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Using cylindrical embedded supports for parts is common in the aerospace and 
mechanical engineering industries. Simplifications or approximations are used 
to calculate such connections. A method for calculating a layer on two longitudi-
nally embedded cylindrical supports is proposed in this paper. There are bush-
ings (thick-walled pipes) between the supports and the layer; the layer is weak-
ened by a longitudinal cylindrical cavity. Stresses are set on the lower and upper 
surfaces of the layer, smooth contact conditions are set on the inner surfaces of 
the pipes, and stresses are set on the surface of the cavity. To solve the problem, 
the Lamé equation is used, where the Cartesian coordinate system is used for the 
layer, and local cylindrical systems are used for the pipes and the cylindrical 
cavity. The combination of basic solutions in different coordinate systems is per-
formed using the generalized Fourier method. Based on the boundary conditions 
and conjugation conditions, an infinite system of integro-algebraic equations, 
which is reduced to linear algebraic equations of the second kind and solved 
using the reduction method, is obtained. The stress-strain state at each point of 
elastic connected bodies is also determined from the Lamé equation using the 
generalized Fourier method to the basis solutions. The accuracy of the results in 
this case depends on the approximation of the boundary surfaces to each other 
and on the order of the system of equations. Numerical studies have been carried 
out for a layer with supports and a cavity located in a straight line under the 
action of a cantilever load. The analysis of the stress state was obtained in the 
zones of cylindrical holes of the layer and in the body of the bushings. The maxi-
mum stresses exceed the specified ones and occur at the location of the cylindri-
cal cavity. The proposed solution method makes it possible to obtain the results 
of the stress-strain state of cantilevered elements of aircraft structures, to evalu-
ate the influence of material and geometric parameters on the values of stress 
distribution in other structures of machines and mechanisms that can be repre-
sented as models similar to the one under consideration. 

Keywords: generalized Fourier method, Lamé equation, layer with cylindrical 
inclusions, infinite system of integro-algebraic equations, cylindrical cavity. 

Introduction 
In mechanical and aircraft engineering, the combination of various structural elements is often 

hinged. These elements are connected by bolts, rivets, bearings and other fasteners, for which the corre-
sponding holes are provided in the structures. Thus, elements in which the supports are embedded cylinders 
are created. To strengthen the contact point with the support, bushings, rigidly connected to the part and 
smoothly contacting the support, are often installed in the parts.  

For the calculation of such nodes, which are a layer with thick-walled pipes, approximate methods, such as 
the finite element method [1], and software tools based on it [2], are mainly used. However, with this approach, to 
confirm the obtained results, it is worth using analytical or analytical-numerical methods, or conducting tests [3, 4]. 

The use of analytical methods [5, 6] based on the expansion of solutions into a Fourier series is pos-
sible only with a significant simplification of the calculation model. The specified methods consider the 
problem either in a flat form or with the number of boundary conditions less than three.  

Analytical-numerical methods, in comparison with analytical ones, provide more opportunities for 
estimating the stress state of a layer with cylindrical inhomogeneities. Thus, in papers [7, 8] a layer with a 
cylindrical cavity located perpendicular to the boundaries of the layer is considered. The solution is based on 
the integral Laplace transforms and finite Fourier sine and cosine series, which are sequentially applied to the 
axisymmetric equations of motion and boundary conditions. However, in the case of using the proposed 
method [7, 8], no more than one cylindrical cavity can be taken into account. 
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In paper [9], thanks to the integral Weber-Orr transforms, the problem of torsion of an elastic half-
space with a vertical cylindrical cavity is studied, while a coaxial stamp rotating under the action of a torque 
is fixed on the flat boundary. The method proposed in this study can only be used for half-space. 

To achieve the optimal distribution of thermal stresses in composite plates with non-circular holes un-
der uniform heat flux, metaheuristic optimization algorithms are used in [10]. The analytical part of the study is 
based on thermoelastic theory and the complex variable method. However, the proposed method [10] cannot 
take into account more than one cylindrical cavity. 

