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To determine an optimal contour of holes for a perforated stringer plate weakened 
by a periodic system of cracks, an inverse problem of fracture mechanics is consid-
ered. It is assumed that the material of the plate is elastic or elastic-plastic. The 
stiffeners (stringers) are symmetrically riveted to the plate. The perforated plate is 
uniformly stretched at infinity along the stringers. It is assumed that rectilinear 
cracks are located near the contours of the holes and are perpendicular to the riv-
eted stiffeners. The solution of the formulated inverse problem is based on the prin-
ciple of equal strength. The optimal shape of the holes satisfies two conditions: the 
condition for the absence of stress concentration on the hole surface and the condi-
tion for the zero stress intensity factors in the vicinity of the crack tips. The unknown 
contour of holes is looked for in the class of contours close to circular. The action of 
the stiffeners is replaced by unknown equivalent concentrated forces at the points of 
their connection with the plate. The sought-for functions (the stresses, displace-
ments, concentrated forces and stress intensity factors) are looked for in the form of 
expansion in small parameter. The solution to the problem is sought using the ap-
paratus of the theory of analytic functions and the theory of singular integral equa-
tions, then the conditional extremum problem is solved. As a result, a closed system 
of algebraic equations is obtained, which allows to minimize the stress state on the 
contours of holes and stress intensity factors in the vicinity of the crack tips. The 
obtained system of algebraic equations allows to determine the form of equal 
strength contour of holes, the stress-strain state of the perforated stringer plate and 
also the optimal value of the tangential stress. 
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Introduction 
To prevent the fracture of the perforated plate, it is very important to know the optimal contour of 

the holes [1–9]. Hole contour without any areas preferred for brittle failure or plastic deformations (equal 
strength contour) is optimal [10, 11]. However, optimal contour of the hole must also meet the conditions of 
immobility of the cracks present in the body. Recently, some problems have been considered for finding the 
optimal contour of the hole, taking into account the presence of cracks in the body [12–19]. 

The goal of this paper is to find optimal contour of holes for a perforated plate weakened by linear 
cracks near the contours of the holes and stiffened with a regular system of stiffness ribs. 

Problem statement 
We consider an elastic plate weakened 

by an infinite row of identical holes. The plate 
was stiffened by a regular system of stringers 
and is subjected to homogeneous stretching 

along the stringers by the stress 0
y  

(Fig. 1). There are rectilinear cracks near the 
contours. The plane stress state is realized in 
the contour. It is accepted that the stress state 
of the stringers is uniaxial. We assume that the 
plate and stringers interact in the same plane, 
and only at the stiffening points the stringers 
are not subjected to bending and are not weak-
ened by the setting of attachment points. 

 
Fig. 1. Design scheme of the inverse problem 

 
                                                      
This work is licensed under a Creative Commons Attribution 4.0 International License. 
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The radius of attachment points (coupling area) is small compared to their step and other characteris-
tic sizes. The action of attachment points is modeled with the action of concentrated forces applied at the 
centers of attachment points. Accordingly, the action of stringers is replaced by unknown equivalent forces 
Pmn applied at the attachment points of stringers and plates. 

The problem is in determining the equal strength contour of holes, under which the cracks will not 
grow, and also the stress-strain state of a perforated built-up plate and the sizes of concentrated forces Pmn. 

The boundary conditions of the problem are of the form: 
– on the unknown contours Lm (m=0, 1, 2, …) of the holes 

 0n ;   0nt ;   const* t ;  (1) 

– on the crack faces 

0 y ;   0xy ;    mbxma .  

Here t and n are a tangent and normal to the hole contour. The value σ* for elastic plate should be de-
termined, whereas for elastoplastic plate we accept the plasticity condition [20] 

 0),,(  nttnf ,  (2) 

where f is the given function. It is assumed that plastic area appears for the first time on the contour hole and 
coves the entire contour at once, does not penetrate deep into it. It is known [10, 11] that such a body is most 
durable in the sense of uniform distribution of stresses over all points of the hole contour. 

