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The bending problem of an infinitely large thin anisotropic plate with an ellip-
tical or linear elastic inclusion inserted into a hole without initial tension and
under perfect mechanical contact with the plate matrix is solved. The plate at
infinity is subjected to constant bending moments. The solution is obtained by
employing the formalism of generalized complex potentials, expansions of
functions into Laurent series and Faber polynomials, as well as conformal
mapping techniques to transform the exterior of the unit circle into the exte-
rior of an ellipse. An exact analytical solution for the case of an elliptical in-
clusion, providing expressions for bending moments and transverse forces
both in the plate matrix and in the inclusion, is presented. For the case when
the elliptical inclusion reduces to a line, formulas for calculating the moment
intensity factors (MIF) at its ends are derived. This approach accurately cap-
tures the singular behavior of bending moments and identifies conditions un-
der which MIF values are significant. Numerical studies were conducted for
plates made of isotropic material (CAST-V) and anisotropic material (skew-
wound glass-fiber-reinforced plastic) under various values of the inclusion’s
relative stiffness and axis ratio. It was found that decreasing the inclusion’s
stiffness leads to an increase in bending moments in certain contact zones,
with higher moment concentrations in anisotropic plates compared to iso-
tropic ones. For linear inclusions, significant MIF values arise only for sub-
stantially stiff or soft inclusions; when the stiffnesses of the plate and inclusion
differ by less than a few times, MIF values are negligible, and it is inappro-
priate to discuss bending moment singularities. Isotropic plates are treated as
a special case of anisotropic ones, enabling the extension of these results to a
broad class of engineering problems involving composites and structures with
embedded elements.

Keywords: thin plate, bending, mathematical modeling, numerical methods,
holes, inclusions, complex potentials.

Despite significant progress in the development of the applied theory of bending of thin anisotropic

plates [1, 2, 3], as of now, few problems have been solved for plates with foreign inclusions. This is
especially accurate for cases with linear inclusions, when it is necessary to study the singular behavior of the
main characteristics at their ends. For multi-connected plates, such a statement is still a difficult
mathematical problem, while for a plate with a single inclusion, an exact solution can be obtained by
considering the linear inclusion as a limiting case of an elliptical one, when one of the semiaxes is zero.

A mathematical modeling of the bending process of an anisotropic plate with an elastic inclusion is
given in the paper. The solution of the problem of bending of an anisotropic plate with an elliptical, including
linear, elastic inclusion, obtained by applying the methods of conformal mappings; the expansion of functions
into Laurent series and Faber polynomials, as well as the formula for calculating the moment intensity factors
(MIFs) are presented. The results of numerical calculations, which allowed to identify the influence of the
stiffness of the elastic inclusion, the ratio of the semiaxes of the inclusion and the anisotropy of the materials of
the plate and the inclusion on the values of the bending moments arising in the plate, are given.

Problem statement and solution method

We consider an infinite anisotropic matrix plate with an elliptical hole L; with center at the origin of
the coordinate system Oxy and semiaxes aj, by, located along the coordinate axes (Fig. 1). An elastic
inclusion of another material is inserted into the hole. The plate and the inclusion are in ideal mechanical

contact. Bending moments of constant magnitude M, M > H, acton the plate-matrix at infinity.
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To solve the problem, we will use the complex potentials of Lekhnitskii’s 3
theory of bending of anisotropic plates [1, 2]. The region occupied by the plate- '
matrix will be denoted by S, and the region of elastic inclusion — by S'.

When using complex potentials, solving the problem reduces to finding the
derivatives of functions of generalized complex variables W/(z,) for the matrix

Fig. 1. Infinite plate
plate and W,'(z;) for inclusion from the appropriate boundary conditions. with elliptic inclusion

Derivatives of complex potentials for a plate-matrix W, (z,) are functions of generalized complex

variables
Z =Xy, (1)
where | are roots of the characteristic equation [4]
Dyppt* +4Dye’ + 2(D12 +2Dgq )Hz +4Dgu+ Dy =0; (2)

D, ; = B;;D, are material stiffness parameters for which
By = (apag - a;ﬁ)/A’ By, = (41626 — 1546 )/A, Byg = (13056 = 1685, )/A
By, = (a4 - alzs)/Aast = (@506 — ay5a,,)/A, Bgg = (ay,a, — alzz)/A ’
A Ay Gy
A=lay ay ay,
g dys e
where a;; are deformation coefficients for the plate material; D, = 2h*/3; h is the half-thickness of the plate.