To calculate a layer with several cylindrical inhomogeneities located parallel to the layer boundaries, 
an approach based on the analytical-numerical generalized Fourier method [11], which allows combining the 
basic solutions of the Lamé equation in different coordinate systems, is useful. Thus, using the generalized Fou-
rier method, problems for a cylinder with cylindrical cavities [12, 13] and inclusions [14] were solved. In [15], 
using the example of a problem for a half-space with a cylindrical cavity, the justification of the formulas for 
the transition of basic solutions between the Cartesian and cylindrical coordinate systems is given. Based on the 
generalized Fourier method, in [16], the problem for a layer with one longitudinal cylindrical cavity was 
solved, and in paper [17] – the problem for a layer with a continuous cylindrical inclusion was solved. The 
problem for a layer connected to a half-space in which a cylindrical cavity is located is solved in [18]. A layer 
with two cylindrical cavities (simulated embedded cylindrical supports) is considered in [19]. The problem for 
a layer with one thick-walled pipe is solved in [20], for a layer with one thick-walled pipe and a cylindrical cav-
ity – in [21], with two thick-walled pipes (simulated cylindrical embedded supports with bushings) – in [22]. 
However, the approaches proposed in [16–22] cannot be applied to the solution of the problem for a layer on 
two cylindrical embedded supports with bushings, weakened by a cylindrical cavity. 

The aim of this paper is: 
– to develop a method for solving a mixed problem of the theory of elasticity for a layer with two 

longitudinal cylindrical pipes and a cylindrical cavity. To achieve this, stresses are given on the upper and 
lower boundaries of the layer, smooth contact conditions are imposed on the inner surfaces of the pipes, and 
stresses are imposed on the cavity; 

– to analyze the stress state of the layer and thick-walled pipes under a given cantilever load. 

Problem statement 
The model is a layer with two cylindrical thick-walled pipes 

and a cylindrical cavity located parallel to its boundaries (Fig. 1). 
Local cylindrical coordinates are used to describe the geometry 

of the pipes and cavity (ρp, φp, z, where p – pipe or cavity number), and 
Cartesian coordinate system (x, y, z), which coincides with the coordi-
nate system of the first pipe (p=1), is used for the layer. 

The outer radii of the pipes or cavity are denoted as Rp, and 
the inner radii of the pipes – as rp. Distance to layer boundaries is y=h 

and y= – h
~

. 

 

Fig. 1. Layer with two cylindrical  
thick-walled pipes and a cylindrical cavity 
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– smooth contact conditions are specified on the inner surfaces of the pipes 
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– on the surface of a cylindrical cavity (p = 3), the stresses are set as 
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The layer is rigidly connected to each pipe by the conjugation conditions 
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 is the solution for the layer ; ),( zU p 
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 is the solution for pipes. 

All given functions will be considered to be rapidly decreasing from the origin along the axis z and 
along the axis x. 

Solution methodology 
The solution to the problem is given in the form proposed in [22], taking into account the additional 

cavity 
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where  is the Poisson's; Im(x), Km(x) are modified Bessel functions. 
To write equations (6) and (7) in the same coordinate system, the transition formulas between the ba-

sic solutions of the Lamé equation were applied [11]: 

– from external solutions for the cylinder mkS ,


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– from solutions of the cylinder with number p to solutions of the cylinder with number q 
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To find the 27 unknown functions (6) and (7), a system of 27 integro-algebraic equations was formed. 
The first six equations are formed when the boundary conditions on the flat surfaces of the layer (1) are 

satisfied. For this, the stress operator is applied to the functions (6), and the double Fourier integral – to (1), 
after which they are equated to each other. Basic solutions mkS ,


 from the cylindrical coordinate system using 

the transition formulas (8) are rewritten as 
ku


 into Cartesian one. 
Six more equations are formed when the boundary conditions on the inner surfaces of the pipes (2) are 

satisfied. For this purpose, the stress operator is applied to the functions (7), and the expressions for e


 and ze


 

in stresses along e


 remain in the displacements. These expressions are equated to functions (2), to which the 

