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UDC 539.3 An elastic isotropic body in a state of plane deformation, which contains a system of
randomly placed cracks under the action of a dynamic (harmonic) loading, is consid-
ITERATIVE METHOD ered. The authors set the problem of determining the stress field around the cracks un-
OF DETERMINING der the conditions of their wave interaction. The solution method is based on the intro-
STRESS INTENSITY duction of displacements in the body in the form of a superposition of discontinuous

solutions of the equations of motion constructed for each crack. With this in mind, the

COEFFICIENTS initial problem is reduced to a system of singular integro-differential equations with
UNDER DYNAMIC respect to unknown displacement jumps on the crack surfaces. To solve this system, a
LOADING new iterative method, which involves solving a set of independent integro-differential

equations that differ only in their right-hand parts at each iteration, is proposed. For
OF THE CRACK the zero approximation, solutions that correspond to individual cracks under the action
SYSTEM of dynamic loading are chosen. Such a new approach allows to avoid the difficulties

associated with the need to solve systems of integro-differential equations of large di-
Olha L. Kyrylova mensions that arise when traditional methods are used. Based on the results of the it-

erations, formulas for calculating the stress intensity coefficients for each crack were
obtained. In the partial case of four cracks, a good agreement between the results ob-
tained during the direct solution of the system of eight integro-differential equations by
Vsevolod H. Popov the mechanical quadrature method and the results obtained by the iterative method was
dr.ve popov@gmail.com established. In general, numerical examples demonstrate the convergence and stability
ORCID: 0000-0003-2416-642X of the proposed method in the case of systems with a fairly large number of densely
. . . located cracks. The influence of the interaction between cracks on the stress intensity
National University "Odessa | fuctor (SIF) value under dynamic loading conditions was studied. An important and

olga.i.kyrylova@gmail.com
ORCID: 0000-0002-9221-182X

Maritime Academy" new result for fracture mechanics is the detection of the absolute maximum of the nor-
8, Didrikhson str., Odesa, 65052, mal stresses at certain frequencies of the oscillating normal loading. The number of
Ukraine interacting cracks and the configuration of the crack system itself affect the values of

the frequencies at which SIF reaches a maximum and the maximum values. These
maximum values significantly (by several times) exceed the SIF values of single cracks
under a similar loading. At the same time, under conditions of static or low-frequency
loading, it is possible to reduce the SIF values compared to the SIF for individual
cracks. When cracks are sheared, the values of the tangential stresses have a tendency
to decrease with increasing frequency, and their values do not significantly differ from
the values of the tangential stress for an individual crack.
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Introduction

In fracture mechanics, stress intensity coefficients are an important characteristic of the singularity of the
stress field around cracks, which also determines the onset of fracture [1]. Their definition requires the solutions of
the corresponding boundary value problems for the equations of the theory of elasticity, which are especially dif-
ficult in the presence of crack systems under conditions of dynamic loading of their surfaces. The relevance of
solving dynamic problems of the theory of elasticity for bodies with cracks is explained by the effects caused by
the reflection of waves generated by dynamic loading from the cracks surfaces. Reflected waves affect the distri-
bution of stresses around the cracks, which, in turn, often leads to the fact that dynamic stress intensity factors
(SIFs) can significantly exceed their static counterparts. Such an excess is observed even in the case of a single
crack [2—5]. The situation is even more complicated if there is a system of interacting cracks in the body.

As of now, the availability of powerful computing equipment and special software products, such as
AHSYS, ABAQUS, NASGROW, AFCROSS, contributes to the wide application of direct numerical meth-
ods for solving dynamic and static problems of crack mechanics [6-9]. The advantage of these methods is
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their universality, which allows consideration of bodies and cracks of arbitrary shape without simplifications.
However, as can be seen from the cited works, the use of these methods requires a significant thickening of
the grid or division into finite elements. This is especially true for the tops of cracks, where the stress singu-
larity is observed. In the case of a system of rather densely placed cracks, such thickening should be carried
out for each crack and cover a fairly large area. This, of course, creates significant difficulties when applying
the methods of finite elements and finite differences, which are pointed out by the authors of papers [6-9].
Therefore, numerical results, as a rule, are given for one or two cracks.

