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To determine an optimal contour of holes for a perforated stringer plate weakened
by a periodic system of cracks, an inverse problem of fracture mechanics is consid-
ered. It is assumed that the material of the plate is elastic or elastic-plastic. The
stiffeners (stringers) are symmetrically riveted to the plate. The perforated plate is
uniformly stretched at infinity along the stringers. It is assumed that rectilinear
cracks are located near the contours of the holes and are perpendicular to the riv-
eted stiffeners. The solution of the formulated inverse problem is based on the prin-
ciple of equal strength. The optimal shape of the holes satisfies two conditions: the
condition for the absence of stress concentration on the hole surface and the condi-
tion for the zero stress intensity factors in the vicinity of the crack tips. The unknown
contour of holes is looked for in the class of contours close to circular. The action of
the stiffeners is replaced by unknown equivalent concentrated forces at the points of
their connection with the plate. The sought-for functions (the stresses, displace-
ments, concentrated forces and stress intensity factors) are looked for in the form of
expansion in small parameter. The solution to the problem is sought using the ap-
paratus of the theory of analytic functions and the theory of singular integral equa-
tions, then the conditional extremum problem is solved. As a result, a closed system
of algebraic equations is obtained, which allows to minimize the stress state on the
contours of holes and stress intensity factors in the vicinity of the crack tips. The
obtained system of algebraic equations allows to determine the form of equal
strength contour of holes, the stress-strain state of the perforated stringer plate and
also the optimal value of the tangential stress.

Keywords: perforated plate, stringers, cracks, optimal contour, equi-strong holes.

To prevent the fracture of the perforated plate, it is very important to know the optimal contour of
the holes [1-9]. Hole contour without any areas preferred for brittle failure or plastic deformations (equal
strength contour) is optimal [10, 11]. However, optimal contour of the hole must also meet the conditions of
immobility of the cracks present in the body. Recently, some problems have been considered for finding the
optimal contour of the hole, taking into account the presence of cracks in the body [12—-19].

The goal of this paper is to find optimal contour of holes for a perforated plate weakened by linear
cracks near the contours of the holes and stiffened with a regular system of stiffness ribs.

Problem statement

We consider an elastic plate weakened
by an infinite row of identical holes. The plate
was stiffened by a regular system of stringers
and is subjected to homogeneous stretching

along the stringers by the stress o} =0,

(Fig. 1). There are rectilinear cracks near the
contours. The plane stress state is realized in
the contour. It is accepted that the stress state
of the stringers is uniaxial. We assume that the
plate and stringers interact in the same plane,
and only at the stiffening points the stringers
are not subjected to bending and are not weak-
ened by the setting of attachment points.
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Fig. 1. Design scheme of the inverse problem
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The radius of attachment points (coupling area) is small compared to their step and other characteris-
tic sizes. The action of attachment points is modeled with the action of concentrated forces applied at the
centers of attachment points. Accordingly, the action of stringers is replaced by unknown equivalent forces
P, applied at the attachment points of stringers and plates.

The problem is in determining the equal strength contour of holes, under which the cracks will not
grow, and also the stress-strain state of a perforated built-up plate and the sizes of concentrated forces P,,,.

The boundary conditions of the problem are of the form:

— on the unknown contours L,, (m=0, 1, 2, ...) of the holes

c6,=0; 1,=0; o, ,=0.=const; (1)
— on the crack faces
Gy=0; ’Exy=0; a+mw£|x|£b+mco.

Here ¢ and n are a tangent and normal to the hole contour. The value o+ for elastic plate should be de-

termined, whereas for elastoplastic plate we accept the plasticity condition [20]

f(,,6,,7,)=0, (2)
where f'is the given function. It is assumed that plastic area appears for the first time on the contour hole and
coves the entire contour at once, does not penetrate deep into it. It is known [10, 11] that such a body is most
durable in the sense of uniform distribution of stresses over all points of the hole contour.

