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This review is devoted to the basic problem in quantum theory of quasi-one-dimensional electron systems like 

polyenes (Part 1) and cumulenes (Part 2) – physical origin of the forbidden zone in these and analogous 1D 

electron systems due to two possible effects – Peierls instability (bond alternation) and Mott instability (electron 

correlation). Both possible contradiction and coexistence of the Mott and Peierls instabilities are summerized on 

the basis of the Kiev quantum chemistry team research projects. 

Keywords: quasi-one-dimensional electron system, polyenes, cumulenes, Peierls instability, bond alternation, 

Mott instability, electron correlation.  

 

В огляді на основі результатів, отриманих київською групою квантової хімії, обговорюється основна 

проблема квазі-одновимірних електронних систем таких як поліени (Частина 1) і кумулени (Части- 

на 2) – фізична природа походження забороненої зони в таких і подібних їм 1D електронних системах 

завдяки двом можливим ефектів – нестійкість Пайерлса (чергування довжин хімічних зв'язків) і Мотта 

(електронна кореляція). 

Ключові слова: квазі-одновимірні електронні системи, поліени, кумулени, нестійкість Пайерлса, чергу-

вання зв'язків, нестійкість Мотта, кореляція електронів. 

 

1. Introduction 

This review gives detailed results and thorough 

discussion of basic results in quantum theory of quasi-

one-dimensional electron systems like Polyenes (Part 1 

[1]) and Cumulenes (Part 2), including partly Polyacety-

lenes, Polydiacetylenes, and some organic crystalline 

conductors obtained by Kiev quantum chemistry team 

with my direct and consultive or conductive participation 

in some of the research projects below.  

We began in Part 1 [1] with local electronic states 

in long polyene chains in the simple tight-binding ap-

proximation [2–4]. Then we gave condensed review of 

the Generalized Hartree-Fock method and its different 

versions with some demonstrative applications to atoms, 

molecules, and carbon polymers [5]. Further we turned to 

theory of electronic structure of long polyene neutral 

alternant radicals based on the different orbital for differ-

ent spins SCF method [6]. Then we ended Part 1 [1] 

with the local electronic states in polyene chains with 

an impurity atom using unrestricted Hartree-Fock ap-

proach [7].  

Part 2 of the review we begin with basics of the π-

electronic theory of cumulenes [8, 9]. Then long cu-

mulene chains are treated by extended and unrestricted 

Hartree-Fock approaches [10]. Thus, we come close to 

the basic problem in quantum theory of quasi-one-

dimensional electron systems – physical origin of their 

forbidden zone. 

In connection with this basic and most intriguing 

problem two results will be described in details. In one 

case using unrestricted Hartree-Fock treatment of the 

Hubbard-type Hamiltonian for long one-dimensional 

chains two possible effects – Peierls instability (bond 

alternation) and Mott-type electron correlation spin or-

dering leading to energy gap formation are mutually ex-

clusive [11]. On the other hand, it was recently shown 

that quite sophisticated theory based on the varying lo-

calized geminals approach predicts coexistence of the 

Mott and Peierls instabilities in real one-dimensional 

systems [12]. Moreover, it is stated that this approach 

permits to give the answer to the question what mecha-

nism of the forbidden gap formation is more essential – 

the electron correlation (Mott instability) or dimerization 

(Peierls instability). Both treatments despite their contra-

dictions each other will be presented in details. Finally 

[13], the summary of the review with conclusions and 

perspectives is given. 

 

2. Review of π-Electron Model of Cumulenes 

Cumulene molecules have the general formula 

H2C=(С=)N-2СH2 and contain a linear chain of N carbon 

atoms. The inner N – 2 atoms are characterized by diagonal 

hybridization sp and are in the valence state didiπxπy. Hy-

bridization of the end-C-atoms should be close to trigonal 

sp
2
, and these atoms can be in valence state trtrtrπx or 

trtrtrπy. Properties of cumulenes are discussed in several 

reviews [14 – 17]. Even cumulenes (EC) with the ethylene 

as the first member of ECs are known to be planar with 

symmetry D2h. In odd cumulenes (OC) with the allene [18] 

as the first member of OCs the two end-groups are perpen-

dicular to one another with symmetry D2d. Both experi-

mental facts are in accordance to valence bond theory. 
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The ease of cis-trans isomerization for the ECs or 

of stereoisomerization for the OCs is determined by the 

barrier height of internal rotation of the CH2 end-groups. 