Functions Wk (zk) are defined in the regions S, which are obtained from the region S by affine
transformations (1) and have the following form [2]

Wk Zk =TI,z +z Ckln 3)
k1

where I'; are constants found from the system of equatlons

2Rle AWM + Ay M7 +A31ny,2ReZuk1" ApM? + ApM T + Ay HY s

k=1 k=1

2 2
0 o0 0 1
2ReY JiT, =AM + ApMy + AyH? 2Re —T, =0;

k=1 =1 M
4, = (2D22D66 _2D226)/A1; 4y, = (2D16D26 2D12D66)/A1 ; Ay = (2D12D26 2D12D22)/A1
4y, = (D12D26 _DI6D22)/A1; Ay, = (D12D16 _D11D26)/A1 ) Ay, = (DIIDZZ _D122 )/Al;
A5 = (2D16D26 - 2D12D66)/A1 5 Ay = (2D11D66 ~2Dj )/Al ’ Az3 = (2D12D16 - 2D11D26)/A1
Dy, 2Dy Dy
A =Dy, 2D,, Dyl; 4= ZAU/DII ,
Dy 2Dy Dy A

where a;1, are unknowns; {;; are variables that are defined from the conformal mapping of the exterior of the
unit circle |§ k1| >1 on the appearance of ellipses L;;:

m
Zy = Rkl(gkl +C_klj >
Kl

_a - p— +iph ‘
2 " aR,

where

4)
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If the functions W)/ (z,) are determined, then the bending moments and transverse forces at all points
of the plate are calculated using the following formulas:

(M = 2ReY (o W) s (NN, )= -2ReD (5005, (2)
in which . .
P =Dy, + 2Dy, + Dy ; Gy = Dy, +2Dygf; + Dyl ;
1y = Dyg +2Dgghty + Dogh ; 8 = =Dy = (Dyy + 2D )1 —3Ds; — Dol -
For bending moments on an arbitrary surface with a normal » we have

— 2 2 :
M,=M, cos nx+My cos ny+2HXy Sin nxcosnx .

Derivatives of complex potentials for inclusion W;'(z,) are also functions of generalized complex
variables

= XY, (5)

where W, are roots of the characteristic equation of the form (2), in which the coefficients D, are replaced by the

appropriate stiffness parameters D, ; for inclusion. These functions are defined in the areas S, , obtained from

the region S' by affine transformations (5). In these finite simply connected holomorphic domains, they can be
expanded into series in Faber polynomials, which after transformations can be written as power series as follows:

r - Zl ’
W (z;)= Za,t{R—ﬁ - (6)
n=0 k

Here a, are unknowns; R, are constants, which are calculated by analogy with formulas (4).

Let's find the unknowns ay, and a,lm from the boundary conditions on the contact contour of the
inclusion with the matrix-plate [1, 2]
2
2ReY (g0 ()~ €l (1)) =0, ()
k=1
—_1. 1 _q. _ 1 1. _ . 1 _ 1. 1. _ . | |
where g, =15 gy =15 884> = M Cialis iz = Pi/Mics ks = Pi/Mics &ria =i > &ka = i -
We substitute functions (3) and (6) into boundary conditions (7) and use the series method. Taking
into account that on the inclusion contour &, =, we obtain a,,, = a;, =0 at n>2, and to define a,,, and

a,, we have a system of algebraic equations

2 2 2
11 =1\ = | o1 1 —l=1 \_ - 5]
Z(akll — M Ay _akl)* _Z[kRklmkl Tk Rkl]’ Z(Hkaku WMy dyy — “kakl)* _Z[HkkRklmkl R |5
k=1

2
k=1 k=1

=1
S p i i S| p P
11 1 |_ = .
Z(_kakll__{cmkakl___]fali__z £ Rymy +=5 Ry |
=1\ Mk M M k=1 Mk My &

2 2
Z(qkakll —qymay, — g,y ): _Z[QkkRklmkl + qkkﬁkl] :

k=1 k=1
Thus, the derivatives of complex potentials have the form
1
Ay 1 Zx
Wiz) =y zp +—— Wi (z) = ap —1»
Kl k
and for the moments we get the following expressions

(MX’My’ny):_zRei(pk’qk’rk{k_‘(ik%)), (Mi,M;,Hiy)=—2Rei(p}“q}“rkl)a_}‘ll‘
k=1 R \Cir —myy pa R,
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If the hole passes into a straight section, and the inclusion — into an elastic line, respectively, then it is
also possible to calculate the moment intensity factors (MIFs) k,,; (for moments M,) and k,,, (for moments H,,).

