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UDC 539.3 Using cylindrical embedded supports for parts is common in the aerospace and

mechanical engineering industries. Simplifications or approximations are used
ANALYSIS to calculate such connections. A method for calculating a layer on two longitudi-
OF THE STRESS-STRAIN | nally embedded cylindrical supports is proposed in this paper. There are bush-
STATE OF A LAYER ings (thick-walled pipes) between the supports and the layer; the layer is weak-

ened by a longitudinal cylindrical cavity. Stresses are set on the lower and upper
WITH A CYLINDRICAL surfaces of the layer, smooth contact conditions are set on the inner surfaces of
CAVITY AND the pipes, and stresses are set on the surface of the cavity. To solve the problem,
EMBEDDED SUPPORTS the Lamé equation is used, where the Cartesian coordinate system is used for the

layer, and local cylindrical systems are used for the pipes and the cylindrical

WITH BUSHINGS cavity. The combination of basic solutions in different coordinate systems is per-

formed using the generalized Fourier method. Based on the boundary conditions
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. . . elastic connected bodies is also determined from the Lamé equation using the
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"Kharkiv Aviation Institute", this case depends on the approximation of the boundary surfaces to each other
17, Vadyma Manka str., Kharkiv, and on the order of the system of equations. Numerical studies have been carried
61070, Ukraine out for a layer with supports and a cavity located in a straight line under the

action of a cantilever load. The analysis of the stress state was obtained in the
zones of cylindrical holes of the layer and in the body of the bushings. The maxi-
mum stresses exceed the specified ones and occur at the location of the cylindri-
cal cavity. The proposed solution method makes it possible to obtain the results
of the stress-strain state of cantilevered elements of aircrafi structures, to evalu-
ate the influence of material and geometric parameters on the values of stress
distribution in other structures of machines and mechanisms that can be repre-
sented as models similar to the one under consideration.
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Introduction

In mechanical and aircraft engineering, the combination of various structural elements is often
hinged. These elements are connected by bolts, rivets, bearings and other fasteners, for which the corre-
sponding holes are provided in the structures. Thus, elements in which the supports are embedded cylinders
are created. To strengthen the contact point with the support, bushings, rigidly connected to the part and
smoothly contacting the support, are often installed in the parts.

For the calculation of such nodes, which are a layer with thick-walled pipes, approximate methods, such as
the finite element method [1], and software tools based on it [2], are mainly used. However, with this approach, to
confirm the obtained results, it is worth using analytical or analytical-numerical methods, or conducting tests [3, 4].

The use of analytical methods [5, 6] based on the expansion of solutions into a Fourier series is pos-
sible only with a significant simplification of the calculation model. The specified methods consider the
problem either in a flat form or with the number of boundary conditions less than three.

Analytical-numerical methods, in comparison with analytical ones, provide more opportunities for
estimating the stress state of a layer with cylindrical inhomogeneities. Thus, in papers [7, 8] a layer with a
cylindrical cavity located perpendicular to the boundaries of the layer is considered. The solution is based on
the integral Laplace transforms and finite Fourier sine and cosine series, which are sequentially applied to the
axisymmetric equations of motion and boundary conditions. However, in the case of using the proposed
method [7, 8], no more than one cylindrical cavity can be taken into account.

This work is licensed under a Creative Commons Attribution 4.0 International License.
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In paper [9], thanks to the integral Weber-Orr transforms, the problem of torsion of an elastic half-
space with a vertical cylindrical cavity is studied, while a coaxial stamp rotating under the action of a torque
is fixed on the flat boundary. The method proposed in this study can only be used for half-space.

To achieve the optimal distribution of thermal stresses in composite plates with non-circular holes un-
der uniform heat flux, metaheuristic optimization algorithms are used in [10]. The analytical part of the study is
based on thermoelastic theory and the complex variable method. However, the proposed method [10] cannot
take into account more than one cylindrical cavity.