Rotation of one of the CH2 groups by 180
◦
 returns the 

cumulene molecule to its initial state. It is a natural sug-

gestion that the barrier height is determined by the ener-

gy of such a molecular conformation in which one of the 

CH2 groups is turned by 90
◦
 in comparison with the most 

stable conformation. In the following under barrier 

height V we shall imply the difference between energies 

of the lowest singlet states of the molecular confor-

mations with symmetry D2h and D2d.  

The barriers V in cumulenes were considered the-

oretically in [8, 9, 19, 20]. Popov [20] used a simple 

Huckel method which leads to the conclusion that with 

an increase of the number of C atoms the barrier tends to 

zero which is actually simply obvious from physical 

point of view. σ-Bonds of cumulene chains have cylin-

drical symmetry and their energy does not depend upon 

the angle of rotation of the end-groups. Therefore if di-

rect interaction of the end-groups is neglected the barrier 

height is determined by the energy change of the π-

electrons with the change of the molecular conformation.  

Cumulenes CNH4 have 2N–2 π-electrons. In ac-

cordance with the simple MO theory 2N–2 levels can 

contain either N – 1 bonding levels and equally many 

antibonding levels in ECs or N–2 bonding and equally 

many antibonding levels plus 2 nonbonding levels in 

OCs. In the former 2N–2 π-electrons occupy all N–1 

bonding levels; in the later – all N–2 bonding levels and 

the two remaining electrons occupy the two-fold degen-

erate nonbonding level. The first distribution is energeti-

cally more favorable than the second one. This is 

achieved for even N for planar conformations and for odd 

N for twisted conformations. This may be considered as a 

simple explanation of the known experimental fact [17] 

that the stable conformation of the ECs is planar, but that 

of the OCs is twisted with perpendicular arrangements of 

planes of the end-groups. This very interesting property 

of the cumulenes was in fact first explained by van‘t 

Hoff [21] in 1877 using the tetrahedral model of the car-

bon atom.  

Let us choose the coordinate system in a way so 

that in the conformation D2h π-AOs of the subsystem 

with N AOs are directed along x-axis and with N–2 

AOs – along y-axis. The z-axis passes through the C 

atoms. Conformation D2d is formed by a rotation of 

one of the end-AO‘s by 90
◦
. In this case the number of 

AOs which are directed along the x- and y-axis equals 

N–1 in both cases.  

In the conformation D2h πx-states have symmetry 

b2g and b3u, and πy-states – b2u and b3g. In the confor-

mation D2d all π-MOs transform according to the irreduc-

ible representation e. Therefore in this conformation the 

frontier MOs (pair of nonbonding orbitals) is degenerated 

by symmetry. Accidental degeneration of the frontiers 

MOs in the conformation D2h remains in the Pariser – 

Parr – Pople (PPP) [22, 23] approximation also, for in 

this case zero differential overlap approximation is used. 

It is removed by alternation of the bond lengths.  

The lowest electronic configuration of the cu-

mulene molecule in its unstable conformation has a mul-

tiplet structure with states 
3
A2, 

1
B1, 

1
A1, and 

1
B2 for ECs 

and 
3
Au, 

1
Au, 

1
Ag, and 

1
A'g for OCs. We shall see later that 

when electronic interaction is accounted for the lowest 

states become 
3
A2, 

1
B1, resp. 

3
Au, 

1
Au. The states 

1
A1, 

1
B2, 

resp. 
1
Ag, 

1
A'g correspond to electron transfer between the 

perpendicular x- and y-subsystems of π-AOs. The mole-

cule in its stable conformation, which is 
1
Ag for ECs and 

1
A1 for OCs has a closed shell. The degeneration of the 

frontier π-MOs is removed for inorganic cumulenes with 

alternating atoms of different electronegativity. To a 

smaller degree the same is true if the difference in the 

hybridization between the parameters of inner and outer 

C atoms is taken into account. But even in this case the 

lowest singlet state may be 
1
Au if the orbital energy split-

ting does not exceed the splitting of even and odd states.  