It is required to find such a form of holes under which the crack will not grow, and tangential initial 
stress acting on the hole contours will be constant. Note that it follows from condition (2) that the stress t is 
constant everywhere on the tensile boundary of hole contour and equals the material strength. According to Ir-
win-Orowan theory of quasi-brittle failure, the stress intensity factors characterize the stress state in the vicinity 
of crack tips. Therefore, we require that condition (1) will be satisfied on the hole contours, and the condition 

 0I maK ;   0I mbK ,  (3) 

will be satisfied in the vicinity of the crack tips. Here maK I , mbK I  are the stress intensity factors in the 

vicinity of crack tips. Since the cracks were located symmetrically, 0II
  mama KK ,   mbmb KK II .  

The solution of the boundary value problem 
We will look for the unknown contour Lm (m=0, 1, 2, …) of holes as close to the circular one as possible. 
We represent it in the form )()(  Hr , where  /maxR  is a small parameter, Rmax is the 

greatest height of the contour profile Lm of the hole from the circle r=. The function H() will be found in 
the process of solving the problem. Without loss of generality of the considered problem, it is accepted that 
the sought-for function H() is symmetric about the coordinate axes and can be represented in the form of 

Fourier series 





1

2 2cos)(
k

k kdH . 

We will look for the sought-for functions (the stresses, displacements, concentrated forces Pmn and 
stress intensity factors KI) in the form of expansion in small parameter 

 )1()0(
nnn ;    )1()0(

ttt ;    )1()0(
ntntnt ; 

 )1()0( uuu ;    )1()0( vvv ; 

 )1()0(
mnmnmn PPP ;    )1(

I
)0(

II KKK ,  

in which we neglect for simplicity the terms containing  of degree greater than one. 
Each of approximations satisfies the system of differential equations of the plane problem of elastic-

ity theory. 
We obtain the values of stress tensor components for r=() by expanding in series the expressions 

for stresses in the vicinity of r=. 
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Solution of the problem in zero approximation 
Taking into account the known formulas [21] for the stress components n and nt, the boundary 

conditions of the problem take the following form: 
Allowing for known formulas [21] for stress components n and nt the boundary conditions, of the 

problem take the following form: 
– in the zero approximation  
on the contour r=  

 0)0( r ;   0)0(  r ,  (4) 
on the crack faces  

 0)0(  y ;   0)0( xy ;  mbxma ,  (5) 

– in the first approximation  
on the contour r= 

 Nr  )1( ;   Tr  
)1( ,  (6) 

on the crack faces 

 0)1(  y ;   0)1( xy ;  mbxma . (7) 

Here 







  d

dH

r
HN r

r )(2
)( )0(

)0(

; 
r

H
d

dH
T r

r 






 



)0(
)0()0( )(

)(
)(

1
. 

Since the boundary conditions and geometry of the domain D occupied by the plate material possess 
the symmetry with respect to coordinate axes, the stresses are periodic functions of period . Based on the 
Kolosov-Muskhelishvili formulas [21] and boundary conditions on the hole contours and crack faces, the 
problem (4)–(6) in the zero approximation is reduced to determining two analytic functions Φ(0)(z) and Ψ(0)(z) 
from the conditions 

   0)()()()( )0()0(2)0()0(  ie    for   mei ;  (8) 

 0)()()()( )0()0()0()0(  xxxxx ;    mbxma . (9) 

We will look for the solution of problem (8)–(9) in the form 

 )()()()( )0(
2

)0(
1

)0(
0

)0( zzzz  ;   )()()()( )0(
2

)0(
1

)0(
0

)0( zzzz  .  (10) 

The potentials )()0(
0 z  and )()0(

0 z  determine stress and strain fields in the solid plate under the ac-

tion of tensile stresses 0 and the system of concentrated forces )0(
mnP  and are of the form 
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, (11) 

where κ=(3‒ν)/(1+ν); ν is the Poisson ratio of the plate material; the prime at the sum sign shows that when 
summing, the index m=n=0 is excluded.  