To calculate a layer with several cylindrical inhomogeneities located parallel to the layer boundaries,
an approach based on the analytical-numerical generalized Fourier method [11], which allows combining the
basic solutions of the Lamé equation in different coordinate systems, is useful. Thus, using the generalized Fou-
rier method, problems for a cylinder with cylindrical cavities [12, 13] and inclusions [14] were solved. In [15],
using the example of a problem for a half-space with a cylindrical cavity, the justification of the formulas for
the transition of basic solutions between the Cartesian and cylindrical coordinate systems is given. Based on the
generalized Fourier method, in [16], the problem for a layer with one longitudinal cylindrical cavity was
solved, and in paper [17] — the problem for a layer with a continuous cylindrical inclusion was solved. The
problem for a layer connected to a half-space in which a cylindrical cavity is located is solved in [18]. A layer
with two cylindrical cavities (simulated embedded cylindrical supports) is considered in [19]. The problem for
a layer with one thick-walled pipe is solved in [20], for a layer with one thick-walled pipe and a cylindrical cav-
ity —in [21], with two thick-walled pipes (simulated cylindrical embedded supports with bushings) — in [22].
However, the approaches proposed in [16—-22] cannot be applied to the solution of the problem for a layer on
two cylindrical embedded supports with bushings, weakened by a cylindrical cavity.

The aim of this paper is:

—to develop a method for solving a mixed problem of the theory of elasticity for a layer with two
longitudinal cylindrical pipes and a cylindrical cavity. To achieve this, stresses are given on the upper and
lower boundaries of the layer, smooth contact conditions are imposed on the inner surfaces of the pipes, and
stresses are imposed on the cavity;

— to analyze the stress state of the layer and thick-walled pipes under a given cantilever load.

Problem statement

The model is a layer with two cylindrical thick-walled pipes
and a cylindrical cavity located parallel to its boundaries (Fig. 1).

Local cylindrical coordinates are used to describe the geometry
of the pipes and cavity (p,, ¢,, z, where p — pipe or cavity number), and
Cartesian coordinate system (x, y, z), which coincides with the coordi-
nate system of the first pipe (p=1), is used for the layer.

The outer radii of the pipes or cavity are denoted as R,, and
the inner radii of the pipes — as r,. Distance to layer boundaries is y=h Fig. 1. Layer with two cylindrical
thick-walled pipes and a cylindrical cavity

~

andy=-nh .

To solve the problem, we look for a solution to the Lamé equations A +(1—2c) "' Vdivii = 0, under

given boundary conditions:
— at the upper and lower boundaries of the layer, the stresses are set as

FU(x, z)‘y:h = ﬁho (x, z); FU(x,z)‘},;; = 13}70 (x,z)

where

ﬁ;(x,z)zr(yz)‘éx-kc(yz)‘éy+7:(yz)-éz; @)
— smooth contact conditions are specified on the inner surfaces of the pipes
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— on the surface of a cylindrical cavity (p = 3), the stresses are set as
FU((ppz)‘pr F (@3,2) = 0(3)e +1®5 133z 3)

pete T tpz Tz

where U is the displacement in a layer; FU = 2G[ ii-divU + iU +%(ﬁ x rotU )} is the stress operator.

-20 on
The layer is rigidly connected to each pipe by the conjugation conditions
Ust@,2)|_, =U,(@2) _, 4
FOy@.2)|_, =FU, @2 _, 3)

where U, 0(®,z) is the solution for the layer ; U (@, 2) is the solution for pipes.

All given functions will be considered to be rapidly decreasing from the origin along the axis z and
along the axis x.

Solution methodology
The solution to the problem is given in the form proposed in [22], taking into account the additional
cavity

3 3 2
J, =ZZI B (0)-5,, (P9, 731 )dh+

p=1 k=1

=—00
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where H, (X,u), Hk (l,u), B,E{”rzl (k), A,(flzn ), A(1> ), A,Ez,l ), A(zl(k) are 27 unknown functions
(k=1..3, p=1..3), which must be found from the boundary conditions (1)—(3) and the conjugation conditions
4), (5); Ek,m(pp,(pp,z;k) , ﬁk,m(pp,(pp,z;k), ﬁ,@(x,y,z;l, p,), ﬁ,gf)(x,y,z;l, p,) are basic solutions of the