In the following we shall neglect the difference in 

hybridization between outer and inner C atoms. This 

approximation is sufficiently good because the integrals 

for sp
2
 and sp states are almost equal [24]. 

Let us the x- and y-MOs in the conformation D2h 

write down as a linear combination of the π-AOs xν and 

yν with the chain of AOs yν denoted by primed symbols 
 

, .   

 

    i i i iC x C y  

 

The summation is extended over all AOs of the 

chain. In the same manner it is possible to set up the 

components of the degenerate pairs of the MOs in the 

conformation D2d. 

Let ˆ 
iA  be the creation operator for an electron i 

of orbital state 
i  and spin state  , and ˆ 

i
A  be the same 

for spin state  . Degenerate orbital pairs of open shell 

will be denoted by the symbols k and k , and orbitals of 

closed shell by j  and j . Then the wave functions of 

states with closed shell c  may be written as 
 

1 1

1( , ) ,

ˆ ˆ ˆ ˆ 0   





  

  

c c

g

c

j jj j

j j

A A

A A A A
, 

 

where 0  is the vacuum state.  

Wave functions of states with open shell o will 

be written as follows: 
 

3 3

2

1 1

1

1 1

2

1 1

1

1 ˆ ˆ ˆ ˆ( , ) ( ) ,
2

1 ˆ ˆ ˆ ˆ( , ) ( ) ,
2

1 ˆ ˆ ˆ ˆ( , ) ( ) ,
2

1 ˆ ˆ ˆ ˆ( , ) ( ) .
2

   



   



   



   



   

   

   

   

o c

u k kk k

o c

u k kk k

o c

g k kk k

o c

g k kk k

A A A A A A

B A A A A A

B A A A A A

A A A A A A

 

 

For these states the z-component of the total spin 

0SM . Two other components of the triplet state 3

2A  

or 3

uA  with 1 SM  are described by the functions 
 

ˆ ˆ 

 c

k kA A  and ˆ ˆ 


c

k k
A A . 
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Let us introduce the standard notations: 
 

1 2

12

1 2

12

,

1
,

1
.



 

 













core

k k k

ij i ij j

ij j ii j

H H d

J d d
r

K d d
r

  

     

     

 

 

Then the energy of states with closed shell will be: 
 

 

   

1 2 1 2

1 2

1 2 1 2 1 2 1 2

1 2 1 2

1 1

1( , ) 2 2 2

4 2 2 ,





     

  

    

    

  

 

c

g j j j j j j

j j j j

core

j j j j j j j j

j j j j

E A A H H J K

J K J K E
 

 

where coreE  is the core total energy. If we denote 
 

1

(2 2 )

(2 2 ),



 

     



   

    

   





c

k k

jk jk jk jk

j

j k j k j k j k

j

E E H H

J K J K

J K J K

 

 

where cE  means an expression which has the same 

structure as 1 1

1( , )c

gE A A  above, the sums being taken 

over the closed shell only, the energy of the states with 

open shell are: 
 

3 3

2 1

1 1

1 1

1 1

2 1

1 1

1 1

( , ) ,

( , ) ,

1
( , ) ( ) ,

2

1
( , ) ( ) .

2

 

 

  

  

  

  

   

    

o

u kk kk

o

u kk kk

o

g kk k k kk

o

g kk k k kk

E A A E J K

E B A E J K

E B A E J J K

E A A E J J K

 

 

Usually 

1
( )

2
 ij ii jjJ J J  

 

holds. This means that among the lower singlet states the 

lowest are 1

1B  and 1

uA . 

Reducing the MOs to AOs the integrals over the 

AOs 

1 2

12

1
(1) (2) (1) (2)   x x x x d d

r
        

 

will have to be calculated. Zero differential overlap 
 

               
 

will be used in this context. 