It is required to find such a form of holes under which the crack will not grow, and tangential initial
stress acting on the hole contours will be constant. Note that it follows from condition (2) that the stress o, is
constant everywhere on the tensile boundary of hole contour and equals the material strength. According to Ir-
win-Orowan theory of quasi-brittle failure, the stress intensity factors characterize the stress state in the vicinity
of crack tips. Therefore, we require that condition (1) will be satisfied on the hole contours, and the condition

Klaerw =0 : K[b+mm =0 , (3)
will be satisfied in the vicinity of the crack tips. Here K", K™ are the stress intensity factors in the

vicinity of crack tips. Since the cracks were located symmetrically, K{*" = K;“ "0, K" = K; """,

The solution of the boundary value problem
We will look for the unknown contour L,, (m=0, 1, 2, ...) of holes as close to the circular one as possible.
We represent it in the form r=p(0) =L + € H(0), where e=R,_,, /A is a small parameter, R,y is the

greatest height of the contour profile L,, of the hole from the circle 7=A. The function H(0) will be found in
the process of solving the problem. Without loss of generality of the considered problem, it is accepted that
the sought-for function H(0) is symmetric about the coordinate axes and can be represented in the form of

Fourier series H(0) = Zd% cos2k0 .
k=1
We will look for the sought-for functions (the stresses, displacements, concentrated forces P,,, and
stress intensity factors Kj) in the form of expansion in small parameter

c,=6"+ecV+...; 6,=0V+ecV+...; 1, =1V +etV+..;

(Y]

=u 9 +euV 4. v=vQ 4V 4+

u

P,=PV+ePV+. .., K =K”+ek+...,
in which we neglect for simplicity the terms containing € of degree greater than one.
Each of approximations satisfies the system of differential equations of the plane problem of elastic-
ity theory.
We obtain the values of stress tensor components for »=p(0) by expanding in series the expressions
for stresses in the vicinity of r=A.
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Solution of the problem in zero approximation

Taking into account the known formulas [21] for the stress components o, and t,, the boundary
conditions of the problem take the following form:

Allowing for known formulas [21] for stress components G, and t,, the boundary conditions, of the
problem take the following form:

— in the zero approximation

on the contour 7=\

o”=0; 1§ =0, (4)
on the crack faces
G(y°)=0; Tig)zo;a+mms|x|sb+mm, ®)]
— in the first approximation
on the contour =2\
oV=N; =T, (6)
on the crack faces
c(yl)zo; tgy):O;a+mwS|x|Sb+mw. @)
(0) (0)
Here N = —H(G)&LJFET%) 4H(©®) T = l((jg)) - ng)w_ H(e)at_re )
or A do A do or

Since the boundary conditions and geometry of the domain D occupied by the plate material possess
the symmetry with respect to coordinate axes, the stresses are periodic functions of period ®. Based on the
Kolosov-Muskhelishvili formulas [21] and boundary conditions on the hole contours and crack faces, the
problem (4)—(6) in the zero approximation is reduced to determining two analytic functions ®”(z) and ¥°(z)
from the conditions

O (1) + dV (1) — e [70" (1) + WO (1) | =0 for t=2e” + mo; ®)
V() + DV () +x0' V() + ¥V (x) =0; a+mo<|x|<b+mo. 9)

We will look for the solution of problem (8)—(9) in the form
D”(2) =D (2)+ 0V (2)+ DY (2); Y (2) =" @)+ V" (2)+ ¥ (2). (10)

The potentials CDE)O)(Z) and ‘I’éo) (z) determine stress and strain fields in the solid plate under the ac-

tion of tensile stresses 6, and the system of concentrated forces P” and are of the form

1 i 1 1
O (2)=-—0y————— > 'PY - ;
0 (2)==40% 2h(l+1) <~ ™"

- z—mL+iny, z-—mL-iny,

WO (@)= Loy SR e
2 2mh(l+x) “= z—mL+iny, z—mL—iny,
+ i Z,P(O) mL—iny,  mL+iny, , (11)
2nh(l+ k)< "™ | (z—=mL +iny,)* (z—mL—iny,)’

where k=(3—v)/(1+v); v is the Poisson ratio of the plate material; the prime at the sum sign shows that when
summing, the index m=n=0 is excluded.