Lamé equation, given in the form [11]

i (x,y,z;01)= N (d)ei(?»zwx)iyy.
R (0:0,2:0) = NI (hp)e=770): S, (0,9, z:0) = NP |(sign)” K, (Pp) - 0=+ |; k=1, 2, 3;
1 4 o 1 L
VO Lo, et L) 0~ e )
1 1 8 ) D L
Nl(”) =XV; Ng”) =I{V[pa—pJ+4(v—l)(V—e3(2)gﬂ ; N3(”) =%rot(e3(2) -); y=yA +pu’

—0 <A, U< 0,

where v is the Poisson's; 7,(x), K,,(x) are modified Bessel functions.
To write equations (6) and (7) in the same coordinate system, the transition formulas between the ba-
sic solutions of the Lamé equation were applied [11]:

— from external solutions for the cylinder S +.m to solutions for the layer u uk (at y>0) and u ii! o (at y<0)

)= oo e
2

—00

gk,m(pp’q)p’Z;)L
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gz,m(pp9(Pp9
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— from the solutions of the layer ﬁ,@ and ﬁ,gf) to the internal solutions of the cylinder Iék’m
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’ P
— from solutions of the cylinder with number p to solutions of the cylinder with number ¢
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where o, is the angle between the axis x, and a segment 7, ; K (X)) = (sign(x))’” K, (|x|)

To find the 27 unknown functions (6) and (7), a system of 27 integro-algebraic equations was formed.
The first six equations are formed when the boundary conditions on the flat surfaces of the layer (1) are
satisfied. For this, the stress operator is applied to the functions (6), and the double Fourier integral — to (1),

after which they are equated to each other. Basic solutions S «.n irom the cylindrical coordinate system using
the transition formulas (8) are rewritten as %, into Cartesian one.

Six more equations are formed when the boundary conditions on the inner surfaces of the pipes (2) are
satisfied. For this purpose, the stress operator is applied to the functions (7), and the expressions for ¢, and ¢,
in stresses along ¢, remain in the displacements. These expressions are equated to functions (2), to which the

Fourier integral along the axis z and the Fourier series in the angle @ are applied.
Three equations are written for the boundary conditions on the surface of the cavity. For this pur-
pose, the stress operator is applied to functions (6), and the Fourier integral along the axis z and the Fourier

series in the angle ¢ are applied to (3). After that, they are equated to each other. Basic solutions #, from
the Cartesian coordinate system using the transition formulas (9) are rewritten as I?k,m into a cylindrical one.

Another 12 equations are formed when the conjugation conditions between the layer and each pipe (4),
(5) are met. When these conditions are met, the basic solutions i, are rewritten from the Cartesian coordinate
system through I?k,m into local cylindrical ones using the transition functions (9). In addition, the formulas for
the transition of basic solutions from one local cylindrical coordinate system to another (10) are used.

And the first six equations H,(A,n) and 7, (r,u) were derived through B{”)(1) and substituted into
other equations. Having freed the left and right sides from series and integrals, we obtained an infinite system
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of 21 linear algebraic equations of the second kind, to which the reduction method can be applied. As a result of
the solution, the unknowns B{") (1), B2 (1), BE) (1), 4" (), 4%).(n), 42, (1), 42)(r) were found. Ob-
tained function values B{') () and B{%) (%) were substituted into the expression for H,(x,u) and i, (r,pu).

m

Thanks to this, all unknowns of equations (6) and (7) are found.

Numerical studies of the stressed state
The problem is solved numerically J\&m
for a layer with two cylindrical pipes and a — -
cylindrical cavity under a given cantilever 7 &2\ (¢ @ \
load (Fig. 2). e oo | o \\g/ )
Geometric parameters of the model: p=3 »l P p=2
pipes and cy.hndrlcal (.:aV1ty are located F)n Fig. 2. Cantilever load of a layer on two embedded cylindrical
the same horizontal axis (a;,=0, o;3=n), dis- supports with a cylindrical cavity
tance between pipes L;,=40 mm, distance to
cylindrical cavity L;3=40 mm, outer radius of pipes R;1=R,=R;=15 mm, internal one »,=r,=10 mm, distances

to the upper and lower boundaries of the layer 4= i =20 mm.

Physical characteristics of the layer: aluminum alloy D16T, Poisson's ratio v;=0.3, modulus of elas-
ticity Eq=7.1x10* MPa. Physical characteristics of pipes: steel SHKHI15, Poisson's ratio v;=v,=0.28,
modulus of elasticity £,=E,=2.16x10° MPa.