An effective and widespread method of determining stress fields in bodies with cracks is the method
of boundary integral equations and its discrete analogue, the method of boundary elements [3, 10—15]. How-
ever, the application of this method in the presence of a system of cracks in the body leads to the solution of
systems of singular integral or integro-differential equations, the number of which is proportional to the
number of cracks. In this regard, the first papers studied the interaction of dynamically loaded parallel cracks
[16-20]. Difficulties associated with the numerical solution of systems of singular integral or integro-
differential equations of large size can be avoided when considering periodic systems of cracks [21-23]. The
determination of SIF in the case of two arbitrarily placed cracks under dynamic loading conditions was car-
ried out in [24-26]. As for the solution of two-dimensional problems for bodies with arbitrary systems of
dynamically loaded cracks, the papers [2, 11, 27-29] should be mentioned. In all these papers, the original
problems are reduced to systems of integral or integro-differential equations. However, despite the fact that
the solution was carried out using the general formulation, the numerical results are given in the case of sev-
eral, usually only two, cracks. In view of this, it becomes relevant to develop a method for determining dy-
namic SIFs in the case of systems with a large number of cracks, which would not require the solution of
systems of integral equations of large size. In [30], an iterative method was proposed to determine SIF under
the action of shear SH-waves on an arbitrary system of cracks before solving the system of the corresponding
integro-differential equations. When using this method, sets of equations for individual cracks are solved at
each iteration. In this paper, the specified method is applied to the case of a system of cracks, the surfaces of
which are under the influence of harmonic normal or shear loadings.

Problem statement

An isotropic elastic space, which is in a state of plane deforma-
tion and contains N through cracks, is considered. These cracks in the
xOy plane (Fig. 1) are placed on segments (-d;, d;), which do not intersect
and have their centers at points Oy(ay, by), k=1, 2, ..., N. Normal ones N, e’
" or shear Tie™ self-balanced loadings are applied to the crack surfaces.

Then the multiplier €™, which determines the dependence on time,
is discarded and only amplitude values are considered. Let’s set that u(x, y),
v(x, y) — displacements of the wave field created by crack loading. Then
they satisfy the equations of motion, which under conditions of plane strain
have the form

Fig. 1. The system of cracks under
the action of dynamic loading

O(ou oOv
A+20)—| —+— |+ pAu = —po’u ;
( “)ax(ax ﬁyj K P

Of(ou ov 2
A+20)—| —+— [+ pAv =— , 1
( u)3 (8x @J HAY = —po7V (1)

where A is the two-dimensional Laplace operator; p is the density of the elastic medium; A, p are Lamé coef-
ficients.
To formulate the boundary conditions on the crack surfaces, a local coordinate system is associated

with each crack x;Os, k = I,_N (Fig. 1) in a way that the angle between the axes Ox; and Ox equals to a,.
Let’s denote ”k(xk Vi) v (X 21) 5 Gl; (X 21) 5 Gi (X 1) 5 T/;x(xkaJ/k) displacements and

stresses in the coordinate system associated with the &-th crack. Then, under the condition of the crack sur-
faces loading, the following equalities must be fulfilled
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oh (x0,0) =Ny 5 T, (x,,0) =T, ;
x, €[-d,.,d,];k=1,2,...,N. (2)

In addition, there are discontinuities on the surfaces of the displacement cracks, the unknown jumps
of which are marked as

v (x;,+0) — v (x,=0) =23, (%) 5 ”k(xk ,+0) — ”k(xka_o) =%ax (X)) 5
x, €[-d,.d,]; k~=1,2,..., N. 3)

Under such conditions, it is necessary to determine displacements and stresses in a body with cracks
and to obtain formulas for SIF calculating.

Reduction to a system of integro-differential equations and an iterative solution method
As in [27], the solution is based on the use of discontinuous solutions of equations (1) with jumps (3)
constructed for each crack in the coordinate system associated with it x,Op,, I=1, 2,..., N

dl d/
le('xlayl): jx3z(n)G33(n—xz,yz)dn+ IX41(T])G34(1"I_XI,)/1)CZ1”I;

~d; =

d, d,
u (x;, )= J-X31 (MG (M—x;,y)dn+ IX41 MGy (n—x,,3)dn, “4)

7d1 7d[

2 2 2 2
where G33:L2i 1<§+28—2 11—28—1;2 ; Gag :%i 2 K12+a—2 n— K§+28—2 s
K; Oy, Ox; 0X; K, Ox; Ox; ox;
2 2 2 2
Go=t 2% o2 || 6=t 0] 29[22 | |,
K5 Ox OX; OX; K; OV, Ox; Ox;

) [ 2, 2) i1 A 2 @OpP 5, P
rj(n_xlayl)__ZHO [Kj (n_xl) +yl ]31_1:2» Ky _7\‘+2ua Ky =—7"3

H{"(z) is the Hankel function.
The following stresses correspond to displacements (4) in the coordinate system x,0jy;

d, d, d,
Gil (x,y)=p Ix%;(n)an (M—x;,y,)dn+u .[qu (MEy(M—x;,¥,)dn ‘W(K% - 2K12) .[st (mrm—x,,y,)dn;