The functions )()0(
1 z  and )()0(

1 z  corresponding to the unknown normal displacements along the 
cracks are sought in the explicit form 

 dtzttgz
L

)(ctg)(
2

1
)( )0()0(

1 




 



; dtzttg
z

z
L

)(sin)(
2

)( 2)0(
2

)0(
1 







 


 ,  (12) 

here L=[−a, −b]+[a, b]; the function g(0)(x) characterizes the derivative of the crack faces opening. 
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To find the complex potentials )()0(
2 z  and )()0(

2 z , we represent conditions (8)–(9) in the form 

   )()()()()()()()( 2121
2)0(

2
)0(

2
)0(

2
)0(

2   iiffe i ;  (13) 

    ieiff 2)0(
0

)0(
0

)0(
0

)0(
021 )()()()()()( ;  (14) 

    iei 2)0(
1

)0(
1

)0(
1

)0(
121 )()()()()()( . (15) 

We will look for the potentials )()0(
2 z  and )()0(

2 z  in the following form 
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Here 
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Relations (10)–(12) and (16) determine the class of symmetric problems with periodic stress distri-
bution. Taking into account the symmetry with regard to coordinate axes, we have 

0Im )0(
22  k ;   0Im )0(

22  k ;   k=0, 1, 2. 

From the condition of constancy of the principal vector of forces acting on the arc connecting two 
congruent points in the domain D we have 

24/2)0(
2

2)0(
0  . 

The unknown coefficients )0(
22  k  and )0(

22  k  must be determined from the boundary condition (13). 

We will consider that )()( 21  iff  and )()( 21  i  on the contour   expand in Fourier series. By 

symmetry, these series are of the form 

 



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 
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Having substituted the relation (14) in (17), after calculating the integrals by means of residue the-
ory, we find 
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where 0inymLC  ; CC1 ; 
mL

ny0
3 arctg . 
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And also, when substituting (15) in (18) and calculating the integral by means of the residue method, 
we obtain 


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)0(

2 )()(
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kk dttftgB , 
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Since the periodicity conditions are fulfilled, when solving the problem it suffices to consider one 
strip of periods, for example, the main one (with a hole contour L0, =ei). 

The system of equations (13) from which the unknown coefficients )0(
2k  and )0(

2k  are determined, 

degenerates to one functional equation. To construct equations regarding the coefficients )0(
2k  and )0(

2k , as 

well as the functions )()0(
2 z  and )()0(

2 z , we expand these functions in Laurent series in the vicinity of the 

point z=0. Having substituted =ei into the left-hand of the boundary condition (13) on the contour instead 

of the functions )()0(
2 z , )0(

2 , )0(
2 , )()0(

2 z  and their expansion – in Laurents series in the vicinity of the 
point z=0, as well as the Fourier series (15) and (18) to the right side of (13) instead of the function 

)()( 21  iff  and )()( 21  i , we compare the coefficients at the identical powers ei. As a result, we ob-

tain two infinite systems of algebraic equations regarding the coefficients )0(
2k  and )0(

2k . 
After a number of transformations, we obtain an infinite system of algebraic equations with respect 

to )0(
22  k  

 )0()0(
22

0

*
,

)0(
22 jk

k
kjj bA  




  .  (19) 

The constants )0(
22  k  are determined from the relations 
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Here 2
2

1 12
1 K . 

Requiring that the functions (10) satisfy the boundary condition (9), after a number of transforma-
tions we obtain a singular integral equation for the function g(0)(x) 

 0)()(ctg)(
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where 
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Singular integral equation (21) and algebraic systems (19), (20) contain unknown quantities of con-

centrated forces )0(
mnP . To determine these quantities, we use the Hooke’s law and the method of "gluing" of 

two asymptotes of the sought-for solution. 