The functions CDEO)(Z) and ‘111(0)(2) corresponding to the unknown normal displacements along the
cracks are sought in the explicit form

D0 (2)= [ ¢ ete (¢~ 2)dt; WO (2) =~ [ gV eysin > -2y (12)
20 7 0] 207 5, 0]
here L'=[—a, —b]+[a, b]; the function g”(x) characterizes the derivative of the crack faces opening.
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To find the complex potentials @ (z) and Wi”(z) , we represent conditions (8)—~(9) in the form

0P (1) + DL (1) + [F01? (1) + W () b7 = £1(0) +if, () + b, (0) + i, (0) : (13)
£10)+i£,(0) = -0 (1) — 00 (1) + [t (1) + ¥ (1) | (14)
0,(0)+ i (0) =~ (1) - &) (1) + [c0(® (1) + WO (1) [e2° (15)

We will look for the potentials ®\"(z) and W{”(z) in the following form

® 9 2k+2 J(26) (2) 7\‘2k+2 (2k) (2) )sz+2S(2k)(Z)
oW = 4 a9 p : (0) (0) + a0 . 16
2 (2) 0 Z 2k+2 2k +1)! (2)= ZB2k+2 2k +1)! ; 2k+2 2k +1)! (16)

2
Y G

Relations (10)—(12) and (16) determine the class of symmetric problems with periodic stress distri-

bution. Taking into account the symmetry with regard to coordinate axes, we have
0 0
Imal),,=0; ImpY),,=0; =0, 1,2.

From the condition of constancy of the principal vector of forces acting on the arc connecting two

congruent points in the domain D we have
al) =B /24 .
The unknown coefficients o\, , and B'?,, must be determined from the boundary condition (13).

We will consider that f,(0)+if,(0) and ¢,(0)+id,(0) on the contour |r | =) expand in Fourier series. By
symmetry, these series are of the form

© 27

FO+RO= 2 Aye™ s Tmdy =05 Ay = [(70)+i£,(0)) > do0; (17)
k=—00 0
© 2n

$,(0)+i¢,(0)= D Bye™; ImB, =0; Bzfi [ 610 +i0, (@) a0 (18)
k=—00 0

Having substituted the relation (14) in (17), after calculating the integrals by means of residue the-
ory, we find

A4y = _150 +—1 2'131752) _2}1&) ;
27 T+ & ™ CC

4, =lco— 1 Z'Pég)[k sin 3¢, Ksind)3 _sin3¢3}
2 Th(l+x) P Py P

m,n

1 [2 P<°>[7“2 sin2k +Dg; | (=2)(=3)...(- 25\ sin(2k + 1), sm3¢3J_

Ay =———
S i pit (2k=1)p;* P
122 sin(2k —1)d ( 2)(=3)...(1-2k)2** 2 sin(2k +1)d
~ 3 30 k=23, ...
p12k 1 (Zk 1)' 2k+1 b b 9 sy
y :;Z,P(O) A sin(2k +1)¢, =12
TS PR prt

where C=mL +iny,; p, =vCC ; o, =arctg%
m
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And also, when substituting (15) in (18) and calculating the integral by means of the residue method,
we obtain

By =580 fu 00
J
where
2
10 =21(0); f5(0) = —%v@’ 0: Y0 =ctg 1
M2k -1) N A2k
(2k)! k-3
r v (1) k=1, 2, .
O T TG

Since the periodicity conditions are fulfilled, when solving the problem it suffices to consider one
strip of periods, for example, the main one (with a hole contour L, 7=Ae™).

Su)=- (Zk_z)(l‘);kZZ, 3, ...

The system of equations (13) from which the unknown coefficients a(o) and B(O) are determined,

degenerates to one functional equation. To construct equations regarding the coefficients a(o) and B(z(}c) , as

well as the functions ®{”(z) and ¥{”(z), we expand these functions in Laurent series in the vicinity of the
point z=0. Having substituted 7=ke” into the left-hand of the boundary condition (13) on the contour instead
of the functions ®Y(z), ®, ®4?, W{”(z) and their expansion — in Laurents series in the vicinity of the

point z=0, as well as the Fourier series (15) and (18) to the right side of (13) instead of the function
£1(0)+if,(0) and ¢,(0)+id,(0), we compare the coefficients at the identical powers ¢’ As a result, we ob-

tain two infinite systems of algebraic equations regarding the coefficients ) and B, .