7d[ 7d[ 7d[

d, d; d,
o4 (o) = [ (ME (M=, y)dn-+e [ oy (ME (=2, y)dn-+u [0, (0r (=3, 3,)dn;
= =4, ~d,

d, d, d
Tii(xz»J’z) =H .[X'y (MEy(N—x;, y,)dn +u J-X:u (MEy(M—x;,y,)dn +HK§ J-X41 (mr(M-x,y,)dn. (%)

7d[ 7d1 7d1

When obtaining formulas (5) in order to reduce the order of singularity of integrable functions, inte-
gration by parts was carried out while taking into account y(+d;)=0 and the following notation is adopted

2 2
Ey =E,, =_iz (Kf +G_ZJ%_(K§ +a_2J% :
K5 on” )on on” ) on

2 2
E,, =—% (28—2+2K12 —K%J%—(2a—2+1<§}% ;
L 0 v \ o w
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2 2
E, =i2 (K§+a—2J%—(K§+ 0 ]arz
K on” Jon on? ) on

Eyy=Ey=—> (K§+2 o Jarl —(K§+2 o Jarz
K 811 ey 811 ey

The following displacements and stresses correspond to discontinuous solutions (4), (5) in the system Oxy:

u =u? cosoc,—v‘” sina,; ve =y sinoc,—v‘” cosa, ;
c¢ =o% cos’ ocl+cs !sin’ ocl—t !sin 20, ;

gl

Gy

=c? sin’ (x,+cs ' cos’ oc,—r ! sin2a, ;

ZTg[—G sm20c,+0 sm2al+2r cos2a, .

The general displacements field is given in the form

u(x,y) = Y uf (x,3); v(x,3)= D v¥(x,). (6)
=1 =1

Stresses oy, 6,, T, are also determined by similar formulas. Thus, according to formulas (6), dis-
placements and stresses in the body will be determined, provided that the unknown jumps (3) are deter-
mined. For this, conditions (2) should be used. The stresses included in them are given through stresses (4)
corresponding to discontinuous solutions according to the following formulas:

N N

Gl;(xkayk) = zcl;l(xka%f) > Tl;x(xka)’k) = Z'Cl;i(xka%f) > (7)
=1 =1

where

K o_
G, ¥ sin’ a,d+0 ! cos’ a,d—T ! sin2a,, ;

K _dl . .
21, =—0, sin2ay +Gy sin2a, +2ryx COS20L,, 5 Oy =0, — 0.

Substitution of (7) in (2) leads to a system of 2N singular integro-differential equations with respect
to unknown displacements jumps. As a result of the extraction of the singular component and a series of
transformations, this system has the form

—f (0 )[ A0 2)+R{;(r g)}m— [ou @l mfe—d+ 1 - kc+

1 2 13 1 2 14
+E — F,; (t,0)dt+— ©)F,; (t,c)dt |+
e [275 _[(Py( Vi (T,0) ' _[@41( Y (T, 0)d
1#k

N 1 1
1 13 1 14
+E — U,/ (t1,c)dt+— YU,/ (t,¢)dt |=N,, ;
Z lzn :[I(Py( Wi (1,6 . :'-I(PM( W (1,6) 0k

I#k

—j e ){ a- é)+R"(r g)}dw—jm(r)novklnlr d+ Vgl

1 ' 23 1 , o
+ ;[Z:E(Py (D) F; (t,0)dt + Z:fl(pM (D) F; (T, g)d’t} +
1=k

N 1
v Z{ . j o (DU (.M + j 9, (x, g)dr] =Ty ®)

~

#k
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In system (8), the following notations are adopted: (Psk(T)sz:IXSk(dkT); s=3,4; ~=1,2,...,N,

2
1-2 .
Yi =d‘ldk; d=max(d,, d, ..., dy); Ny, =u"1Nk; Tox =u_1Tk; =1,2,...,N; iz =K—§= M ; v 1s the
K, 2(1-v)
Poisson's ratio of an elastic material. Functions R s ij , ijf , U ,ﬁ; ;=12 5=3,4; 1, k=1,2, ..., N are con-

tinuous at —1<c, 1<1.
Equalities, which are a condition for closing cracks and ensure the unity of the solution of the system (8),
should be added to system (8)

1
jcp;k(r)dr=o;s=3,4;lF1,2, N 9)