According to the Hooke’s law, the magnitude of the concentrated force )0(
mnP  acting on each attach-

ment point as viewed from the stringer equals 

)0(
,

0

)0(

2 nm
ss

mn ny

AE
P     (m, n=1, 2, …), 

where Es is the Young’s modulus of the material; As is the cross-section area of the stringer; 2y0n is the dis-

tance between the attachment points; )0(
,nm  is the relative displacement of the considered attachment points 

equal to the elongation of the appropriate section of the stringer. 

To find concentrated forces )0(
mnP  we require the fulfillment of the condition of compatibility of dis-

placements, i.e. we accept that the relative elastic displacement of the points z=mL+i(y0n–a0) and z=mL–i(y0n–a0) 

equals the relative displacement )0(
,nm  of the attachment points. Here a0 is the radius of the attachment points 

(the coupling area). 
By means of complex potentials (10)–(12), (16) and the Kolosov-Muskhelishvili formulas for dis-

placements, we find the relative displacement )0(
,nm . Knowing the relative displacements )0(

,nm  we deter-

mine the sought-for magnitudes of concentrated forces from the system 

 )0(
,

0

)0(

2 rp
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pr ry

AE
P     (p, r=1, 2, …)  (22) 

Algebraic systems (19), (20), (22) and singular integral equation (21) are connected and should be 
solved jointly. 

Using the expansion  
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we can reduce the equation (21) to the form  
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Taking into account that the function g(0)(x) is odd, using the change of variables, we reduce the 
equation (23) to the standard form 
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We represent the solution of singular integral equation (24) in form 

2

0
*

1
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g
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The function g0() is Holder continuous in the area [−1, 1] and is replaced by the Lagrange polyno-
mial structured by Chebyshev nodes [22, 23]. Using [22, 23] square formulas, we reduce the integral equa-

tion (24) to the system of M linear algebraic equations regarding approximate values )0(
kg  of the sought-for 

function at nodal points. Using the algebraization procedure [22, 23] the singular integral equation (21) under 
additional condition 
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that provides uniqueness of displacements when bypassing the contours of cracks, is reduced to the system of 

M linear algebraic equations for determining M unknowns )()0(
mg   (m=1, 2, …, M). After some transforma-

tions, the integral equation is replaced by the system of algebraic equations 
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For the stress intensity factor in the vicinity of crack tips for x=a+m in zero approximation we have 
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in the vicinity of crack tips for x=b+m we have 
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The solution of the problem in the first approximation 
After finding the solution in zero approximation we solve the problem in the first approximation. 

The boundary conditions (6)–(7) of the problem for the first approximation are written as 

   iTNe i   )()()()( )1()1(2)1()1(    for   mei   (26) 

 0)()()()( )1()1()1()1(  xxxxx ;  mbxma .  (27) 

We look for the solution to the boundary value problem (26) similar to the zero approximation in the 
form 
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where the potentials )()1(
0 z  and )()1(

0 z  describe stress and strain field under the action of the system of 

concentrated forces )1(
mnP  and are determined by the formulas similar to (11), where 00  , )0(

mnP  and should 

be replaced by )1(
mnP . 

We look for the potentials )()1(
1 z  and )()1(

1 z  in the form similar to (12), and this time the function 

g(0)(x) should be replaced by g(1)(x). We find )()1(
2 z  and )()1(

2 z  from the boundary condition (28), using 
the N. I. Muskhelishvili method again 
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Here (z), (z) are determined from the formulas similarly to (16), where )0(
k  and )0(

k  replaced by )1(
k  

and )1(
k , respectively. The coefficients, a2k and b2k are found from the formulas 
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The coefficients )1(
k  and )1(

k  are determined by the algebraic system similarly to (19)–(20). For the 

concentrated )1(
mnP  we have 
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mn ny
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P  ,  (30) 

where the mutual displacement )1(
,nm  is determined similarly to the zero approximation. 

