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Описано алгоритм розрахунку надійності стохастично дефектних ортотропних композитних матеріа-
лів за умов складного напруженого стану. Розглянуто критерій максимальних макронапружень для 
композита з довільно орієнтованими тріщинами з переважаючою орієнтацією в напрямку армування. 
Отримано функцію розподілу руйнівного навантаження композита. Розраховані і побудовані діаграми 
залежності ймовірності руйнування досліджуваного зразка матеріалу від прикладеного навантаження 
для різної кількості тріщин і структурної неоднорідності. 
Ключові слова: надійність, ортотропний композитний матеріал, імовірність зруйнування, функція роз-
поділу, руйнівне навантаження. 
 
1. Introduction 
The trends in the development of modern technolo-

gy are characterized by the widespread use of structures 
made of composite materials, which often have brittle frac-
ture. Problems that arise in designing and using such struc-
tures, necessitate the development of mathematical models 
that allow obtaining adequate estimates of their mechani-
cal behavior and properties. The stochastic nature of real 
composites structure leads to the need to construct these 
models based on the statistical approach. The complex ap-
plication of known brittle fracture mechanics deterministic 
solutions and probabilistic and statistical methods is an ac-
tual problem in the manufacture of equipment with in-
creased requirements of strength and reliability. 

 
2. Literature review 
The application of methods of probability theory 

and mathematical statistics in the problems of composite 
materials fracture mechanics was developed in a number 
of authors' works. In particular, in the design and evalua-
tion of the strength and mechanical properties of compo-
site materials in [1, 2], the Weibull distribution was used. 
The author of [3] proposed a statistical approach in the 
research of composite plates of different weight in poly-
ester reinforced with fiberglass. In paper [4] a numerical 
simulation and analytical probabilistic methods for the 
reliability evaluation of composite structures [4] are con-
sidered. A statistical model describing the associated de-
formation and damage of composites with porous trans-
verse isotropic and orthotropic components is proposed 
[5], and the mechanism of micro-damage of composites 
is considered, provided that the microstructure of the ma-
terial is non-uniform. The method of the composite mate-
rials reliability predicting under tensile conditions is in-
vestigated and a statistical analysis of experimental data 
has been carried out [6]. Experimental investigations of 
the composite glass fiber materials tensile strength and 
the statistical analysis of the results obtained on the basis 
of the two-parameter Weibull distribution have been car-
ried out in [7]. 

 
3. The aim and objectives of research 
The aim of the work is construction of an algo-

rithm for the reliability calculating (probability of failure) 

under different loading conditions of orthotropic compo-
site materials with a different number of stochastically 
distributed defects-cracks that do not interact with each 
other. 

To achieve this aim, the following tasks need to 
be solved: 

– set the fracture criterion of the orthotropic com-
posite in conditions of a complex stressed state, ex-
pressed through the components of the macroscopic 
stresses (stresses averaged over a certain area); 

– choose the distribution laws of such statistically 
independent defects parameters as orientation angle and 
length; 

– get the failure loading distribution function for a 
composite element with one crack; 

– calculate and construct diagrams of the compo-
site failure probability dependence from the applied load-
ing for a different number of defects and different struc-
tural inhomogeneity of the material. 

 

4. Algorithm for the probability of failure cal-
culating (reliability evaluation) of stochastically defec-
tive composite materials 

Let’s consider the plate, the material of which is 
composite, and consists of a matrix (binder) and reinforc-
ing elements (Fig. 1).  

 

 
Fig. 1. Plate made of orthotropic composite material un-

der conditions of flat deformation 
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Such a material will be considered as macro-
homogeneous, but anisotropic (orthotropic) in its elastic 
properties. The plate is under the conditions of uniformly 
distributed loading P  and Q P  (flat deformation). 

The directions of the loading action coincide with the 
main orthotropic directions of the material. 

The structure of the material is characterized by a 
defect of different scales (uniform distribution of cracks 
that do not interact with each other). Parameters of de-
fects (the half-length l  and the angle   between the 
crack line and the orthotropic axis 0x ) are statistically 
independent random variables. Let’s assume that the 
cracks with the most probable orientation are located in 
the main direction of reinforcement (the direction of the 
axis 0x  with the larger Young’s modulus 1E ). For such 

orientation, let’s choose the distribution probability den-
sity of a random variable   in the form [8] 

 
3/ 2
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Distribution density graphs (1) for different ratios 

of Young’s modulus (various values of the parameter  ) 
are presented in Fig. 2. In particular, the value 3, 2  
corresponds to the specimen from the epoxy phenolic fi-
berglass EF 32-301 on the cord glass fiber TSC-VM-1-
78 [9], for which the crack propagation along the main 
direction of reinforcement has been experimentally con-
firmed. 

 

 
Fig. 2. Distribution probability density of random variable   for different values of the parameter   

 
The distribution of the random variable   will be 

unimodal. The distribution density curves are symmetric 
with respect to the ordinate axis. As the parameter   in-
creases, the most likely value ( )Mo   of the random var-

iable is increased. In addition, with the change of the pa-
rameter  , the shape of the distribution density curve 
changes. 

