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The bending problem of an infinitely large thin anisotropic plate with an ellip-
tical or linear elastic inclusion inserted into a hole without initial tension and 
under perfect mechanical contact with the plate matrix is solved. The plate at 
infinity is subjected to constant bending moments. The solution is obtained by 
employing the formalism of generalized complex potentials, expansions of 
functions into Laurent series and Faber polynomials, as well as conformal 
mapping techniques to transform the exterior of the unit circle into the exte-
rior of an ellipse. An exact analytical solution for the case of an elliptical in-
clusion, providing expressions for bending moments and transverse forces 
both in the plate matrix and in the inclusion, is presented. For the case when 
the elliptical inclusion reduces to a line, formulas for calculating the moment 
intensity factors (MIF) at its ends are derived. This approach accurately cap-
tures the singular behavior of bending moments and identifies conditions un-
der which MIF values are significant. Numerical studies were conducted for 
plates made of isotropic material (CAST–V) and anisotropic material (skew-
wound glass-fiber-reinforced plastic) under various values of the inclusion’s 
relative stiffness and axis ratio. It was found that decreasing the inclusion’s 
stiffness leads to an increase in bending moments in certain contact zones, 
with higher moment concentrations in anisotropic plates compared to iso-
tropic ones. For linear inclusions, significant MIF values arise only for sub-
stantially stiff or soft inclusions; when the stiffnesses of the plate and inclusion 
differ by less than a few times, MIF values are negligible, and it is inappro-
priate to discuss bending moment singularities. Isotropic plates are treated as 
a special case of anisotropic ones, enabling the extension of these results to a 
broad class of engineering problems involving composites and structures with 
embedded elements. 

Keywords: thin plate, bending, mathematical modeling, numerical methods, 
holes, inclusions, complex potentials. 

Introduction 
Despite significant progress in the development of the applied theory of bending of thin anisotropic 

plates [1, 2, 3], as of now, few problems have been solved for plates with foreign inclusions. This is 
especially accurate for cases with linear inclusions, when it is necessary to study the singular behavior of the 
main characteristics at their ends. For multi-connected plates, such a statement is still a difficult 
mathematical problem, while for a plate with a single inclusion, an exact solution can be obtained by 
considering the linear inclusion as a limiting case of an elliptical one, when one of the semiaxes is zero. 

A mathematical modeling of the bending process of an anisotropic plate with an elastic inclusion is 
given in the paper. The solution of the problem of bending of an anisotropic plate with an elliptical, including 
linear, elastic inclusion, obtained by applying the methods of conformal mappings; the expansion of functions 
into Laurent series and Faber polynomials, as well as the formula for calculating the moment intensity factors 
(MIFs) are presented. The results of numerical calculations, which allowed to identify the influence of the 
stiffness of the elastic inclusion, the ratio of the semiaxes of the inclusion and the anisotropy of the materials of 
the plate and the inclusion on the values of the bending moments arising in the plate, are given.  

Problem statement and solution method 
We consider an infinite anisotropic matrix plate with an elliptical hole L1 with center at the origin of 

the coordinate system Oxy and semiaxes a1, b1, located along the coordinate axes (Fig. 1). An elastic 
inclusion of another material is inserted into the hole. The plate and the inclusion are in ideal mechanical 

contact. Bending moments of constant magnitude 
xM , 

yM , 
xyH  act on the plate-matrix at infinity. 
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To solve the problem, we will use the complex potentials of Lekhnitskii’s 
theory of bending of anisotropic plates [1, 2]. The region occupied by the plate-
matrix will be denoted by S, and the region of elastic inclusion – by S1. 

When using complex potentials, solving the problem reduces to finding the 
derivatives of functions of generalized complex variables )( kk zW   for the matrix 

plate and )( 11
kk zW   for inclusion from the appropriate boundary conditions. 

 

Fig. 1. Infinite plate 
with elliptic inclusion 

Derivatives of complex potentials for a plate-matrix )( kk zW   are functions of generalized complex 
variables 
 yxz kk = , (1) 
where μk are roots of the characteristic equation [4] 
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where aij are deformation coefficients for the plate material; /32= 3
0 hD ; h is the half-thickness of the plate.  