Similarly to the case of a flat problem [5], for the MIF we obtain the expressions

2
2ReZ(Qk > Ty )akll .

(kml’ ka): L
Ja e

Based on MIF and thanks to expressions [1]
M, _3H
EAEETE AN YA

it is possible to find the maximum values of the MIF (at z=h)

3
(kl’ kz): W(kml’ ka)‘

Xy

Numerical studies

Numerical studies of bending moments for Table 1. Material constants

isotropic CAST-V material (material M1) and anisotropic 23107 | 2x10” T ax10®
skew-wound glass-fiber-reinforced plastic (material M2) | Material i\I/IP ol ’ iz/ﬂ, ol ’ i\Z/IP ol ’

age<1 04,
MPa™

were conducted. Their deformation coefficients are given M1 72100 | 72.100 | -8.600

161.500

in Table 1. The deformation coefficients for the inclusion M2 10000 2800 20.770

27.000

material were chosen as follows: a,;’ ) = k(’)a,.j , where A

is the relative stiffness parameter.

For a plate with a circular radius inclusion a; (b;=a;) (Fig.2) under the
influence of bending moments M " =m, for different values of the relative stiffness

parameter A" accurate to a constant factor m,, the values of the moments M, at the
points of contact of the plate with the inclusion on the areas perpendicular to the

inclusion contour are shown in Table 2. Here 6 — central angle of the hole, which is doplper 11y,

counted from the positive direction of the axis Ox counterclockwise. The values of
A, which are equal to 0 and oo, correspond to the cases of a plate with an
absolutely hard and an absolutely soft inclusion (a hole).

Fig. 2. Infinite plate
with circular inclusion

 Tabl Azna.lyzing ]che data Table 2. Moment values M, at the plate contact points
in lable 2, it can be seen
that with a decrease in the | Material | A% 0 712 76 9. :}2 73 15012 -
stiffness of the inclusion 0 | 0.164 | 0.128 | 0.029 |0.107 |0.242 |0.341 | 0.377
(1(-16)3-, with an increase in 102 [-0.124 [-0.092 [-0.005 [0.114 [0.235 [0319 | 0.351
A"’) moment values M at 10T 0.159 0.161 0.166 |0.172 |0.178 |0.183 0.184
points near 6=0 are grow- M1 0.5 0.720 0.671 0.539 ]0.359 [0.179 |0.046 |-0.002
ing, at points near 0=m/2 2 1.248 1.169 0.951 |0.653 |0.355 |0.137 0.058
they first fall (at AV>1), 10 | 1.590 | 1497 | 1.245 |0.899 |0.554 |0.301 | 0.209
then increase (at A'"<1). At 10> | 1.704 | 1.608 | 1346 [0.989 [0.631 [0370 | 0.274
AP<10? inclusion can be 0 1.718 | 1.622 | 1.359 [1.000 |0.641 [0.378 | 0.283
considered abso]ute]y 1i- 0 -0.222 | -0.254 0.007 |0.464 |0.511 |0.303 0.190
gid, at A">10% — absolutely 107 [ -0.185 | 0.215 | 0.034 |0.463 |0.496 |0.288 | 0.176
soft (hole). The concentra- 10" | 0.078 | 0.056 | 0215 |0.461 |0403 [0.192 | 0.090
fion of moments in an ani- |  np | 05| 0653 | 0616 | 0568 0476 |0275 [0.074 |-0.006
sotropic plate is higher 2 | 1369 | 1257 | 0925 |0.534 |0.256 | 0.098 | 0.046
than in an isotropic one. 10 2.032 1.820 1.212 |0.608 |0.312 | 0.208 0.184
107 2.311 2.053 1.328 [0.641 |0.344 | 0.266 0.253
o 2.348 2.084 1.343 [0.646 |0.349 |0.274 0.263
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Analyzing the data in Table 2, it can be seen that with a decrease in the stiffness of the inclusion (i.e.,
with an increase in A'"’) moment values M, at points near 6=0 are growing, at points near 0=n/2 they first fall (at
AD>1), then increase (at A’<1). At A’<107 inclusion can be considered absolutely rigid, at A">10? — abso-

lutely soft (hole). The concentration of moments in an anisotropic plate is higher than in an isotropic one.