Core integrals H  with    will be accounted 

for only in case of neighbouring atoms and renamed 

( 0)   . Integrals between AOs 
x  and y H  

are zero for symmetry reasons. Integrals H  will be 

calculated in the Goeppert-Mayer and Sklar approxima-

tion [25], neglecting penetration integrals 
 

,

.





    



    

    

 

 

H I

H I

    
 

       
 

  

  
 

 

Here I  is ionization potential of π-electron in the 

corresponding valence state and in the outer field of neigh-

bouring neutral atoms. It is obvious that  I I  as well as 

      . The summation runs over all AOs 
x  resp. 

y .  

Let us introduce the following notations for densi-

ty matrix elements in AO representation: 
 

, , 2 ,   c o T c o

j j k k

j

P C C P C C P P P          

 

and analogous expressions for the primed densities. For 

the states with closed shell oP  is equal to zero. 

Using these notations and under the assumption of 

the approximations mentioned above we obtain 
 

,

,

.   









 

 



c o

jk

j

c o

jk

j

o o

kk

J P P

K P P

J P P

  


  


    
 







 

  

In the zero differential overlap approximation all 

exchange integrals of the type ijK  are zero. When the 

necessary substitutions are done we get the following 

expressions for the energy of states with closed shell: 
 

1 1

1

2

2

( , ) ( ) ( )

1 1
( )

2 4

1 1
( )

2 4

( )

       

 

      



             

 

     



 

 

 

    



             

 

   



    

  
      

  

  
      

  

  

 







c T T

g

T T T T T

T T T T T

T T T T

E A A I P I P

P P P P P

P P P P P

P P P P .   (1) 

  

Further simplifications will follow if we take into 

account that for alternant hydrocarbons it holds that 

1  T TP P   [26]. This is also true for the SCF method 

in the PPP approximation, which is assumed, if the ioni-

zation potentials and integrals are put equal for all C at-

oms [23, 27] including the end-atoms: 
 

,     I I I       . 

 

This assumption seems to be not far from the truth 

for organic cumulenes. 

If the alternant properties of cumulenes are taken 

into account then the energy of the states with closed 

shell can be divided up as follows: 
 

1 1

1 int( , )    c c c core

g x yE A A E E E E , 
 

where 
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2

2

1 1
( ) ,

2 2

1 1
( ) ,

2 2
            

  

  
      

   

  
      

   

 

 

c T T

x

c T T

y

E I P P

E I P P

      
 

            
  

   

   

 

int .


 E 


                               (2) 

  

The energy c

xE  represents the π-electron energy 

of a hypothetical compound with the same space struc-

ture as the corresponding cumulene with closed shell but 

having only one system of AOs of the type 
x . The same 

is true for the energy c

yE . 
intE  represents the energy of 

the static electron interaction of the two chains and does 

not depend upon the MO coefficients. 

Analogous transformations for the states with 

open shell 1

1B  and 1

uA  lead to the following result: 
 

1 1

1 int( , )    o o o core

u x yE B A E E E E , 
  

where 

  

As we see, division into two chains is possible 

also in this case, but now each chain is in a doublet 

state and has an open shell structure as in organic free 

radicals.  

However, for the open shell states 1

1A , 1

2B , 1

gA , 

and 1 
gA  division of the π-electron system in two subsys-

tems is not possible despite of the fact that rule 

 T TP P    is satisfied. 

The energy 
intE  is not the same for different cu-

mulene conformations. A simple consideration yields 
 

int 2 int 2( ) ( )   d hE D E D  , 
 

where   and   are the indices of the end-atoms.  

Let us note one incorrectness of the Goeppert-

Mayer and Sklar approximation [25] when one calculates 

the interaction energy of positive core charges 
DE . In 

fact, if we try to find 
DE  in this approximation by the 

method of Dewar and Gleicher [28] 
 



DE 
 

 , 

 

where the summation is taken over all AOs of the two 

chains, one gets different interaction energies for differ-

ent conformations: 
 

2 2( ) ( )   D d D hE D E D    . 

