. is the dis-

" . 1
tance from the front wall to the center of rigidity. Value x. E; Q“““?“‘TE -
was calculated with the help of two methods of fictitious

force and fictitious moment (extraction of torsion), while the
coincidence of the results was observed. Sections with dif-
ferent lengths A=B/H and the ratio of the thicknesses of the
back and front walls &,/0; were considered. The error in-

creases as the ratio decreases. The results of calculations

with an indication of the border where the error in the calcu-

lation X, (relative distance to the center of stiffness) is ab- v Ao et

sorbed by 1%, are shown in Fig. 7. Lﬁ;:;:T _______ s
The results (Fig. 7) demonstrate the possibility of m

using a discrete model regarding the position of the center of

rigidity of a rectangular cross section (Fig. 3) with parame-

ters characteristic of the section geometry of real thin-walled Fig. 6. Distribution of values of the flows

structures. of tangential forces q
The possibility of reducing the moment of inertia | The border

during rotation /7 is of some interest for sections with vari- 4 applicabiliy of 1225

able thickness of the upper and lower skins (Fig. 3). For a 0.5¢  discreization A=2

section of constant area, the ratio 8:/0, changed and a rela- 0441
tive decrease in value /7 in relation to the value obtained
with the same thickness of the skin along the entire contour
01/6,=1 was established. Two sections with different | 027
lengths A=B/H, equal to 2 and 5, were considered. The re- 014
sults are shown in Fig. 8. e

As can be seen (Fig. 8), the redistribution of mate- 07701 02 03 04 05 06 07 08 0.9
rial along the contour of the section is in a practically in-
teresting range of changes in A and 8:/0, does not lead to a
significant fall of /7, and therefore, the torsional stiffness of
the cross section.

The application of a discrete model was also studied
regarding the position of the center of rigidity in the cross
section, the contour line of which is a trapezoid. Fig. 9 shows
a section, the contour line of which has the form of a trape-
zoid (symmetric about the x axis) with front and back walls
of constant thickness, upper and lower skins with linearly
variable thickness, which coincides at the extreme points 094
with the thickness of the walls. 093 .o

In the discrete model (Fig. 10), the values of con- LLE12 13 14 13 16 17 18 18 2 g
centrated areas were calculated Fig. 8. Moment of inertia during torsion
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Fig. 7. The position of the center of rigidity in a
rectangular section
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where L is the the length of the contour line of the upper and lower skins.

A simplified discrete model was also used during the calculations and gave approximately the same
results.

Fig. 11 shows the diagrams of the flows of tangential forces in the section (with the following pa-
rameters B/H,=2.5; H\//H>=2 and 6:/0,=2) in transverse bending of a thin-walled rod without torsion, when the
transverse force Q, is applied in the center of rigidity.
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At the same time, it turned out that the ratio of the maximum values of the tangential flows of forces
g for the front and back walls of the section was 2.10 with an exact solution, and 1.80 with the use of a dis-
crete model. The specified difference decreases with a decrease in the ratio Hi/H>.

In calculations carried out for symmetrical sections in the form of a trapezoid with front and back
walls of constant thickness, upper and lower skins with linearly variable thickness, which coincides at the
extreme points with the thickness of the walls, the error A in determining the position of the center of rigidity
of the discrete model was studied. Cross sections with various geometric parameters, close to the parameters
of real thin-walled sections of aircraft structures, were considered. The results of calculations for parametric
studies are shown in Fig. 12.

Error A in determining the position of the center of rigidity when using a discrete model in all con-
sidered tasks did not exceed 4%. An increase in the error is observed with an increase in the ratio B/H;. For
sections with fixed B/H, the error increased with decreasing ratios H>/H; and 62/9;.
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Fig. 11. Distribution of values Fig. 12. Error A of discrete model in determining the position
of the flows of tangential forces of the center of rigidity
Conclusion

As shown in the given data, the proposed discretization allows to use a simplified method of calcu-
lating tangential stresses for the analysis of thin-walled rods of an open contour, including branching, of a
complex cross section with variable wall thickness without significant error. Thanks to this, the difficulty
intensity at the design stages is reduced.
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This is also true for sections of thin-walled rods with a closed cross-sectional contour, including
those with closed regions and branches. Taking into account the variability of the wall thickness will allow to
expand the possibilities of obtaining rational forms of the cross section of thin-walled rods.

The presented discrete model can be very beneficial for use at the design stage of sections of thin-
walled structures to assess the location of the center of bending or stiffness (depending on the section type)
in order to place it in the most convenient position for the perception of static and dynamic loadings.
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JuckpeTn3anisi TOHKOCTIHHMX NepepisiB 31 3MiHHOI0 TOBINMHOIO CTIHKH

M. M. I'pebennikos, O. I'. lidip, A. O. Kupnikin

HamionansHuii aepokocMiunmii yHiBepeuTeT iM. M. €. )KykoBcbkoro «XapKiBChbKHH aBialliftHUIN iHCTHTYT»,
61070, Ykpaina, M. XapkiB, ByJ. Baguma Manbka, 17