Requiring the function (28) to satisfy the boundary conditions (27) on the crack faces in the first ap-
proximation, after some transformation we obtain a singular integral equation with respect to g(1)(x). 

As in the zero approximation, using the algebraization procedure [20, 21], the singular integral equation 
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under the additional condition 
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providing uniqueness of displacement, bypassing the crack conditions in the first approximation, is reduced 

to the system of M linear algebraic equation for determining M unknowns )()1(
mg   (m=1, 2, …, M ) 
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In the first approximation, for stress intensity factor in the vicinity of crack tips for x=a+m we have 
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in the vicinity of crack tips x=b+m we have 
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The obtained systems of equations of the first approximation are not still closed, since the right side 
of these systems contains the coefficients d2k of expansion of the function H(θ) in Fourier series. 

Solution of optimization problem  
To build missing equations, we use the boundary condition (1) under additional constraints (3). By 

means of the obtained solution we find t in the surface layer of the contour L0 (r = ()) within first order 
sizes with respect of small parameter  
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The stresses )()1( t  depend on the coefficients d2k of the Fourier series of the sought-for function 
H(θ). To build missing equations that allow to find the coefficients d2k, we require that the stress distribution 
on the contour of holes close to uniform one will be satisfied. 

Reducing the stress concentration on the hole contours is carried out by minimizing the criterion 
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here σ* is an unknown value of the normal tangential stress on surface hole. 
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The stated optimization problem is in finding the values of unknown coefficients d2k best providing 
the values of the function t(i) according to condition (1) under additional constraints (3). 

The function U and stress intensity factors depend on the coefficients d2k and thus, we come to the 
problem for the conditional extremum of the function ),( 2* kdU  , when the coefficients d2k are associated 
with the additional condition 

 0)1(
I

)0(
I   mama KK ;   0)1(

I
)0(

I   mbmb KK .  (32) 

It is necessary to find minimum value of the function ),( 2* kdU  , and the k+1 arguments of this 
function are not independent but are subjected to two additional conditions (32). 

To solve the problem for conditional extremum we use the method of Lagrange undetermined multi-
pliers. Let’s consider the auxiliary function 

  mbma KKUU I2I10 , 

with two undetermined multiplies 1, 2. 
The necessary k+1 conditions for extremum are of the form 
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The obtained n+1 equations with two additional equations (32) make up the system of equations with 
n+1+2 unknowns σ*, d2k (k=1, 2, …, n), 1, 2. Adding this system of equations to the obtained algebraic sys-

tem (19), (20), (22), (25), (29)–(31) and to the system for the coefficients )1(
k , )1(

k , we obtain the closed 
algebraic system for determining all unknowns, including σ* and the coefficients d2k. 

Analysis of the results 
The system of equations (33) together with previously obtained algebraic systems of an elasticity theory 

problem in zero and first approximations allows to determine the form of equal strength contour of holes, the 
stress-strain state of the perforated stringer plate and also the optimal value of the tangential stress σ*. 

When performing the calculation, the obtained systems were solved by the Gauss method with the 
choice of the main element. The interval [0, 2] of the change of the variable  was divided into M equal 
parts, where M>2m+1, m is the number of parameters left for particle calculations. Since the function 
t(i,d2k) is linear with respect to unknown parameters, then the compiling and solving the system (33) of 
equations is greatly simplified.  

Calculations were carried out for the following values of free parameters a0/L=0.01; y0/L=0.25. For 
simplification As/y0h=1 were accepted. The stringers were made of the composite Al-steel, the plate from the 
alloy В95, E=7.1×104 МPa; Es=11.5×104 МPa. It was accepted that the amount of stringers at the attachment 
points equals 14, М=72. The results of calculations of the sought-for function H(θ) are in the Table. 