Let’s assume that the random variable l  varies in a 
certain interval 0 l d   ( d  is the fi-
nite structural characteristic of the ma-
terial). The size of the structural ele-
ment 1  [10] is small in comparison 

with the magnitude l   Let's introduce a 
ratio 1 /L l   that will be a random 

variable that varies in the interval: 
0 L   . Then let’s choose the dis-
tribution probability density of a ran-
dom variable L  in the form of a pow-
er distribution [11] 

1( 1)
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Distribution density graphs (2) 

are shown in Fig. 3. Distribution is a 
two-parameter statistical model ( s  is 

a form parameter, a  is a scale parameter) for random 
variables that vary in the range from zero to infinity. As 
the parameter s  increases, the probability to meet large 
values of magnitude L  decreases. The shape of the dis-
tribution curve varies depending on the parameter s  
change. With the increase of the random variable L , the 
graphs of the function asymptotically approach the ab-
scissa axis. 

 
Fig. 3. Distribution probability density of random variable  for different 

shape  parameters and scale parameters (solid for , dashed for ) 



Технічні науки                                                                                          Scientific Journal «ScienceRise» №10(51)2018 
 

 30 

In the paper [12], in accordance with the algo-
rithm proposed in [13] and the laws of random variables 
distributions (1) and (2), an analytical representation of 
the fracture loading distribution function for a composite 
element with one crack is obtained 
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where the value ( , , )L P    is determined from the failure 

criterion, which is expressed through the components of 
the macroscopic stresses [ ]ij  ( 1,2; 1,2)i j   
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where cr  is the strength of the composite. 

For an arbitrarily oriented crack, the macroscopic 
stresses [ ]ij  are written in the form 
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Here 1 2,   are the sizes of the structural element 

[10], which depend on the structure micro inhomogenei-
ty, their value, type and density of distribution; k  are 

complex parameters, which are determined from the 
characteristic equation [14] 
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where 12  is Poisson's coefficient, 12G  is the shear mod-

ulus. 
Taking into account the material under considera-

tion elastic characteristics 1 50100E  MPa,  

2 15600E  MPa, 12 0, 25  of the material being stud-

ied [9], let’s obtain the following solutions of equation 
(12): 1 2,7874 i , 2 0,6429 i . 

Let’s use the formula to find the probability of 
failure of a structural element containing N  defects [13] 
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N
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which is based on the hypothesis of the weakest link. 

Then the probability of failure (reliability) of an 
orthotropic composite material with N  cracks for biaxial 
tension-compression is determined as follows: 
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According to formula (14) the dependence of the 

probability of failure fP  of the researched composite 

(scale parameter 2a  ) for the various structural inho-
mogeneity of the material (parameter s ), different num-
ber of cracks N , different types of loading (parameter 
) is calculated. The corresponding diagrams are shown in 
Fig. 4–6. 

In Fig. 4, the diagrams are shown for different 
types of composite stressed state at 5s   for uniaxial 
tension ( 0 ), for equal biaxial tension ( 1 ) and for 

tension-compression ( 1  ). Diagrams are constructed 

for different number of cracks.  
Fig. 5 analyzes the dependence of the composite 

probability of failure on the number of cracks (dimensions 
of the composite) and on the structural inhomogeneity of 
the material for the given loading ( / 0,4crP  ). 

Fig. 6 shows the dependence of the probability of 
failure in the fixed dimensions of the composite  

 100N  on the different material structural heteroge-

neity and for different types of loading.  
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Fig. 4. Probability of failure of the composite for various types of stress state (solid for 0 , dashed for 1 , dotted 

dashed for 1  ) 

 

 
Fig. 5. Probability of failure of the composite for the given loading (solid for 0 , dashed for 1 , dotted dashed for 

1  ) 

 

 
Fig. 6. Probability of failure of the composite for different material structural inhomogeneity (solid for 0 , dashed 

for 1 , dotted dashed for 1  ) 

 
5. Research results 
In Fig. 4, it is possible to see that there is a certain 

range of loading, which corresponds to a low probability 
of failure. The probability of failure at a fixed loading in-
creases with increasing number of cracks, and depends 
on the type of stressed state (on  ). 

Fig. 5 analyzes the dependence of the probability 
of failure on the number N  of cracks and the material 

structural inhomogeneity (parameter s ) for the given 
loading. Each level of loading and material structural in-
homogeneity corresponds to a range of composite sizes, 
at which the probability of its failure increases (a certain 
scale threshold of the probability of failure). 

Fig. 6 shows the dependence of the probability of 
failure in the fixed dimensions of the composite  
( 100N  ) for different material structural inhomogenei-
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ty at different types of loading. For a fixed loading with 
an increase in the parameter s  (the structure of the mate-
rial goes to the homogeneous) let’s obtain the pattern of 
decreasing the probability of failure. This pattern de-
pends on the type of stressed state (on  ). 

 
6. Conclusions 
1. The obtained distribution function of failure 

loading 1( , )F P   has all the properties of the integral dis-

tribution function of the random variable. 
2. The composite probability of failure fP  de-

pends on the type of applied loading, the number of de-
fects and the structural inhomogeneity of the material. 

3. There are certain intervals of the applied load-
ing and the composite dimensions, in which observe a 
significant increase in the probability of failure fP . 

4. The highest reliability of the investigated mate-
rial is observed for equal biaxial tension, the smallest for 
tension-compression. This pattern is a consequence of 
the material orthotropic influence. Since, according to the 
proposed model, the orientation of defects in the direc-
tion of reinforcement is prevalent (the physical content of 
the law (1)), therefore, in the case of equal biaxial ten-
sion, the loading action Q  causes the cracks closing and 

the increasing in the material strength, and hence the 
probability of failure fP  growth. 
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