Ha emani npoexmyganus moHKOCMIHHUX AGIAYIUHUX KOHCIPYKYIU OJis1 CNPOWeHHs PO3PAXYHKIG ix nonepeuni
nepepizu niooaroms ideanizayii. /{na ybo2o nepepiz 3 00WUBKOIO | NO3008ICHIMU eleMeHmamu, wo NiOKPInIowms ii,
3AMIHI0I0Mb OUCKPEMHUM, WO CKIAOAEMbCA i3 30CepeddceHux niouy y xapakmepHux mouxax. Ipu yvomy 30epicacmocs
pisHicmb MoMmenmia inepyii 6uxionoco i Ouckpemuozo nepepizis. Taxa ideanizayis UKOPUCTOBYEMBCS NPU PO3PAXYHKY
TNOHKOCMIHHUX CMPUICHIE HA HOPMATbHI 1l OOMUYHI Hanpycenns (Modenv Baenepa). /[ns nepepisis, wo ckiadaromscs
3 cucmemu NPAMOKYIMHUX CMYHCOK NOCMIHOI MOBWUHU, OUCKpemU3ayis 00360JA€ 6CIMAHOBNIO8AMU HADIUN CEH] 3HA-
YeHHSI HOPMATIbHUX | OOMUYHUX HANPYHCEHb | MOYHO BUBHAUAMU MICYEIHAXOONCEHHS OCOONUBUX TMOYOK YEHMPY 32U-
HauHs (Y GIOKpUMOMY KOHMYPIL) i yeHmpy sHcopcmrocmi (v 3akpumomy). Juckpemua mooenb CMyHCKu CKAAOAEMbCsL 3
MPbOX 30CEPEOHCEHUX N0 080X HA KPAAX i OOHIEL 8 yenmpi. ¥ pobomi 3anponoHo8ano po3uupumu OUCKpemHy mo-
Oelb Ha nepepizu, 8 AKUX MOBUWUHA OOUUBKU 30 KOHMYPOM 3MIHIOEMbCA 3a TIHIUHUM 3aKOHOM. 3aysadiceHo, o Ha 00-
0amox 00 NPAMOKYMHOI CMYHCKU MONCHA BUKOPUCTHOBYBATNU SUMASHYMI MPUKYIMHUKY | mpaneyii, AKi 3aMiHIOI0MbCA
MpvLoMa U YOMUPMA 30CePe0HCeHUMU NAOWAMU 8IONOBIOHO. Po3enanymo modcaugicms 3acmocys8ants OUCKpemuoi mo-
oeni 0151 PO3PAXYHKY O0esaKUX MOHKOCMIHHUX Nepepizie IOKpUmoeo i 3aKkpumozo Konmypis. Jocnioxceno nepepis 6iok-
pumozo0 KOHmypy — 3a0aya npo nonepeune 32UHaAHHA 6e3 KpYUeHH:A uieeiepd, W0 MA€E NOAUYI 3 JIHIIHO 3MIHIOBAHONO
mosuwunor. Iloxaszani 8iOMiHHOCNI 8 NOMOKAX OOMUYHUX CUT, NIOPAXOBAHUX 3d MOYHOI U OUCKPEMHOI MOOeNAMU.
Bcemanoeneno 36iz2 pesyniomamie w000 NOIONCEHHS YeHMPY 32UHAHHA 3a 080ma Moodeasam. IIpu euguenti 3acmocy8amHs
Ouckpemmoi mooeni 00 3aMKHYMO20 KOHMYPY 3aNPONOHO8AHO cnpoujerull sapianm. Po3zenadanacsa sadaua npo nonepe-
yne 3eUHANHHS 0e3 KPYUEeHHS T NOWYKY YEHMPY HCOPCMKOCMI 8 nepepizi 3 KOHMYPHOO JIHIEI0 Y eueiadi mpaneyii 3 ne-
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PEOHbOIO 1 30HbLOIO CITHKAMU NOCMIUHOT MOGUUHU MA 8EPXHBOIO U HUICHBOIO OOUUBKAMU 3MIHHOI MOGWUHU 34 KOH-
MYpOM, a MAKONC 68 AHANOSIYHOMY Nepepi3i 3 KOHMYPHOI JIHIEI V 6U2NA0i NPpAMOKYmHUKA. Bemarnosneno iominnocmi
8 NOMOKAX OOMUYHUX CUT, NIOPAXOBAHUX 3a MOYHUMU U OUCKDEMHUMU MOOeasMU. [isl 3aMKHYMO20 nepepizy y 6uzisaoi
NPAMOKYMHUKA OKPEMO OOCTIONCEHO ZHUNCEHH MOMEHMY [Hepyii Ha KpyYeHHs 6i0 nepepo3nodiny mamepiany y none-
peuHomy nepepisi. 3’ac06an0, Wo Npu 3HAXOOIHCEHHI NOJOINCEHHS YEHMPY HCOPCMKOCE PO3XOONUCEHHS 8 Pe3YabIMamax
mounoi i ouckpemuoi moodenel CKIai0 6 nepepizax 3 2eOMempudHUMY NAPAMempamu, OIULKUMU 00 PeanbHux, Ois
NPAMOKYmMHO20 KOumypy menuwe 1%, a ons mpaneyicnodionozo — 4%. Pe3yasmamu c8iouams npo MOAICIUBICHb PO3-
WUPEHHS 3aCMOCYBAHHL OUCKPEeMHOT MOOeNi MOHKOCMIHHOZ0 NONEPEeUHO20 Nepepisy HA NPOEKMYSANbHI PO3PAXYHKU
MOHKOCMIHHUX CMPUIICHIG 31 3MIHHOK MOSUUHOI 0OUIUGKU, W0 NPeOCmAasisiomsb NPAKMUYHI KOHCIMPYKYIL.

Knrouosi cnosa: ouckpemusayis mOHKOCMIHHUX nepepi3ie, 3MIHHA MOGWUHA CMIHKU NONEPeyH020 nepepizy,
Molens Baenepa, yenmp a#copcmkocmi, yenmp 3eUHAHHI.
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