However on physical grounds the interaction en-

ergies of positive charges in different core conformations 

of cumulenes can not be different. These differences are 

small, of course, and decrease rapidly with increasing 

chain length.  

If one accepts the differences mentioned then the 

barrier height V may be found from the relation 
 

2 2 2 2( ) ( ) ( ) ( )    x d y d x h y hV E D E D E D E D  . (4) 
 

The last term will then result from compensations 

of charges of 
intE  and coreE .  

If, on the other hand, one takes the same core en-

ergies coreE  for both conformations then 
 

2 2 2 2( ) ( ) ( ) ( )     x d y d x h y hV E D E D E D E D  . (5) 
 

Barrier values by (4) and (5) are almost identical 

especially for large N.  

As we see from (4) and (5) the barrier height is 

determined first of all by SCF energies of the π-electron 

subsystems which may be calculated from formulae (2) 

and (3) [9]. It is also of interest to consider the case of 

Huckel orbitals for a chain with all bond lengths equal. 

These orbitals are expressed analytically as 
 

2
sin

1 1


 
j

j
C

m m


 
. 

 

Let us take into account the integrals   and 

  only for neighbouring atoms and use the following 

relations: 

1

, 1

1

cosec 1, even
2 2

ctg 1, odd
2 2
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, 1
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( )

( 1) / , odd1
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


  

 
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m
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m m mm
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

 

 

2

1

2
( ) , odd

1





m

oP m
m




 

 

1
2

, 1

1

( ) 0







m

oP 


. 

 

It is possible then to show analytically that barriers 

calculated by formula (4) tend asymptotically to zero with 

increasing N in accord with Huckel calculations in [20]. 

Now we consider very long cumulene chains us-

ing sophisticated EHF as well as UHF approaches. 

 

3. Electronic Structure of Long Cumulene 

Chains in the Extended Hartree-Fock Method Com-

pared with its Unrestricted Version 

It is important to note once more that most proper-

ties of carbon polymeric chains like polyenes, cu-

mulenes, polyacetylenes, polyacenes, and graphene can 

be explained in terms of the π-electron approximation. 

This fact enables methods involving electron correlation 

to be used for theoretical treatment of such electronic 

systems, which in turn gives a possibility for studying the 

2 2

2 2
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1 1 1
,

2 2 2
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1 1 1
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main features of electron correlation methods for calcula-

tions of molecular electronic structure. It is well known 

[6, 29–33] that electron interaction may give rise to qual-

itative changes in spectra of systems we are concerned. 

Thus, if electron correlation are taken into account by the 

UHF method, then energy spectra of long polyenes with 

equal bond lengths [6, 31, 32] and long regular cu-

mulenes [33] contain a forbidden zone, the width of 

which is in good agreement with experimental data. If 

the Huckel or the RHF methods are used, i. e., when 

electron correlations are neglected, the molecular sys-

tems we consider have spectra of the metallic type unless 

the further assumptions about the bond length alternation 

have been made. 

We begin our consideration of long cumulenes 

with the UHF equations for long polyene chains. 

 

3. 1. The UHF equations for long polyene chains 
Here will be now proved that the UHF equations 

for long neutral polyenes both with even and odd number 

of carbon atoms are the same. For this purpose let us 

analyze the results obtained for polyenes with even 

and odd [1] number of C atoms 1N  by the UHF 

method. If the chain boundaries are taken into account, 

as in the Hubbard‘s approximation, the Hamiltonian 

for a long polyene with equal bond lengths can be ex-

pressed as [29, 30] 
 

, ,

, , , ,

ˆ ˆˆ ( 2 cos )

ˆ ˆ ˆ ˆ ( , , , ),
2

 



   



 





 

    

  

  

   





k k

k

k k k k

k k k k

H k A A

A A A A f k k k k
N

   (6) 

 

where   and   are the Coulomb and the resonance 

integrals respectively,   is the Coulomb integral corre-

sponding to the electron interaction with one of the near-

est atoms, ˆ 
kA   and ˆ

kA   are the operators of π-electron 

creation and annihilation in the state 
 

(0)