-1
The system of integro-differential equations (8) requires a numerical solution. In order to prevent the
solution of a large-dimensional system, it is suggested to apply an iterative method similar to that done in [30].
It consists in the fact that at the i-th iteration step, 2>1, N pairs of independent integro-differential equations are

solved
1

1 . ! 2(1—- 2 1 1 .
o [ (0 (@) {_%m{;(r—g)}dwﬂ [ o @2y Infe—d 4 7 (r— o) Je =

N 4 1
=Ny — ZZ{iI (T) F}CI;(‘C g)d‘c—i——j(p (‘c)U]i; (T, g)dt] :

s=3

I )
_I((Pilk (T)){ c +Rk 4 (T— G)}df"‘ I‘P4k(f)['<o“/k 1n|r €|+ V24(T G)]d =

2n’ T—

Mz

4 1
Z{i j () F;ﬁ‘(r q)dr+—j<p (T)U;ff(T,G)dT]?
s=3

\\
>~

-
1 !
j(@f;k(r))drz 0:5=3,4; k=1,2, ..., N: i=1, 2, 3. (10)
-1
Solutions of equations (10) with right-hand parts where there are no sums, i.e. equal to Ny, Ty, are
chosen for zero approximation (pgk (1), (pgk (1) . Therefore, solutions corresponding to individual cracks un-

der the influence of dynamic loading are chosen as the zero approximation.
The numerical solution of equations (10) is carried out in the same way as in [27, 30]. Derivatives of
unknown functions taking into account the root singularity are given in the form

i 1 vk Ve (D)
((Psk (T)) ﬁ

Further unknown functions ', (t) are approximated by interpolation polynomials

T,(7) i i
sk ('C) Wskm ; \‘r[skm = \Vsk (Tm) >
z (t—1,)7, (1)
where 7,,(t) — is the Chebyshev polynomial of the second kind; t,,, m=1, 2, ..., n are its roots.

To define ', , as in [27, 30], a system of linear algebraic equations was obtained from (10) by the

method of mechanical quadrature. After its solution, the approximate values of SIF based on the results of
the i-th iteration are found by the formulas
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K3 = fd k5 21,2, .., Ny p=1,2;

byl ==(1=E)n"")" (=15, imctg(0.58,,);
m=1

by === (=17 (=", i te(0.58,,) ;

p, =72, (11)
2n

In formulas (11), the superscript plus corresponds to SIF in the vicinity of the top of the /-th crack
(+d,, 0), the minus index corresponds to SIF in the vicinity of the top (—d,, 0).

1,2, ..., n.

Analysis of the results of numerical studies

The numerical implementation of the proposed iterative method was
carried out in order to study its practical convergence, the stability of the itera-
tive process, the ability to study the influence of the wave interaction of cracks
on the SIF value. In order to confirm the reliability of the results obtained by the
iterative method, as in [17], a system of four cracks of the same length (Fig. 2),
which configuration is determined by parameters 0, 4, B, was considered. The
results obtained by directly solving system (8) were compared, as in [12, 16—18,
25, 26], by the mechanical quadrature method and the iterative method.

Fig. 2. A system of four cracks
of the same length

All cracks are under the action of the same normal Ny=1 or shear T,=1 loadings, /=1, 2, 3, 4. Under
such conditions, SIFs near the tops of all cracks coincide. Calculations were carried out at 0=h=0.75d, p=30°,
and the results are shown in Fig. 3. They show change of |k;"| — the absolute value of the SIF of normal
stresses depending on the dimensionless wave number «;=t,d.

When applying the iterative method, the number of iterations varied from 2 to 16. The dashed curve
corresponds to the SIF values for a separate crack. The curve numbered 0 shows the SIF values found as a
result of the direct solution of the system of integro-differential equations (8). Other curves are plotted at the
specified number of iterations. At kc—0, SIF values go to their static counterpart. It can be seen that the re-
sults obtained by different methods practically coincide after the fourth iteration, except for the first most
significant maximum, where the coincidence is observed after 16 iterations. This confirms the reliability of
the results obtained by the iterative method and the convergence of the iterative process. Extreme values of
SIF significantly exceed both their static counterpart and SIF values for a separate crack. The convergence of
the iterative method deteriorates when f—0, that is, when closely spaced parallel cracks enter the system. In
general, f=0 convergence is observed at #>0.5d. Results of comparison of various methods and studies of
convergence at p=0, 6=4=0.75d are shown in Fig. 4.
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Fig. 3. Convergence of the iterative method
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Fig. 4. Convergence for a system of four parallel cracks
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They prove that calculations by different methods, except frequency 1k=0.9, at which resonance oc-
curs, are in good agreement. The influence of the angle  on the frequency dependence of SIF is shown in
Fig. 5. Curves in Fig. 5, a show the frequency dependence of SIF of normal stresses |k;| with normal crack
loading, and in Fig. 5, b — frequency dependence of SIF of tangential stresses |k,| under shear loading at the
specified angle values f.