Fourier integral along the axis z and the Fourier series in the angle  are applied. 
Three equations are written for the boundary conditions on the surface of the cavity. For this pur-

pose, the stress operator is applied to functions (6), and the Fourier integral along the axis z and the Fourier 
series in the angle  are applied to (3). After that, they are equated to each other. Basic solutions 

ku


 from 

the Cartesian coordinate system using the transition formulas (9) are rewritten as mkR ,


 into a cylindrical one. 

Another 12 equations are formed when the conjugation conditions between the layer and each pipe (4), 
(5) are met. When these conditions are met, the basic solutions 
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 are rewritten from the Cartesian coordinate 

system through mkR ,


 into local cylindrical ones using the transition functions (9). In addition, the formulas for 

the transition of basic solutions from one local cylindrical coordinate system to another (10) are used. 
And the first six equations  ,kH  and  ,
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kH  were derived through    p
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other equations. Having freed the left and right sides from series and integrals, we obtained an infinite system 
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of 21 linear algebraic equations of the second kind, to which the reduction method can be applied. As a result of 
the solution, the unknowns    1

,mkB ,    2
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,mkB  were substituted into the expression for  ,kH  and  ,
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kH . 

Thanks to this, all unknowns of equations (6) and (7) are found. 

Numerical studies of the stressed state 
The problem is solved numerically 

for a layer with two cylindrical pipes and a 
cylindrical cavity under a given cantilever 
load (Fig. 2). 

Geometric parameters of the model: 
pipes and cylindrical cavity are located on 
the same horizontal axis (α12=0, α13=), dis-
tance between pipes L12=40 mm, distance to  

 
Fig. 2. Cantilever load of a layer on two embedded cylindrical 

supports with a cylindrical cavity 

cylindrical cavity L13=40 mm, outer radius of pipes R1=R2=R3=15 mm, internal one r1=r2=10 mm, distances 

to the upper and lower boundaries of the layer h= h
~

=20 mm. 
Physical characteristics of the layer: aluminum alloy D16T, Poisson's ratio 0=0.3, modulus of elas-

ticity E0= 7.1×104 MPa. Physical characteristics of pipes: steel SHKH15, Poisson's ratio 1=2=0.28, 
modulus of elasticity E1=E2=2.16×105 MPa. 

At the upper boundary of the layer, stresses are given in the form of a unit wave 
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p=1…2. Zero stresses are set on the surface of the cavity 0)3()3()3(   z . 

The accuracy of meeting the 
boundary conditions depends on the 
number of terms in the Fourier series 
and the order of the system of equa-
tions – m. For given geometric pa-
rameters, the convergence of bound-
ary conditions is presented in Table 1. 

Table 1. Convergence of boundary conditions 

Stress m=2 m=3 m=4 m=5 m=6 

),()( zxh
y  –0.98979 –0.996239 –0.999133 –0.99982 –0.999954 

),()
~

( zxh
y  –0.0026 –0.00025 –0.000013 -2×10-6 -1×10-6 

 

The stress state analysis was performed at m=6. 
Fig. 3 shows the stress  on the inner and outer surfaces of pipes when z=0. 
Stresses  are maximum on the inner surfaces of the pipes (Fig. 3, lines 3, 4) and arise under the influ-

ence of the load and zero normal displacements at the supports. The stress  on the inner surface of the pipe 
p=2 (Fig. 3, line 4) is opposite in sign and slightly greater than the stress  on the pipe p=1 (Fig. 3, line 3). 
These stresses also have a different sign depending on the part of the pipe where they are considered (upper or 
lower). The stresses  on the inner surfaces of the pipes are also greater on the pipe p=2 (Fig. 3, line 2). 