At the upper boundary of the layer, stresses are given in the form of a unit wave

-10°
(22 +10%)% ((x +¢)2 +102f

boundary of the layer — zero stresses o'/ (x,z) =t'.) =1!’ =0 are given. Zero normal displacements and

(h)

)’X:

o (x,2)= ¢=160 mm and zero tangential stresses t'.’ =12’ =0, at the lower

tangential stresses are given on the inner surfaces of the pipes U\ (@ prZ) = @ (o pZ)= (o ,:2)=0,

— ; 3 _ 3 _ 06 _
p=1...2. Zero stresses are set on the surface of the cavity ;" =1,, =1, =0.

The accuracy of meeting the Table 1. Convergence of boundary conditions
boundary conditions depends on the Stress — 3 o} =5 p—rs

number of terms in the Fourier series "

and the order of the system of equa- 6, (x,z) | -0.98979 | -0.996239 | -0.999133 | —0.99982 | —0.999954
tions — m. For given geometric pa- | ¢'(x,z) | -0.0026 | —0.00025 | -0.000013 | -2x10° | -1x10°

rameters, the convergence of bound-
ary conditions is presented in Table 1.

The stress state analysis was performed at m=6.

Fig. 3 shows the stress 6, on the inner and outer surfaces of pipes when z=0.

Stresses 6, are maximum on the inner surfaces of the pipes (Fig. 3, lines 3, 4) and arise under the influ-
ence of the load and zero normal displacements at the supports. The stress c,, on the inner surface of the pipe
p=2 (Fig. 3, line 4) is opposite in sign and slightly greater than the stress o, on the pipe p=1 (Fig. 3, line 3).
These stresses also have a different sign depending on the part of the pipe where they are considered (upper or
lower). The stresses o, on the inner surfaces of the pipes are also greater on the pipe p=2 (Fig. 3, line 2).

The outer surfaces of the pipes are rigidly connected to the layer, therefore the stress o, on the con-
Jjugation surface in the body of the layer is equal to the stress G, in the pipe body, i.e. on the surfaces of the
cavities p=1 and p=2 in the body of the layer, the stresses indicated in Fig. 3 (lines 1, 2) arise.

The stresses 6, on the outer and inner surfaces of the pipes at z=0 are shown in Fig. 4.

The stresses o, in the pipe body p=1 (Fig. 4, lines 1, 2) are maximum on the outer surface of the
pipe, significantly exceed the stresses G, in the pipe body p=2 and the given unit stresses o,.

The stresses G, in the pipe body p=2 (Fig. 4, lines 3, 4) on the outer and inner surfaces of the pipe
are almost the same and are significantly less than the stresses in the pipe body p=1.
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Fig. 3. Stresses o, on pipe surfaces: Fig. 4. Stresses o, 0n pipe surfaces:
1 - pipe p=1, p=R;; 2 - pipe p=1, p=r1; 1 - pipe p=1, p=R;; 2 - pipe p=1, p=ry;
3 — pipe p=2, p=Ry; 4 - pipe p=2, p=r, 3 — pipe p=2, p=Ry; 4 — pipe p=2, p=r,

The stresses o, on the surfaces of cylindrical holes in the layer body, including at the point of con-
tact with the pipes, at z=0, are shown in Fig. 5.

The maximum stress values 6,= 1.7 MPa are observed on the surface of the cylindrical cavity p=3,
in its upper part (Fig. 5, line 3). This significantly exceeds the specified unit stresses c,. The maximum stress
G, values on the conjugation surface p=1 in the layer body (line 1) is 6,= £0.4104 MPa, on the conjugation
surface p=2 in the layer body it is equal to zero. A significant reduction in stresses on the cavities p=1 and

p=2 is ensured, in particular, by steel sleeves.
The tangential stresses 1, on the surfaces of the cylindrical holes of the layer at the point of contact

with the pipes (in the layer body), at z=0 are shown in Fig. 6.

Under the conditions of rigid connection of pipes with a layer, the tangential stresses 1, on the con-
jugation surface in the pipe body are equal to the stresses t,, in the layer body (Fig. 6). The tangential
stresses T, at the point of the layer conjugation with the pipe p=2 are concentrated in the left part of the con-
nection (Fig. 6, line2).