12

0
\
; 1.5
45| 30
' N\
15

i}

a b

Fig. 5. Effect on the SIF value of the angle between the cracks:
a —under normal loading; b — under shear loading

In the case of a normal loading, at all values of the angle 3, the presence v
of a global maximum of SIF is observed, the frequency of reaching which depends \ @/
on the angle B. The most extreme value of SIF is obtained at =0, but with high- ® %9
frequency oscillations x>1.8, the largest values are reached by SIF at f=30°. N JoNN
When cracks are sheared, the values of the tangential stresses have a tendency to o
decrease with increasing frequency, and their values do not significantly differ /@ @\
from the values of the tangential stresses for a single crack. For a more detailed /® N
study of the influence of the interaction of the dynamic loading of cracks on the
SIF value, the following system of 9 cracks was considered (Fig. 6). Fig. 6. A system of nine cracks

The system configuration is determined by parameters 0, 4, 3, to which the following data was pro-
vided during calculations 0=h=d\/3; d;=d\/3, k=2, ..., 9, and the cracks were under the influence of normal
loading. The results are shown in Fig. 7 in the form of graphs of the dependence of SIF of the normal stresses
of the first crack k; | for the specified angle B values.

As can be seen, the configuration of the crack system significantly affects the SIF behavior in the
frequency domain. In particular, there is a global maximum of the SIF value, the largest of which is reached
at =0, when all cracks are parallel. Also, in case of static loading and at low frequencies (ky<1.2) the pres-
ence of other cracks near the top of the crack will lead to a decrease in the SIF values.

(i}

L 1-5
30 71_2
_l_l
15 4
4 -

2 4 - ¥al iy
I [ 4"'.‘
I"\ \
/ L;M 12

-' 0

0 2 4 6 0

(5]
T o

6

Fig. 7. The influence of the configuration Fig. 8. The influence of the number of cracks on the SIF value
of the crack system on the SIF value
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Fig. 8 shows the results of the influence of the number of cracks interacting with one crack (in this
case, with the first one).

The cases of two cracks (first and second ones), three (from the first to the third one), five (from the
first to the fifth one), seven and nine were considered (Fig. 6). If we compare the SIF values at the point of
the global maximum, then when the number of cracks increases to five, their growth is observed first, and
then the maximum values of SIF practically do not change. In all cases, in the region of low frequencies
(0<1,2), the presence of other cracks next to each other leads to a decrease in the SIF values.

General conclusions

An iterative method for SIF determining in the conditions of interaction of a system of dynamically
loaded cracks, which avoids the need for numerical solution of systems of large integro-differential equa-
tions, is proposed. At each step of the iteration, a set of independent equations corresponding to the cases of
individual cracks is solved. The numerical study showed that the results obtained by the iterative method are
in good agreement with the results of the direct solution of the system of integro-differential equations by
other methods. The stability and convergence of the method for systems of rather densely placed cracks of a
complex configuration are demonstrated. The existence of frequencies at which the absolute maxima of SIF
values are observed is important for assessing the performance and predicting the destruction of machine
parts under the action of dynamic, particularly vibrational, loadings. These maximum values significantly
(by several times) exceed the SIF value of individual cracks under a similar loading, i.e. if there are cracks in
the part of the system at these frequencies, the critical value of SIF may be exceeded and destruction of the
part may occur. At the same time, under conditions of static or low-frequency loading, it is possible to reduce
the SIF values compared to SIF for individual cracks. The proposed method can be extended to systems of
other defects, in particular, thin hard inclusions.

References

1. Panasiuk, V. V. (eds). (1988). Mekhanika ruinuvannia ta mitsnist materialiv [Fracture mechanics and strength of
materials]: In 4 vols. Vol. 2. Koefitsiienty intensyvnosti v tilakh z trishchynamy [Intensity coefficients in bodies
with cracks]. Kyiv: Naukova dumka, 620 p. (in Ukrainian).

2. Sih, G. C. (1968). Some elastodynamic problems of cracks. International Journal of Fracture Mechanics, vol. 4,
iss. 1, pp. 51-68. https://doi.org/10.1007/BF00189147.

3. Zozulya, V. V. (2019). Solution of the elastodynamic contact problem for a cracked body using the boundary in-
tegral equation method. Mechanics of Advanced Materials and Structures, vol. 26, iss. 11, pp. 924-937.
https://doi.org/10.1080/15376494.2018.1430279.