The values of the moments at the Table 3. Moment and MIF values depending on ' and b,/a,
points of the plate near the inclusion, as bild KIM
well as the values of MIF (at by/a,;=107) | a® 3 1 ; 3 ” N
are given in Table 3 for different ratios of ! 0.5 10 10 10 10 K
semiaxes bi/a; of elliptical inclusion and Ml
relative stiffness parameter 2D O_2 -0.16 | -0.19 | 042 | -3.02 | -29.00 | -288.69 | —0.136

From Table 3 it is seen that with 1)05 _8% _82 _gg g _82(7) _(1)2 g _(l) 4312 _888(1)
decreasing ratio b,/a; moment M, values : : - - - - : :
near the gen ds o tl tile bigger semiaxis | —2y 125 | 140 [ 177 [ 197 1.99 1.99 | 0.000

. . . . 3 10 1.70 | 240 | 7.62 | 42.10 86.81 97.28 | 0.013
rapidly increase in modulus; at 5,/a,<10 w | 1.72| 244 | 8.18| 7278 | 718.83 | 7178.87 | 1.000
the inclusion can be considered linear - : : M2 : : :
and the MIF can be caleulated for it. In | ™6 T7655 77937 1069 | 537 | —52.18 | -520.13 | -0.170
this case, the MIF occurs if the relative | —7027 019 | —0.24 | =053 | —151 | —-1.99 206 | —0.001
stiffness of the inclusion material is large | ~05 [ 065 | 058 | 051 0.49 0.49 049 | 0.000
or small. 2 | 137] 155] 186 197 1.99 1.99 | 0.000

10° | 231 3591271 ] 57.10 91.35 97.22 | 0.007
) 235 | 3.70 | 1448 | 135.77 | 1348.63 | 13475.67 | 1.000
The MIF graphs (k,,) depending on the stiffness of the R fm .

inclusion (parameter A") are shown in Fig. 3. We see that for a
linear elastic inclusion the influence of the parameter A'” is the same
as for an elastic circular core: at 1'’<10™ inclusion can be considered
absolutely rigid, and when A’>10° — absolutely soft (cracked).
When 10*<A"<10" the values of the MIF are quite small and can be
neglected. Therefore, the MIF for linear elastic inclusions can be
considered only if the stiffness of the inclusion differs from the
stiffness of the plate by no less than 10° times.

Conclusions

The problem of bending of an infinite anisotropic plate with
an elliptical elastic inclusion was solved using complex potentials. An
approach for calculating the intensity coefficients of the moments

0.8 J 4
’ ]
L
0.6 ; ,/
by

0,4

0,2 /

J
-

-8 1 0 4

-0,2

1@

Fig. 3. Dependence of the MIF on the
relative stiffness of a linear inclusion

of the MIF was proposed.

The mathematical modeling of the bending process made it possible to estimate the influence of the
relative stiffness of the inclusion on the magnitude of the bending moments at the points of contact of the
plate with the inclusion, and also to find out in which cases the inclusion can be considered absolutely soft

and absolutely rigid.

The influence of the ratio of the semiaxes of the elliptical inclusion on the magnitude of the bending
moments and on the MIF was studied. It was established that the inclusion can be considered linear at
bi/a;<10. Tt was found that MIF can be considered in cases where the inclusion material differs from the

plate material by no less than 10’ times.
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MaTteMaTHYHe MOIeTHBAHHSA 3TUHY i30TPONMHHUX TA AHI30TPONMHUX IJIMT
3 eJINTHYHUMH Ta JiHIHHIMHA BKIIOYEeHHAMH

'A. O. Komikin, "2 0. O. CtpenbHikoBa

! XapKiBchbKnii HAI[IOHANBHUIT YHIBEPCHTET PaIi0CIEKTPOHIKH,
61166, Ykpaina, M. Xapkis, np. Hayku, 14