The tangential stresses 1, at the point of the layer conjugation with the pipe p=1 (Fig. 6, line 1) are
greater than the stresses T, at the point of the layer conjugation with the pipe p=2.

The stresses o, on the upper and lower surfaces of the layer along the x axis at z=0 are shown in Fig. 7.

The stresses o, along the x-axis at the upper boundary of the layer are maximum c,= £1.9648 MPa at
a distance of x=—-30 mm, i.e. above the cavity (p=3), and significantly exceed the specified unit stresses o,.
At a distance of x=—160 mm (at the location of the specified unit stress o,), the stresses o, at the upper

boundary also have an extremum c,= — 0.9596 MPa.

2 0.3

£ Al ~ g 1_/\\/\//\\
1 .
€o ﬂL—\¥ \Q\_ / g 00 7‘” / N\
NN AR A\/ARAN
a-l XY \/ 202 |— \/ —
03
0 w4 w2 3n/4 m Sn/4 6m/4Tn/4 2n

0 w4 w2 3n/4 wn 5n/4 6m/4Tn/4 2n

Rotation angle, rad Rotation angle, rad

Fig. 5. Stresses o, on the surfaces of the cylindrical holes  Fig. 6. Tangential stresses 1,, at the points of the layer
of the layer: conjugation with the pipes:
1 — at the point of contact with the pipe (p=1); 1 — support p=1; 2 — support p=2
2 — at the point of contact with the pipe (p=2);
3 — on the surface of the cavity (p=3)
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Conclusions 20

An analytical-numerical approach to solving a mixed| = 1.0 ! /\

o . g - =

problem of the theory of elasticity for a layer with two longi-| = ,,_\/ X
tudinal cylindrical pipes and a cylindrical cavity is proposed| & 0.0 = < A Paame
for the case when stresses are given on the upper and lower| % 10 T -4
boundaries of the layer, on the inner surfaces of the pipes - Z 27N S
conditions of smooth contact, and on the cavity - stresses. 2.0 v

For the first time, a solution for a layer with two cylin- -160 -120  -80  -40 0 40
drical pipes and a cylindrical cavity is written in analytical form. Distance, mm

The problem is reduced to an infinite system of linear
algebraic equations, which allows the application of the reduc-
tion method to it. The application of the analytical-numerical
generalized Fourier method allowed obtaining a solution to the
problem with a given accuracy.

Fig. 7. Stresses o, on flat surfaces of the layer:
1 — on the upper boundary (y=h);

2 — on the lower boundary (y= - )

The numerical analysis of the stress state of the layer and thick-walled pipes under a given cantilever
load showed that:

—stresses G, and o, in the conjugation p=1 on the surface of the cavity p=3 and on the flat surfaces of
the layer significantly exceed the specified unit G,;

—when comparing the stresses in the places of cylindrical supports, the stresses o, and 7, in absolute
values are greater on the surfaces of the pipe p=1, and the stress o, is greater on the surfaces of the pipe p=2.

The proposed solution method allows to obtain the results of the stress-strain state of cantilever ele-
ments of aircraft structures, to evaluate the influence of the material and geometric parameters on the magni-
tude of the stress distribution in other structures of machines and mechanisms, which can be represented in
the form of models similar to the one under consideration.

In the future, to develop the specified research topic, it is necessary to consider models with other
boundary conditions. One of such options is to take into account smooth contacts between the layer and pipes.
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AHani3 HanpyKeHo-1e(opMOBAHOT0 CTaHY HIAPY 3 HUJIIHAPUYHOIO MOPOKHUHOIO i
Bpi3aHMMH OMOPAMHU 3 BTYJIKAMH

M. J1. Kocenko

HamionansHuii aepoKOCMiuYHHN YHIBEpCUTET «XapKiBChKUH aBiallitHUN iHCTUTYTY,
61070, Ykpaiuna, M. XapkiB, Bys. Banuma Manbka, 17