4. Yongtao, Y., Dongdong, X., & Hong, Z. (2014). Evaluation on stress intensity factor of crack under dynamic
load using numerical manifold method. Chinese Journal of Theoretical and Applied Mechanics, vol. 46, iss. 5,
pp. 730-738. https://doi.org/10.6052/0459-1879-14-024.

5. Phan, A. V. (2016). Dynamic stress intensity factor analysis of the interaction between multiple impact-loaded cracks in
infinite domains. AIMS Materials Science, vol. 3, iss. 4, pp. 1683—1695. https://doi.org/10.3934/matersci.2016.4.1683.

6. Wen, L.-F., Tian, R., Wang, L.-X., & Feng, C. (2023). Improved XFEM for multiple crack analysis: Accurate and
efficient implementations for stress intensity factors. Computer Methods in Applied Mechanics and Engineering,
vol. 411, article 116045. https://doi.org/10.1016/j.cma.2023.116045.

7. Alshoaibi, A. M. & Fageehi, Y. A. (2020). 2D finite element simulation of mixed mode fatigue crack propagation
for CTS specimen. Journal of Materials Research and Technology, vol. 9, iss.4, pp.7850-7861.
https://doi.org/10.1016/j.jmrt.2020.04.083.

8. Fageehi, Y. A. & Alshoaibi, A. M. (2020). Nonplanar crack growth simulation of multiple cracks using finite ele-
ment method. Advances in  Materials  Science and  Engineering, article ID 8379695, 12 p.
https://doi.org/10.1155/2020/8379695.

9. Fageehi, Y. A. (2022). Prediction of fatigue crack growth rate and stress intensity factors using the finite element
method. Advances in Materials Science and  Engineering, article ID 2705240, 17 p.
https://doi.org/10.1155/2022/2705240.

10. Bouchon, M. & Sanchez-Sesma, F. J. (2007). Boundary integral equations and boundary elements method in
elastodynamics. Advances in Geophysics, vol. 48, pp. 157—189. https://doi.org/10.1016/S0065-2687(06)48003-1.

11. Chirino, F. & Dominguez, J. (1989). Dynamic analysis of cracks using boundary element method. Engineering
Fracture Mechanics, vol. 34, iss. 56, pp. 1051-1061. https://doi.org/10.1016/0013-7944(89)90266-X.

ISSN 2709-2984. Ipobremu mawunobyoyeanns. 2024. T. 27. Ne 3 49



APPLIED MATHEMATICS

50

12. Gross, D. & Zhang, Ch. (1988). Diffraction of SH waves by a system of cracks: Solution by an integral equation
method. International Journal of Solids and Structures, vol. 24, iss. 1, pp. 41-49. https://doi.org/10.1016/0020-
7683(88)90097-2.

13.Liu, E. & Zhang, Z. (2001). Numerical study of elastic wave scattering by cracks or inclusions using the boundary
integral equation method. Journal of Computational Acoustics, vol.09, no.03, pp.1039-1054.
https://doi.org/10.1016/S0218-396X(01)00131-5.

14. Sladek, J. & Sladek, V. (1987). A boundary integral equation method for dynamic cracks problems. Engineering
Fracture Mechanics, vol. 27, iss. 3, pp. 269-277. https://doi.org/10.1016/0013-7944(87)90145-7.

15. Ang, W. T., Clements, D. L., & Dehghan, M. (1993). Scattering and diffraction of sh waves by multiple planar
cracks in an anisotropic half-space: A hypersingular integral formulation. International Journal of Solids and
Structures, vol. 30, iss. 10, pp. 1301-1312. https://doi.org/10.1016/0020-7683(93)90213-Q.

16. Sarkar, J., Mandal, S. C., & Ghosh, M. L. (1995). Diffraction of elastic waves by three coplanar Griffith cracks
in an orthotropic medium. [Infernational Journal of Engineering Science, vol.33, iss.2, pp.163-177.
https://doi.org/10.1016/0020-7225(94)00059-S.

17. Sarkar, J., Mandal, S. C., & Ghosh, M. L. (1996). Four coplanar Griflith cracks moving in an infinitely long elas-
tic strip under antiplane shear stress. Proceedings of the Indian Academy of Sciences (Mathematical Sciences),
vol. 106, iss. 1, pp. 91-103. https://doi.org/10.1007/BF02837190.

18. Sarkar, J., Mandal, S. C., & Ghosh, M. L. (1994). Interaction of elastic waves with two coplanar Griffith cracks in an
orthotropic medium. Engineering Fracture Mechanics, vol. 49, iss. 3, pp.411-423. https://doi.org/10.1016/0013-
7944(94)90269-0.