Table. The values of the Fourier coefficients for equal strength contour 

 0.2 0.3 0.4 0.5 0.6 0.7 
d0 0.1003 0.1102 0.1214 0.1298 0.1405 0.1561 
d2 0.0128 0.0457 0.0789 0.1007 0.1220 0.1406 
d4 0.0093 0.0118 0.0154 0.0168 0.0189 0.0205 
d6 0.0008 0.0052 0.0096 0.0109 0.0124 0.0143 

When performing calculations, the obtained systems were solved by the Gauss method with the 
choice of the main element. Each of infinity systems (19), (20), (22), (29) and (30) was reduced to a large 
number of equations depending on the distance between holes. 

Calculations showed that for the range 00.8 it suffices to reduce the systems (19), (20), (22), (29) 
and (30) to five equations. For 0.8 the systems (19), (20), (22), (29) and (30) were reduced to 30 equa-
tions. It should be noted that the value of the parameter 0.8 falls out of the working range of change . 
Quite quick convergence of the solution of the system of equations (19), (20), (22), (29) and (30) in the range 
00.8 is explained by the fact that the coefficients of the system (19), (20), (22), (29) and (30) contain 
high degrees of the parameter .  
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Conclusions 
The solution of the problem of determining the optimal shape of holes for a perforated stringer plate 

weakened by a periodic system of linear cracks, was found. 
The represented mathematical model allows to determine optimal contour of holes, meeting the re-

quirements of immobility of cracks and equal strength condition. Thus, the obtained solution of the stated 
inverse problem makes it possible to increase the strength of the plate and prevent its fracture. 
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Обернена задача механіки руйнування для перфорованої стрингер-плити 

M. V. Mir-Salim-zada 

Інститут математики і механіки НАН Азербайджану,  
AZ1141, Азербайджан, м. Баку, вул. Б. Вахабзаде, 9 

Для визначення оптимального контуру отворів у перфорованій стрингер-плиті, що ослаблена періоди-
чною системою тріщин, розглядається обернена задача механіки руйнування. Вважається, що матеріал пли-
ти є пружним або пружно-пластичним. Ребра жорсткості (стрингери) симетрично закріплені на плиті. Пер-
форована плита рівномірно розтягується на нескінченність вздовж стрингерів. Вважається, що прямолінійні 
тріщини розташовані поблизу контурів отворів та перпендикулярно до прикріплених ребер жорсткості. Роз-
в'язок сформульованої оберненої задачі базується на принципі рівної міцності. Оптимальна форма отворів 
задовольняє дві умови: умову відсутності концентрації напружень на поверхні отвору та умову нульових кое-
фіцієнтів інтенсивності напружень поблизу вершин тріщини. Невідомий контур отворів шукається в класі 
контурів, близьких до кругових. Дія ребер жорсткості замінюється невідомими еквівалентними зосереджени-
ми силами в точках їх з'єднання з плитою. Шукані функції (напруження, переміщення, зосереджені сили та 
коефіцієнти інтенсивності напружень) розглядаються у вигляді розкладу за малим параметром. Розв'язок за-
дачі здійснюється з використанням апарату теорії аналітичних функцій та теорії сингулярних інтегральних 
рівнянь, після чого розв'язується задача умовного екстремуму. В результаті отримано замкнену систему алге-
браїчних рівнянь, яка дає змогу мінімізувати напружений стан на контурах отворів та коефіцієнти інтенсив-
ності напружень поблизу вершин тріщини. Отримана система алгебраїчних рівнянь дозволяє визначити фор-
му контуру рівної міцності отворів, напружено-деформований стан перфорованої стрингер-плити, а також 
оптимальне значення тангенціального напруження. 

Ключові слова: перфорована плита, стрингери, тріщини, оптимальний контур, рівноміцні отвори. 
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