The outer surfaces of the pipes are rigidly connected to the layer, therefore the stress  on the con-
jugation surface in the body of the layer is equal to the stress  in the pipe body, i.e. on the surfaces of the 
cavities p=1 and p=2 in the body of the layer, the stresses indicated in Fig. 3 (lines 1, 2) arise. 

The stresses  on the outer and inner surfaces of the pipes at z=0 are shown in Fig. 4. 
The stresses  in the pipe body p=1 (Fig. 4, lines 1, 2) are maximum on the outer surface of the 

pipe, significantly exceed the stresses  in the pipe body p=2 and the given unit stresses y. 
The stresses  in the pipe body p=2 (Fig. 4, lines 3, 4) on the outer and inner surfaces of the pipe 

are almost the same and are significantly less than the stresses in the pipe body p=1. 
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Fig. 3. Stresses  on pipe surfaces:  
1 – pipe p=1, =R1; 2 – pipe p=1, =r1;  
3 – pipe p=2, =R2; 4 – pipe p=2, =r2 
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Fig. 4. Stresses  on pipe surfaces: 
1 – pipe p=1, =R1; 2 – pipe p=1, =r1;  
3 – pipe p=2, =R2; 4 – pipe p=2, =r2 

The stresses  on the surfaces of cylindrical holes in the layer body, including at the point of con-
tact with the pipes, at z=0, are shown in Fig. 5. 

The maximum stress values = 1.7 MPa are observed on the surface of the cylindrical cavity p=3, 
in its upper part (Fig. 5, line 3). This significantly exceeds the specified unit stresses y. The maximum stress 
 values on the conjugation surface p=1 in the layer body (line 1) is = 0.4104 MPa, on the conjugation 
surface p=2 in the layer body it is equal to zero. A significant reduction in stresses on the cavities p=1 and 
p=2 is ensured, in particular, by steel sleeves. 

The tangential stresses  on the surfaces of the cylindrical holes of the layer at the point of contact 
with the pipes (in the layer body), at z=0 are shown in Fig. 6. 

Under the conditions of rigid connection of pipes with a layer, the tangential stresses  on the con-
jugation surface in the pipe body are equal to the stresses  in the layer body (Fig. 6). The tangential 
stresses  at the point of the layer conjugation with the pipe p=2 are concentrated in the left part of the con-
nection (Fig. 6, line2). 

The tangential stresses  at the point of the layer conjugation with the pipe p=1 (Fig. 6, line 1) are 
greater than the stresses  at the point of the layer conjugation with the pipe p=2. 

The stresses x on the upper and lower surfaces of the layer along the x axis at z=0 are shown in Fig. 7. 
The stresses x along the x-axis at the upper boundary of the layer are maximum x= 1.9648 MPa at 

a distance of x= –30 mm, i.e. above the cavity (p=3), and significantly exceed the specified unit stresses y. 
At a distance of x= –160 mm (at the location of the specified unit stress y), the stresses x at the upper 
boundary also have an extremum x= – 0.9596 MPa. 
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Fig. 5. Stresses  on the surfaces of the cylindrical holes 
of the layer: 

1 – at the point of contact with the pipe (p=1); 
2 – at the point of contact with the pipe (p=2);  

3 – on the surface of the cavity (p=3) 
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Fig. 6. Tangential stresses  at the points of the layer 
conjugation with the pipes: 

1 – support p=1; 2 – support p=2 
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Conclusions 
An analytical-numerical approach to solving a mixed 

problem of the theory of elasticity for a layer with two longi-
tudinal cylindrical pipes and a cylindrical cavity is proposed 
for the case when stresses are given on the upper and lower 
boundaries of the layer, on the inner surfaces of the pipes - 
conditions of smooth contact, and on the cavity - stresses. 

For the first time, a solution for a layer with two cylin-
drical pipes and a cylindrical cavity is written in analytical form. 