Functions  kk zW '  are defined in the regions Sk, which are obtained from the region S by affine 
transformations (1) and have the following form [2] 
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where Γk are constants found from the system of equations 
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where ak1n are unknowns; ζk1 are variables that are defined from the conformal mapping of the exterior of the 
unit circle 11 k  on the appearance of ellipses Lk1: 
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If the functions )( kk zW   are determined, then the bending moments and transverse forces at all points 
of the plate are calculated using the following formulas: 
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For bending moments on an arbitrary surface with a normal n we have 

nxnxHnyMnxMM xyyxn cossin2coscos= 22  . 

Derivatives of complex potentials for inclusion )( 11
kk zW   are also functions of generalized complex 

variables 

 yxz kk
11 =  , (5) 

where 1
k  are roots of the characteristic equation of the form (2), in which the coefficients Dij are replaced by the 

appropriate stiffness parameters 1
jiD  for inclusion. These functions are defined in the areas 1

kS , obtained from 

the region S1 by affine transformations (5). In these finite simply connected holomorphic domains, they can be 
expanded into series in Faber polynomials, which after transformations can be written as power series as follows: 

 

n

k

k
kn

n
kk R

z
azW 








 



1

1
1

0=

11 =)( . (6) 

Here 1
nka  are unknowns; 1

kR  are constants, which are calculated by analogy with formulas (4). 

Let's find the unknowns akln and 1
nka  from the boundary conditions on the contact contour of the 

inclusion with the matrix-plate [1, 2] 
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We substitute functions (3) and (6) into boundary conditions (7) and use the series method. Taking 

into account that on the inclusion contour  =1k , we obtain 0== 1
1 nknk aa  at 2n , and to define 11ka  and 

1
1ka  we have a system of algebraic equations 
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Thus, the derivatives of complex potentials have the form 
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and for the moments we get the following expressions 
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If the hole passes into a straight section, and the inclusion – into an elastic line, respectively, then it is 
also possible to calculate the moment intensity factors (MIFs) km1 (for moments My) and km2 (for moments Hxy). 
Similarly to the case of a flat problem [5], for the MIF we obtain the expressions 
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Numerical studies 
Numerical studies of bending moments for 

isotropic CAST-V material (material M1) and anisotropic 
skew-wound glass-fiber-reinforced plastic (material M2) 
were conducted. Their deformation coefficients are given 
in Table 1. The deformation coefficients for the inclusion 

material were chosen as follows: ij
ll

ij aa )()( =  , where λ(l) 

is the relative stiffness parameter. 

Table 1. Material constants 

Material 
a11×10-4,  
MPa-1 

a22×10-4,  
MPa-1 

a12×10-4,  
MPa-1 

a66×10-4,  
MPa-1 

М1 72.100 72.100 -8.600 161.500 
М2 10000 2.800 -0.770 27.000  

 
For a plate with a circular radius inclusion a1 (b1=a1) (Fig. 2) under the 

influence of bending moments yy mM =  for different values of the relative stiffness 

parameter λ(1) accurate to a constant factor my, the values of the moments Ms at the 
points of contact of the plate with the inclusion on the areas perpendicular to the 
inclusion contour are shown in Table 2. Here θ – central angle of the hole, which is 
counted from the positive direction of the axis Ox counterclockwise. The values of 
λ(1), which are equal to 0 and ∞, correspond to the cases of a plate with an 
absolutely hard and an absolutely soft inclusion (a hole). 

 
Fig. 2. Infinite plate 

with circular inclusion 

 
Analyzing the data 

in Table 2, it can be seen 
that with a decrease in the 
stiffness of the inclusion 
(i.e., with an increase in 
λ(1)) moment values Ms at 
points near θ=0 are grow-
ing, at points near θ=π/2 
they first fall (at λ(1)>1), 
then increase (at λ(1)<1). At 
λ(1)<10-2 inclusion can be 
considered absolutely ri-
gid, at λ(1)>102 – absolutely 
soft (hole). The concentra-
tion of moments in an ani-
sotropic plate is higher 
than in an isotropic one.  