* [HCTHTYT €HEepreTHYHHX MamuH i cucteM iM. A. M. ITizropaoro HAH Vkpaiuu,
61046, Ykpaina, M. XapkiB, Bys1. KomyHansHUKIB, 2/10

Po36’s3ano 3a0ayy meopii 32uny moHKUX Naum 075 HeCKiHYeHHOI aHI30MPONHOL NAUmMuU 3 elnMudHUM abo Ji-
HIUHUM NPYIHCHUM 8KIIOYUEHHAM, 8CIABIEHUM 8 OMEIp Oe3 NonepedHbo20 HAMAZY il 3 YMOBAMU i0edalbHO20 MEXAHIYHO20
KOHMaxkmy 3 naumoro-mampuyero. /[is ompumanusa po3e 3Ky GUKOPUCTIAHO anapam y3a2aibHeHUX KOMHIAEeKCHUX No-
menyianis, poskaadu Qyuxyii y psaou Jlopana i 3a muocounenamu @abepa, a maxotc mMemoo KOHGOPMHUX 8i0006pa-
JiceHb 0151 nepexo9y 8i0 308HIUHOCIE OOUHUYHO20 KOJA 00 306HIWHOCHI eainca. Y pobomi Hagedeno moune anaiimuy-
He po36’A3aHHsA 3a0a4i O 8UNAOKY eLINMUYHO20 BKIIOYEeHHS 1l OMPUMAHO 8UPA3U 0N 32UHATIbHUX MOMEHMI8 i nonepe-
YHUX CUTL SIK Y NAUMI-MAMpPUuyi, max i y eKaouenti. J{is 6unaoxy, Koau eiinmuine 6KI0YeHHs 8UPOOAICYEMbCA Y NiHIlHE,
8UBeOeHO popmyau Oas obuucienns Koepiyienmis inmencusnocmi momenmis (KIM) y tioeo xinysx. 3anpononosanuii
nioxio 003801A€ KOPEKMHO ORUCAMU CUHYIAPHY NOBEOTHKY 32UHANLHUX MOMEHMIS Ul oyinumu ymosu, 3a axux KIM ma-
jomo icmomui 3uauenns. Ilpoeedeno uucnosi docaiodcenus 0 naum 3 izomponnoeo (KACT-B) i aunizomponnozo
(CKIONIACMUK KOCOKYMHO20 HAMOMYBAHHA) MAMEPIanié 3a Pi3HuX 3HaAYeHb GIOHOCHOI JCOPCMKOCMI 8KIOUEHHS | CNig-
8iOHOUIeHH S 1l020 nigocell. Bcmanosneno, wo smMeHueH s HCOPCMKOCMI 8KII0YeHHs NPU3B00UMs 00 3pOCAHHA 32UHA-
JAbHUX MOMEHMIB Y NeGHUX 30HAX KOHMAKMY 3 NAUMOIO, NPUYOMY KOHYEHMPAYis MOMEHMIE 8 AHI30MPONHUX NAUMAX
suwya, Hide 6 izomponnux. Ilokazano, wo 015 AiniiHO20 6Ka0OYenHs eenuki snavenns KIM cnocmepiecaiomovces auwe y
BUNAOKAX CYMMEBO HCOPCMKUX ADO M AKUX 8KIIOYEHb, NPU OIUILKUX HCOPCMKOCAX NAUMU | 8KAIOYEHHS (MeHW HIdC Y
oexinvka pasig) KIM matixce sHuxaroms, a omoice, 6eCmu MO8y NPO CUHZYIAPHOCMI MOMEHMIB y MAKUX 8UNAOKAX HEKO-
pekmHuo. [30mponHi naumu posisiHymo AK OKpeMulli 8UNAOOK AHI30MPONHUX, WO 00380JA€ NOWUPUMU OMPUMAHI pe-
3YAGMAMU HA BEUKULL KIAC MEXHIUHUX 3A0at MeXAHIKU KOMNO3UMIG | KOHCIMPYKYIU i3 6CIABHUMU eleMEeHMAMU.

Kniouosi cnoea: monxa nauma, 32un, mMamemamuyre MOOe08AHH S, YUCIO8] MeMOOU, OMEOPU, BKIIOUEHH S,
KOMNJIEKCHI NOMEHYIANU.
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