After a number of transformations, we obtain an infinite system of algebraic equations with respect

(0)
0 apyn

0) * 4 0) (0)
Oy j4r = ZA_/,kaszrz +b;7. (19)
0

The constants B}, are determined from the relations

© 1 S o)
+ .
242 = ? _M0+22—22k+2 Oogsn |5
1

k=0

2j+2k+4
A J

B(O) (2] + 3)a(0) z (2] +2k + 3)'gk+1+2

(0)
24 = 2j+2 (2] +2)1(2k + )T 2+ Qppsa =M 5 - (20)

2
Here K, =1—f—273.

Requiring that the functions (10) satisfy the boundary condition (9), after a number of transforma-
tions we obtain a singular integral equation for the function g”(x)

lj 2O (t)etg Z(t — x)dx + Hy(x) =0, 1)
[ORS (0]

where
Hy(x) = D.(x) + D (x) + xD5(x) + Pi (x) ;

D.(x) =0 (x) + DY ()5 Fulx) =¥ (1) +¥;7 (x).
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Singular integral equation (21) and algebraic systems (19), (20) contain unknown quantities of con-
centrated forces P” . To determine these quantities, we use the Hooke’s law and the method of "gluing" of
two asymptotes of the sought-for solution.

According to the Hooke’s law, the magnitude of the concentrated force P'” acting on each attach-

mn

ment point as viewed from the stringer equals
po _EA o
where E; is the Young’s modulus of the material; 4, is the cross-section area of the stringer; 2yyn is the dis-
(0)

m,n

(m,n=1,2,...),

m,n

tance between the attachment points; Av,’ is the relative displacement of the considered attachment points

equal to the elongation of the appropriate section of the stringer.
To find concentrated forces P\ we require the fulfillment of the condition of compatibility of dis-
placements, i.e. we accept that the relative elastic displacement of the points z=m/L+i(yon—ao) and z=mL—i(yon—ay)

(0)

equals the relative displacement Av, " of the attachment points. Here aj is the radius of the attachment points

(the coupling area).
By means of complex potentials (10)—(12), (16) and the Kolosov-Muskhelishvili formulas for dis-

placements, we find the relative displacement Av(o) . Knowing the relative displacements Avf,?’)n we deter-
mine the sought-for magnitudes of concentrated forces from the system
E A
P;f) L Av(ol (p,r=1,2,..) (22)
2y,r

Algebraic systems (19), (20), (22) and singular integral equation (21) are connected and should be
solved jointly.
Using the expansion

ZZ/+1
gctg—z _;_;g]+l 0)2/+2
we can reduce the equation (21) to the form
(0)
J' Jdt +— j g (OK(t-x)dt + Hy(x) =0, 23)
T
L
t2/+1
where K(t)= Zg]H PR

j=0
Taking into account that the function g”(x) is odd, using the change of variables, we reduce the
equation (23) to the standard form

g h
j * (T) v L [ (@Bt + ()= 0. @4

T

-1

We represent the solutlon of singular integral equation (24) in form
go(n)
g-()=—"F—=.
J1-n?
The function go(1) is Holder continuous in the area [—1, 1] and is replaced by the Lagrange polyno-
mial structured by Chebyshev nodes [22, 23]. Using [22, 23] square formulas, we reduce the integral equa-
tion (24) to the system of M linear algebraic equations regarding approximate values g.” of the sought-for

function at nodal points. Using the algebraization procedure [22, 23] the singular integral equation (21) under
additional condition

b+mo —b—-mo
j g (H)dt=0; j gO(0dt=0 (m=0,1,2,...),
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that provides uniqueness of displacements when bypassing the contours of cracks, is reduced to the system of
M linear algebraic equations for determining M unknowns g'”(t,) (m=1, 2, ..., M). After some transforma-
tions, the integral equation is replaced by the system of algebraic equations

Zamkgk += Ho*(nm) 0 (m=1,2,...,M-1); (25)