19. Trivedi, N., Das, S., & Altenbach, H. (2021). Study of collinear cracks in a composite medium subjected to time
harmonic wave disturbance. ZAMM Journal of Applied Mathematics and Mechanics, vol. 101, iss. 6, arti-
cle €202000307. https://doi.org/10.1002/zamm.202000307.

20. Jain, D. L. & Kanval, R. P. (1972). Diffraction of elastic waves by two coplanar Griffith cracks in an infinity
elastic medium. [International Journal of Solids and Structures, vol.8, iss.7, pp.961-975.
https://doi.org/10.1016/0020-7683(72)90009-1.

21. Angel, Y. C. & Achenbach, J. D. (1985). Reflection and transmission of elastic waves by a periodic array of cracks:
Oblique incidence. Wave Motion, vol. 7, iss. 4, pp. 375-397. https://doi.org/10.1016/0165-2125(85)90006-X.

22. Scarpetta E. In-plane problem for wave propagation through elastic solids with a periodic array of cracks. Acta
Mechanica. 2002. Vol. 154. Iss. 1-4. P. 179—187. https://doi.org/10.1007/BF01170706.

23.Zhang, C. (1990). Dynamic stress intensity factor of collinear periodic antiplane cracks. Journal of Tongji Uni-
versity, vol. 18, pp. 445-451.

24. Wang, Y.-B. & Sun, Y.-Z. (2005). A new boundary integral equation method for cracked 2-D anisotropic bodies. En-
gineering Fracture Mechanics, vol. 72, iss. 13, pp. 2128-2143. https://doi.org/10.1016/j.engfracmech.2005.01.007.

25. Huang, J. Y. & So, H. (1988). Diffraction of P waves by two cracks at arbitrary position in an elastic medium. En-
gineering Fracture Mechanics, vol. 29, iss. 3, pp. 335-347. https://doi.org/10.1016/0013-7944(88)90021-5.

26. Tsai, C.-H. & Ma, C.-C. (1992). The interaction of two inclined cracks with dynamic stress wave loading. Inter-
national Journal of Fracture, vol. 58, iss. 1, pp. 77-91. https://doi.org/10.1007/BF00019752.

27.Popov, V. G. (2022). System of cracks under the impact of plane elastic waves. Journal of Physics: Conference
Series. vol. 2231, article 012004. https://doi.org/10.1088/1742-6596/2231/1/012004.

28. Takakuda, K. (1983). Diffraction of plane harmonic waves by cracks. Bulletin of JSME, vol. 26, iss. 214,
pp- 487—493. https://doi.org/10.1299/jsme1958.26.487.

29.Zhang, Ch. & Gross, D. (1988). The solution of plane problem of wave loaded cracks by an integral equation
method.  Journal of Applied Mathematics and  Mechanics, vol. 68, iss.7, pp.299-305.
https://doi.org/10.1002/zamm.19880680705.

30. Popov, V. G. (2012). Iterative method for the determination of a diffraction field in the interaction of a longitu-
dinal shear wave with a system of cracks. Journal of Mathematical Sciences, vol. 183, iss. 2, pp. 241-251.
https://doi.org/10.1007/s10958-012-0810-7.

Received 10 April 2024

ISSN 2709-2984. Journal of Mechanical Engineering — Problemy Mashynobuduvannia, 2024, vol. 27, no. 3



I[MPUKIIAIHA MATEMATHKA

ITepaniiinuii MeToa BU3HAYeHHS Koe(dillieHTIB iIHTEHCUBHOCTI HATIPY:KeHb MPUH TUHAMIYHOMY
HAaBaHTa)KeHHi cucTeMU TPIlIUH

O. 1. Kupunosa, B. I'. Ilonos

Harmionansauii yHiBepcuTeT «O1echka MOPChKa aKageMishy
65052, Ykpaina, m. Oneca, Byin. Jlinpixcona, 8