B asiaxocmiyniil eanysi ti Mawuno0y0y8anHi NOWMUPEHUM € 3ACMOCYBAHHS YUTTHOPUUHUX 8PI3AHUX ONOp O
demaneti. [[ns po3paxynky noodionux 3’ €OHaHb GUKOPUCMOBYIOMb CNPOujeHs abo HabaudicenHs. Y cmammi 3anponoHo-
8AHO MEeMOOUKY PO3PAXYHKY WaAPY HA 080X NO3008HCHBbO BPI3AHUX YUTIHOpUYHUX onopax. Midxc onopamu il wiapom po3-
Mauosani 6mMyaKy (moecmocminui mpyou), wap nociadieruti n030084CHLOI0 YUTTHOPUUHOIO NOpodcHUnol0. Ha nuoic-
Hitl | 6epXHIll NOGEPXHAX WLAPY 3A0AHI HANPYICEHHS, A HA GHYMPIUIHIX NOBEPXHAX MPYO — YMOBU 21A0KO20 KOHMAKMY,
HA NOBEPXHI NOPOICHUHU — HANPYIHCEHHS. [ pO36 si3ans 3a0a4i 6UKOpUcmano pieHanns Jlame, oe 0na wapy 3acmo-
COBAHO OeKapmogy cucmemy KoopouHam, a Ot mpyo i YuiiHOPpUYHOL NOPONCHUHU — JOKAbHI YUTIHOPUYHI CUCTEMU.
THoconanns 6asucnux po3e’sai3Ki@ y pisHux cucmemax KoopouHam 30iliCHIOEMbCS 3a 00NOMO2010 Y3a2ANbHEHO20 MEMOOY
Dyp’e. Buxoosauu 3 panuyHux ymos i yMo8 CAPANCEHHs, OMPUMAHO HECKIHYEHHY cucmemy iHmespo-aneeopaiunux pis-
HSHb, SIKA 3600UMbCsL 00 JIHIUHUX Al12eOPaiuHUX PIGHSIHb OpY2020 poody Ul pO36 3YEMbCS 3a O0NOMO20K0 Memoody pedyK-
yii. Hanpyaicerno-oegopmoganuii Cman y KOJICHIU MOYYi NPYICHUX 3" €OHAHUX MIT BUSHAYEHO MAKOIC 13 pieHAnHA Jlame 3
BUKOPUCMAHHAM Y3a2anbHeH020 memody @yp’e 0o basuchux po3s’saskis. Ilokazano, wjo moyHicme pe3yibmamis y ybo-
MY 8URAOKY 3AneANCUMb 8i0 HAOIUNCEHHS SPAHUYHUX NOBEPXOHb 00HA 00 0OHOI ma 6i0 NOPsAOKY cucmemu pigHsaHs. Hu-
cenbHi QOCIOMNHCEHHSL NPOBEOEHO OIS APy 3 ONOPAMU Ul NOPONCHUHOIO, POIMAULOBAHUMU HA OOHIU NPAMIL, npu Oii KOH-
COIbHO20 HABAHMANCEHHA. AHANI3 HANPYIHCEHO20 CMAHY OMPUMAHO 8 30HAX YUNTHOPUYHUX OTNEOPI8 wapy U 8 mini emy-
0K, Makcumanvhi HanpysicenHs nepesuuyioms 3a0aHi i GUHUKAIOMb Yy MICYi PO3MAULY8AHHI YUTTHOPUUHOL NOPOICHU-
HU. 3anponoHoanull Memoo po36 sI3aHHA 0A€ MOICTUBICIb OMPUMYBATNU PE3VIbIMAMU HANPYHCEHO-0epOPMOBAHO20
CMAaHy KOHCONbHUX eJleMeHmi68 KOHCMPYKYIl 1imakie, oyinoeamuy eniue mMamepiany i 2eOMempudHux napamempis Ha
BEUYUHU PO3NOOLIEHHS HANPYICEHb 8 THUUX KOHCMPYKYIAX MAWUH | MEXAHI3MIS, SKI MOXCYMb Oymu npeoCcmasieHi y
su2nadi mooeneil, NOOIOHUX PO32THYMIlL.

Knrwouoei cnosa yzazanvuenuii memoo @yp’e, piguanna Jlame, wap 3 yuniHOpuuHUMU BKIIOYEHHAMU, HeCKIHYeHHA
cucmema iHmezpo-aneebpaiyHux PigHAHb, YUTTHOPUUHA NOPOHCHUHA.
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