< 0
> &M, =0,
k=1

1 1 0 +(_1)‘m k‘e 2m—1 0) 0)
where ¢, =—— ctg - L4+ B(t , ;0 =—"—mx; = T,); M, =c0s0,; T, =M.
_ 2M[sin9m 4 > (T,sMi) |5 6, o 8 =8 (te)s M k="M

For the stress intensity factor in the Vicinity of crack tips for x=a+m in zero approximation we have

KO = [n(b-a) Z( "M g e, Zm-1,

m=1

in the vicinity of crack tips for x=b+mm we have

M

m 2m—1

KO =\rn(b-a)Y (-1)"g""(t,)ctg TV
m=1

The solution of the problem in the first approximation
After finding the solution in zero approximation we solve the problem in the first approximation.
The boundary conditions (6)—(7) of the problem for the first approximation are written as

00 (1) + 07 (1) — e [c0'V () + WO (1) |= N—iT  for ©=ne® +mo (26)
PV (x)+ 0V (x) +x0"V(x) + ¥V (x) =0; a+ mo <[ <b+mo. (27)
We look for the solution to the boundary value problem (26) similar to the zero approximation in the
form
0(2) = 0P (2)+ D)+ 0V (2); FO() =¥ () + F(2)+ ¥ (2), (28)
where the potentials (1)(2) and ‘Pél)(z) describe stress and strain field under the action of the system of

concentrated forces P(1>

be replaced by P!

and are determined by the formulas similar to (11), where o, =0, P\” and should

We look for the potentials CD{”(Z) and ‘Pl(l)(z) in the form similar to (12), and this time the function

2%(x) should be replaced by g"(x). We find @ (z) and P!’ (z) from the boundary condition (28), using
the N. I. Muskhelishvili method again

P (2) =D’ (2) + Za%z‘” ; V() =¥ (2)+ anz‘”‘

Here ®*(z), ¥*(z) are determined from the formulas similarly to (16), where o\” and B” replaced by "

and B i » respectively. The coefficients, a,; and b, are found from the formulas
a,,=C,,R”" (n=1,2,...); a0,

b,, =(2n- I)Rznazn—z - Rzna—2n+2 (n=2); (29)

b=0; b,=—C,R*; N—iT= ZCZk 20

k=—0
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The coefficients o’ and B!" are determined by the algebraic system similarly to (19)~(20). For the

concentrated P.) we have

po = EAs o)
mn 2y0}’l m,n
where the mutual displacement Av!" is determined similarly to the zero approximation.

m,n

(30)

Requiring the function (28) to satisfy the boundary conditions (27) on the crack faces in the first ap-
proximation, after some transformation we obtain a singular integral equation with respect to g'"(x).
As in the zero approximation, using the algebraization procedure [20, 21], the singular integral equation

M
l(g (f)dt+ljg<l>(t)1<(z—x)dt+HI(X)=0
s t—x T

under the additional condition

btmo ~b—mo
[l @di=0:  [eldr=0 (m=0,1.2, .,

providing uniqueness of displacement, bypassing the crack conditions in the first approximation, is reduced
to the system of M linear algebraic equation for determining M unknowns g(t, ) (m=1,2, ..., M)

M

1
Dyl + 5 H(,) =0 (n=1.2,.... M), (31)
k=1

< 1
> g, =0,
k=1

where g,({l) = g(l)(tk) .
In the first approximation, for stress intensity factor in the vicinity of crack tips for x=a+m® we have

M
2m—1
KV =\n(b-a )M oW Ytg=—mn,
(0 = );( )"l e
in the vicinity of crack tips x=b+mw we have
M
2m—1
KV =\nb-a -1 g, et .
0= );( )" (e, ete =

The obtained systems of equations of the first approximation are not still closed, since the right side
of these systems contains the coefficients d,, of expansion of the function H(0) in Fourier series.