 

Table 2. Moment values Ms at the plate contact points 

θ, rad 
Material λ(1) 

0 π/12 π/6 π/4 π/3 5π/12 π/2 
0 –0.164 –0.128 –0.029 0.107 0.242 0.341 0.377 

10-2 –0.124 –0.092 –0.005 0.114 0.235 0.319 0.351 
10-1 0.159 0.161 0.166 0.172 0.178 0.183 0.184 
0.5 0.720 0.671 0.539 0.359 0.179 0.046 –0.002 
2 1.248 1.169 0.951 0.653 0.355 0.137 0.058 

10 1.590 1.497 1.245 0.899 0.554 0.301 0.209 
102 1.704 1.608 1.346 0.989 0.631 0.370 0.274 

М1 

∞ 1.718 1.622 1.359 1.000 0.641 0.378 0.283 
0 –0.222 –0.254 0.007 0.464 0.511 0.303 0.190 

10-2 –0.185 –0.215 0.034 0.463 0.496 0.288 0.176 
10-1 0.078 0.056 0.215 0.461 0.403 0.192 0.090 
0.5 0.653 0.616 0.568 0.476 0.275 0.074 –0.006 
2 1.369 1.257 0.925 0.534 0.256 0.098 0.046 

10 2.032 1.820 1.212 0.608 0.312 0.208 0.184 
102 2.311 2.053 1.328 0.641 0.344 0.266 0.253 

М2 

∞ 2.348 2.084 1.343 0.646 0.349 0.274 0.263  
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Analyzing the data in Table 2, it can be seen that with a decrease in the stiffness of the inclusion (i.e., 
with an increase in λ(1)) moment values Ms at points near θ=0 are growing, at points near θ=π/2 they first fall (at 
λ(1)>1), then increase (at λ(1)<1). At λ(1)<10-2 inclusion can be considered absolutely rigid, at λ(1)>102 – abso-
lutely soft (hole). The concentration of moments in an anisotropic plate is higher than in an isotropic one. 

The values of the moments at the 
points of the plate near the inclusion, as 
well as the values of MIF (at b1/a1=10-5) 
are given in Table 3 for different ratios of 
semiaxes b1/a1 of elliptical inclusion and 
relative stiffness parameter λ(1). 

From Table 3 it is seen that with 
decreasing ratio b1/a1 moment Ms values 
near the ends of the bigger semiaxis 
rapidly increase in modulus; at b1/a1<10-3 
the inclusion can be considered linear 
and the MIF can be calculated for it. In 
this case, the MIF occurs if the relative 
stiffness of the inclusion material is large 
or small.  

 

Table 3. Moment and MIF values depending on λ(1) and b1/a1  

b1/a1 
λ(1) 

1 0.5 10-1 10-2 10-3 10-4 

КІМ  


1mk  

M1 
0 –0.16 –0.19 –0.42 –3.02 –29.00 –288.69 –0.136 

10-2 –0.12 –0.16 –0.33 –0.97 –1.32 –1.38 –0.001 
0.5 0.72 0.63 0.53 0.50 0.49 0.49 0.000 
2 1.25 1.40 1.77 1.97 1.99 1.99 0.000 

102 1.70 2.40 7.62 42.10 86.81 97.28 0.013 
∞ 1.72 2.44 8.18 72.78 718.83 7178.87 1.000 

М2 
0 –0.22 –0.27 –0.69 –5.37 –52.18 –520.13 –0.170 

10-2 –0.19 –0.24 –0.53 –1.51 –1.99 –2.06 –0.001 
0.5 0.65 0.58 0.51 0.49 0.49 0.49 0.000 
2 1.37 1.55 1.86 1.97 1.99 1.99 0.000 

102 2.31 3.59 12.71 57.10 91.35 97.22 0.007 
∞ 2.35 3.70 14.48 135.77 1348.63 13475.67 1.000  