Posensinymo npyosicne isomponne mino y cmami niockoi degpopmayii, sike micmums cucmemy 00GiIIbHO PO3Mi-
WeHUX mpiwuH nio Oi€ro OUHAMIYHO20 (2APMOHIYHO20) HABAHMANCEHHS. ABMOPU NOCMABULU 3a0a4y — GUIHAYUMU NOTIE
HAanpyjiceHb 8 OKOJi MPIWUH 8 YMOB8AX iX X6UTb08OI 83aEMO0il. Memoo po36 ’sa3aHHs IPYHMYEMbC HA NOOAHHI nepemi-
WeHb y mini y 6uensoi Cynepno3uyii po3pueHUX po3e si3Kie pieHsaHb pyXy, NOOYO08aHUX OJisi KO®CHOL mpiwjunu. 3 02nidy
Ha ye GUXIOHA 3a0a4a NPUOOUMbCS 00 CUCEMU CUHSYTIAPHUX THMe2po-0ughepeHyianbHUX PIBHIHb 8i0HOCHO Hegi0OMUX
CcmpuoKie nepemiujeHv Ha NOGePXHAX mpiwgun. /s po3s ’a3auns yiei cucmemu 3anponoHo8ano HOGUU imepayiiuHuil me-
moo, KUl nepeddayae po3e sI3anHs HA KONCHIL Imepayii CYKYNHOCMI He3aNeNHCHUX iHmezpo-0ughepeHyiaibHux pieHsHb,
WO GIOPI3HAIOMBCSA MINbKU NPAGUMY YACMUHAMU. 34 HYTb06e HAOIUNCEHHSL 0OOUPATOMbCSL PO36 A3KU, SIKI 8I0N06i0aomb
OKpeMUM NOOOUHOKUM MPIWUHAM Ni0 Oi€r0 OUHAMIYHO20 HABAHMAdNCeHHs. Taxuil HOGuU NIOXIO0 O0380JAE YHUKHYMU
mpyoOHOWI8, N08 A3AHUX 3 HeOOXIOHICMIO PO36 A3AHHS CUCEM [HMeZpo-OU@epeHYIanibHUX PIGHAHb GeIUKOL POZMIPHOC-
mi, WO SUHUKAIOMb NPU 3ACMOCYEAHHI MPAOUYIUHUX Memodis. 3a pesyriomamamu imepayiti ompumari gopmyau Os
PO3DAXYHKY KOeqiyieHmi6 IHMeHCUGHOCI HANPYXHCEHb O/ KOJCHOI mMpiuny. Y 4uacmuHHOMY 6UnaoKy Yomupbox mpi-
WUH BCMAHOBIEHO 000pe Y3200HCeHHs Pe3yIbmamia, OMPUMAHUX npu Oe3nocepeonboMy Po36 A3aHHI CucCmemMu 60CbMU
iHmeepo-OupepeHyianrvHux pigHsIHb MEMOOOM MEXAHIYHUX Keaopamyp, i pe3yibmamie, OMmpUMAHUX imepayitiHum me-
mooom. Y yinomy uuciosi npuxnaou OeMOHCMPYIOmb 30I4CHICMb | CIMIUKICMb 3aNPONOHOBAHO20 Memoody y SUNAOKY
cucmem 00CUMb BEUKOI KIIbKOCMI WIIbHO PO3MAMOSAHUX MPIuH. JJOCIIONHCEHO 8NIUE 63a€MOOIL MIdC MpiujuHamMu
Ha 3HayenHs Koeghiyicuma inmencusnocmi nanpyscens (KIH) 6 ymosax ounamiunozo nasanmasicents. Bascnusum oas
MEXAMIKU pYUHYSAHHSL | HOBUM Pe3YIbMAmoM € 8uAsieHHs abconomuozo maxcumymy KIH nopmanvhux nanpyicens npu
O0esAKUX YaACMOMAX OCYUNIOI0U020 HOPMATLHO20 Hasanmadicenns. Ha snauennss yacmom, 3a axux KIH csearoms maxcu-
MyMY, I HA MAKCUMANbHI 3HAYEHHS GNIUBAIOMb KIILKICIb 83AEMOOIIOYUX MPIWUH | KOH@Ieypayis camoi cucmemu mpi-
wun. Lfi maxcumanvni 3nauenns cymmeeo (y Kinvka pasie) nepesuwgyioms 3uavenns KIH nooounoxux mpiwun npu ana-
JIO2IYHOMY HABAHMADICEHHI. Y MOl came uac 8 yMo8ax cmamuyHo2o abo HU3bKOUACTNOMHO20 HABAHMANCEHHS, MOJICTUBE
smenuenns 3Havenv KIH nopisnano 3 KIH ons okpemux mpiwun. I[lpu 3cysHoMy HA8anmadjiceHHi mpiujur 3HAYEHHs.
KIH oomuunux nanpysicens maromes meHoeHyito 00 CHAOAHHS NPU 3DOCMANHI YACMOmu, a iX 3HAYeHHs HeCYMMEBO Gi0-
piznsomocs 6i0 KIH 0na okpemoi mpivgunu.

Knrouosi cnosa: ounamiune HABAHMANICEHHS, MPIWUHU, KOeDiYiEHMU IHMEHCUBHOCMI HANPYI’CEHb, MEmoo
imepayitl.
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