Solution of optimization problem

To build missing equations, we use the boundary condition (1) under additional constraints (3). By
means of the obtained solution we find o, in the surface layer of the contour L, ( = p(0)) within first order
sizes with respect of small parameter €

oo")(6)

5, =c (e)\r:x + S{H(e)a—x

+ csg”(e)}

r=>A

The stresses GE”(G) depend on the coefficients dy; of the Fourier series of the sought-for function

H(0). To build missing equations that allow to find the coefficients d,,, we require that the stress distribution
on the contour of holes close to uniform one will be satisfied.
Reducing the stress concentration on the hole contours is carried out by minimizing the criterion

M
U=Y[5,0,)-0c.] —>min,
i=1

here o+ is an unknown value of the normal tangential stress on surface hole.
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The stated optimization problem is in finding the values of unknown coefficients dy; best providing
the values of the function 6,(0;) according to condition (1) under additional constraints (3).

The function U and stress intensity factors depend on the coefficients d>; and thus, we come to the
problem for the conditional extremum of the function U(c.,d,,), when the coefficients dy; are associated

with the additional condition
KI(O)a+mm + 8K[(l)a+mm =0 : KI(O)b+mm + 8K[(l)b+m(0 =0. (32)

It is necessary to find minimum value of the function U(o.,d,,), and the k+1 arguments of this

function are not independent but are subjected to two additional conditions (32).
To solve the problem for conditional extremum we use the method of Lagrange undetermined multi-
pliers. Let’s consider the auxiliary function
Uy =U+ 1K + 1,K,
with two undetermined multiplies A1, A,.
The necessary k+1 conditions for extremum are of the form
ou ovU, 0. (33)

—2 -0 (k=1,2,...,n);
ad,y, 00

The obtained n+1 equations with two additional equations (32) make up the system of equations with
n+1+2 unknowns ox, dy; (k=1, 2, ..., n), A1, A,. Adding this system of equations to the obtained algebraic sys-

tem (19), (20), (22), (25), (29)~(31) and to the system for the coefficients (", B{", we obtain the closed
algebraic system for determining all unknowns, including o+ and the coefficients dy.

Analysis of the results

The system of equations (33) together with previously obtained algebraic systems of an elasticity theory
problem in zero and first approximations allows to determine the form of equal strength contour of holes, the
stress-strain state of the perforated stringer plate and also the optimal value of the tangential stress o~

When performing the calculation, the obtained systems were solved by the Gauss method with the
choice of the main element. The interval [0, 27| of the change of the variable 6 was divided into M equal
parts, where M>2m+1, m is the number of parameters left for particle calculations. Since the function
6(0;,d2) is linear with respect to unknown parameters, then the compiling and solving the system (33) of
equations is greatly simplified.

Calculations were carried out for the following values of free parameters ay/L=0.01; y,/L=0.25. For
simplification 4,/y,h=1 were accepted. The stringers were made of the composite Al-steel, the plate from the
alloy B95, E=7.1x10" MPa; E;=11.5x10* MPa. It was accepted that the amount of stringers at the attachment
points equals 14, M=72. The results of calculations of the sought-for function H(0) are in the Table.

Table. The values of the Fourier coefficients for equal strength contour

A 0.2 0.3 0.4 0.5 0.6 0.7

dy 0.1003 0.1102 0.1214 0.1298 0.1405 0.1561
d, -0.0128 —0.0457 -0.0789 —-0.1007 —-0.1220 —0.1406
dy 0.0093 0.0118 0.0154 0.0168 0.0189 0.0205
ds 0.0008 0.0052 0.0096 0.0109 0.0124 0.0143

When performing calculations, the obtained systems were solved by the Gauss method with the
choice of the main element. Each of infinity systems (19), (20), (22), (29) and (30) was reduced to a large
number of equations depending on the distance between holes.

Calculations showed that for the range 0<A<0.8 it suffices to reduce the systems (19), (20), (22), (29)
and (30) to five equations. For A>0.8 the systems (19), (20), (22), (29) and (30) were reduced to 30 equa-
tions. It should be noted that the value of the parameter A>0.8 falls out of the working range of change A.
Quite quick convergence of the solution of the system of equations (19), (20), (22), (29) and (30) in the range
0<A<0.8 is explained by the fact that the coefficients of the system (19), (20), (22), (29) and (30) contain
high degrees of the parameter A.
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Conclusions

The solution of the problem of determining the optimal shape of holes for a perforated stringer plate
weakened by a periodic system of linear cracks, was found.