The problem is reduced to an infinite system of linear 
algebraic equations, which allows the application of the reduc-
tion method to it. The application of the analytical-numerical 
generalized Fourier method allowed obtaining a solution to the 
problem with a given accuracy. 
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Fig. 7. Stresses x on flat surfaces of the layer: 
1 – on the upper boundary (y=h);  

2 – on the lower boundary (y= – h
~

) 

The numerical analysis of the stress state of the layer and thick-walled pipes under a given cantilever 
load showed that: 

–stresses  and x in the conjugation p=1 on the surface of the cavity p=3 and on the flat surfaces of 
the layer significantly exceed the specified unit y; 

– when comparing the stresses in the places of cylindrical supports, the stresses  and  in absolute 
values are greater on the surfaces of the pipe p=1, and the stress  is greater on the surfaces of the pipe p=2. 

The proposed solution method allows to obtain the results of the stress-strain state of cantilever ele-
ments of aircraft structures, to evaluate the influence of the material and geometric parameters on the magni-
tude of the stress distribution in other structures of machines and mechanisms, which can be represented in 
the form of models similar to the one under consideration. 

In the future, to develop the specified research topic, it is necessary to consider models with other 
boundary conditions. One of such options is to take into account smooth contacts between the layer and pipes. 
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Аналіз напружено-деформованого стану шару з циліндричною порожниною і  
врізаними опорами з втулками 

М. Л. Косенко 

Національний аерокосмічний університет «Харківський авіаційний інститут», 
61070, Україна, м. Харків, вул. Вадима Манька, 17 

В авіакосмічній галузі й машинобудуванні поширеним є застосування циліндричних врізаних опор для 
деталей. Для розрахунку подібних з’єднань використовують спрощення або наближення. У статті запропоно-
вано методику розрахунку шару на двох поздовжньо врізаних циліндричних опорах. Між опорами й шаром роз-
ташовані втулки (товстостінні труби), шар послаблений поздовжньою циліндричною порожниною. На ниж-
ній і верхній поверхнях шару задані напруження, а на внутрішніх поверхнях труб – умови гладкого контакту, 
на поверхні порожнини – напруження. Для розв’язання задачі використано рівняння Ламе, де для шару засто-
совано декартову систему координат, а для труб і циліндричної порожнини – локальні циліндричні системи. 
Поєднання базисних розв’язків у різних системах координат здійснюється за допомогою узагальненого методу 
Фур’є. Виходячи з граничних умов й умов спряження, отримано нескінченну систему інтегро-алгебраїчних рів-
нянь, яка зводиться до лінійних алгебраїчних рівнянь другого роду й розв’язується за допомогою методу редук-
ції. Напружено-деформований стан у кожній точці пружних з'єднаних тіл визначено також із рівняння Ламе з 
використанням узагальненого методу Фур’є до базисних розв’язків. Показано, що точність результатів у цьо-
му випадку залежить від наближення граничних поверхонь одна до одної та від порядку системи рівнянь. Чи-
сельні дослідження проведено для шару з опорами й порожниною, розташованими на одній прямій, при дії кон-
сольного навантаження. Аналіз напруженого стану отримано в зонах циліндричних отворів шару й в тілі вту-
лок. Максимальні напруження перевищують задані і виникають у місці розташування циліндричної порожни-
ни. Запропонований метод розв’язання дає можливість отримувати результати напружено-деформованого 
стану консольних елементів конструкцій літаків, оцінювати вплив матеріалу й геометричних параметрів на 
величини розподілення напружень в інших конструкціях машин і механізмів, які можуть бути представлені у 
вигляді моделей, подібних розглянутій. 

Ключові слова узагальнений метод Фур’є, рівняння Ламе, шар з циліндричними включеннями, нескінченна 
система інтегро-алгебраїчних рівнянь, циліндрична порожнина. 
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