 

The MIF graphs ( 
1mk ) depending on the stiffness of the 

inclusion (parameter λ(1)) are shown in Fig. 3. We see that for a 
linear elastic inclusion the influence of the parameter λ(1) is the same 
as for an elastic circular core: at λ(1)<10-3 inclusion can be considered 
absolutely rigid, and when λ(1)>103 – absolutely soft (cracked). 
When 10-4<λ(1)<104 the values of the MIF are quite small and can be 
neglected. Therefore, the MIF for linear elastic inclusions can be 
considered only if the stiffness of the inclusion differs from the 
stiffness of the plate by no less than 103 times. 

Conclusions 
The problem of bending of an infinite anisotropic plate with 

an elliptical elastic inclusion was solved using complex potentials. An 
approach for calculating the intensity coefficients of the moments 

 
Fig. 3. Dependence of the MIF on the 
relative stiffness of a linear inclusion 

of the MIF was proposed. 
The mathematical modeling of the bending process made it possible to estimate the influence of the 

relative stiffness of the inclusion on the magnitude of the bending moments at the points of contact of the 
plate with the inclusion, and also to find out in which cases the inclusion can be considered absolutely soft 
and absolutely rigid. 

The influence of the ratio of the semiaxes of the elliptical inclusion on the magnitude of the bending 
moments and on the MIF was studied. It was established that the inclusion can be considered linear at 
b1/a1<10-3. It was found that MIF can be considered in cases where the inclusion material differs from the 
plate material by no less than 103 times. 
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Математичне моделювання згину ізотропних та анізотропних плит  
з еліптичними та лінійними включеннями 

1 А. О. Кошкін, 1, 2 О. О. Стрельнікова 
1 Харківський національний університет радіоелектроніки,  

61166, Україна, м. Харків, пр. Науки, 14 
2 Інститут енергетичних машин і систем ім. А. М. Підгорного НАН України, 

61046, Україна, м. Харків, вул. Комунальників, 2/10 

Розв’язано задачу теорії згину тонких плит для нескінченної анізотропної плити з еліптичним або лі-
нійним пружним включенням, вставленим в отвір без попереднього натягу й з умовами ідеального механічного 
контакту з плитою-матрицею. Для отримання розв’язку використано апарат узагальнених комплексних по-
тенціалів, розклади функцій у ряди Лорана й за многочленами Фабера, а також метод конформних відобра-
жень для переходу від зовнішності одиничного кола до зовнішності еліпса. У роботі наведено точне аналітич-
не розв’язання задачі для випадку еліптичного включення й отримано вирази для згинальних моментів і попере-
чних сил як у плиті-матриці, так і у включенні. Для випадку, коли еліптичне включення вироджується у лінійне, 
виведено формули для обчислення коефіцієнтів інтенсивності моментів (КІМ) у його кінцях. Запропонований 
підхід дозволяє коректно описати сингулярну поведінку згинальних моментів й оцінити умови, за яких КІМ ма-
ють істотні значення. Проведено числові дослідження для плит з ізотропного (КАСТ–В) й анізотропного 
(склопластик косокутного намотування) матеріалів за різних значень відносної жорсткості включення і спів-
відношення його півосей. Встановлено, що зменшення жорсткості включення призводить до зростання згина-
льних моментів у певних зонах контакту з плитою, причому концентрація моментів в анізотропних плитах 
вища, ніж в ізотропних. Показано, що для лінійного включення великі значення КІМ спостерігаються лише у 
випадках суттєво жорстких або м’яких включень; при близьких жорсткостях плити і включення (менш ніж у 
декілька разів) КІМ майже зникають, а отже, вести мову про сингулярності моментів у таких випадках неко-
ректно. Ізотропні плити розглянуто як окремий випадок анізотропних, що дозволяє поширити отримані ре-
зультати на великий клас технічних задач механіки композитів і конструкцій із вставними елементами. 

Ключові слова: тонка плита, згин, математичне моделювання, числові методи, отвори, включення, 
комплексні потенціали. 
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