The represented mathematical model allows to determine optimal contour of holes, meeting the re-
quirements of immobility of cracks and equal strength condition. Thus, the obtained solution of the stated
inverse problem makes it possible to increase the strength of the plate and prevent its fracture.
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OOepHeHa 3a1a4a MeXaHikH pyiiHYBaHHS U1 Nep(OPOBAHOI CTPUHIeP-IUIUTH
M. V. Mir-Salim-zada

[acTuTyT MaTtematuku i mexaHiku HAH Asepbaiimkany,
AZ1141, Azepbaiimkan, M. baky, Byn. b. Baxa63ane, 9

s susHaUeHHs ONMUMAILHO20 KOHMYPY 0MBOpi8 y nep@oposaniii cmpuneep-naumi, wo ocrabrena nepioou-
YHOIO CUCTNEMOI0 MPIWUH, PO32TA0AEMbCA 0OEPHEHA 3a0a4a MeXaniKu pyuHyeanHs. Beascacmocs, wo mamepian niu-
mu € npysicHum abo npyxcro-naacmuunum. Pebpa sicopcmrocmi (cmpuneepu) cumempuuno 3axpinneni na naumi. Ilep-
¢oposana nauma pisHOMIPHO PO3MACYEMbCIL HA HECKIHYEHHICMb 830082C cmpuneepis. Beasxcaemvcs, wjo npamoniniuni
MPIWUHY PO3MAUOBAHT ROOUZY KOHMYPIE 0OME0pie ma NepneHoOUuKyIapHO 00 NPUKpinienux pebep sxcopcmrocmi. Po3-
8's130K cghopmynbosanoi obeprnenoi 3adaui bazyemvcs Ha npunyuni pienoi miynocmi. Onmumanvha opma omeopis
3A0080ILHAE 08I YMOBU: YMOBY 8IOCYMHOCMI KOHYEHMPAyii HANpYi#ceHb HA NOBEPXHI OMBOPY ma YMO8Y HYIbO8UX KOe-
Qiyicumis inmencusHoCmi HanpydceHb nobaU3y eepuiun mpiwunu. Hegioomuil xonwmyp omeopieé uyKkacmvcs 6 Kiaci
KOHmMYpis, 01u3bKux 0o kpyeosux. /i pebep i#copcmrocmi 3aMiHIOEMbCA HEGIOOMUMU eKBIBANEHMHUMU 30CePeOHCeHU-
MU CUIaMu 6 moukax ix 3'eonannsa 3 naumoro. Lllykani ynxyii (Hanpyoicenns, nepemiujenis, 30cepeddtceni cuny ma
KoeqhiyicHmu iHMeHCUBHOCIMI HANPYIHCEHb) PO32TAOAIOMbCA Y 6UNA0I PO3KAAY 3a MAIuM napamempom. Poze'azox 3a-
odaui 30[ICHIOEMbCSL 3 BUKOPUCTIAHHAM anapamy meopii auanimuiHux QYyHKYiti ma meopii CUHSYIAPHUX THME2PATbHUX
PIBHANb, NICISA Y020 PO36'A3VEMbCA 3a0a4d YMOBHO20 eKCIMpeMyMy. B pezyromami ompumano 3amkHeny cucmemy aiee-
O6paiyHuXx pisHsIHb, AKA 0AE€ 3MO2Y MIHIMIZY8AMU HANPYICEHUL CIMAH HA KOHMYPAX 0meopie ma KoeQiyicHmu iHmeHcus-
HOCcmi Hanpyscenb nobausy eepuiun mpiwunyu. Ompumana cucmema anrzeOpaiyHux pisHAHbL 0036019 BUSHAYUMU POp-
MY KOHMYpy pi6HOI MiyHOCMI 0M8opis, HanpyxiceHo-0ehopmosanuti Cman nep@hoposanoi cmpuneep-naumu, a MaxKotc
ONMUMANbHE 3HAYEHHS MAHSCHYIATLHO20 HANPYIHCEHHSL.

Knrwouosi cnosa: neppoposana niuma, cmpureepu, mpingunu, ONMUMAIbHULL KOHMYP, PIGHOMIYHI OMBOPU.
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