1

2
( ) ( )sin



 
N

k r r k
N




   , 

 

involving σ-spin, ,  , ( )r  is the νth AO, 
 

1

4
( , , , ) sin sin sin sin



        
N

f k k k k k k k k
N 

     

 

is a linear combination of the Kroneker δ-symbols of  

the type 
 

( 2 ). 0,1,2,...      k k k k n n   
  

It is easy to show that functions (0)

k  are the HF 

solutions for the Hamiltonian (6). In the HF approxima-

tion only averages over the ground state of the type 

ˆ ˆ

k kA A   do not vanish. In case of the UHF method we 

have also to take as non-zero the averages of the type 

ˆ ˆ

k k
A A 

, where  k k . The case when the chain 

boundaries are neglected, i.e. the cyclic boundary condi-

tions are used, see in [29, 30]. Hence it follows that 

(0)

1

1
, , sign( ).



      
N

ik

k e k k k k
N






       

 

The UHF Hamiltonian for a long polyene chain 

can be written as 
 

( ) ˆ ˆ ˆ ˆˆ (2 cos ) 





    UHF

k k k k
k

H A A k A A C     


   , (7) 

 

where 
 

2 1, ( )
,

2 4 1. ( )

  
      

   

N
C 


  


 

 

The self-consistent value of 
 

ˆ ˆ   k k

k

A A
N


 


                        (8) 

 

is defined by the equation 
 

/2

2 2 2 2 1/2

0

(4 cos ) 1   dk k




 


.        (9) 

 

Let us transform the operators ˆ 
kA   and ˆ

kA   using 

Eqs (120) in [1] as 
 

(1) (2) 1/2

(2) (1) 1/2

ˆ ˆ ˆ( ) ,

ˆ ˆ ˆ( ) ,





  

  

k k k k k

k k k kk

A A A

A A A

   

  

 

                 (10) 
 

where 
 

20 / 2, 1 ,    k kk    
 

2 2 2(2 cos 4 cos ( ) ) / ( )    k k k     .   (11) 
 

Substituting (10) and (11) into (07) one obtains 
 

( ) ( ) ( ) ( )

,

ˆ ˆˆ UHF i i i

k k k

i k

H A A   ,                 (12) 

 

where 

(1) (2) 2 2 2 24 cos     k k k    .      (13) 
 

The operators ( )ˆ i

kA   correspond to one-electron 

wave functions 

( ) ( )

1

( ) ( ) ( )



N

i i

k kr C r  


   , 

where 

(1) 1 1/2

(2) 1 1/2

2
( ) [1 ( 1) ] sin ,

2
( ) [( 1) ] sin .

 

 

   

   

k k k

k k k

C k
N

C k
N



 



 

   

     (14) 

  

In the ground state all levels (1)

k  are filled and all 

levels (2)

k  are empty whether N is even or odd. Thus, the 

relations (8)–(14) are valid in both cases. Consequently, 

in the UHF method the self-consistent functions (14) and 

the energy spectra of long polyene chains with even N 

coincide with those for odd N, as it should be expected so 

far as 1N . By contrast, the HF solution for long poly-
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ene is unstable relative to a small perturbation modeling 

the addition of an unpaired electron to the system. 

Unfortunately, the UHF wave function is not an ei-

genfunction of the total spin operator 2Ŝ . To get rid of this 

disadvantage one has to use the EHF method. It 

will be shown below that both the UHF and the 

EHF methods being applied to large enough sys-

tems give identical results except spin density ex-

pressions. This means that the projection of the 

UHF wave function on the state involving the low-

est multiplicity does not affect the relations (8)–

(14). It should also be noted that the exact solution 

of the Schrodinger equation with the Hamiltonian 

(6) and the cyclic boundary conditions is obtained 

in [34]. The study of the exact solution [34, 35] has 

shown that there was an energy gap in the spectrum of qua-

si-ionic excitations active in optical spectra. Hence, it can be 

concluded that the UHF/EHF method treats correctly this 

feature of the exact solution. 

Now we shall consider the values 
 

(1) 2

/2

[ ( )]


  k

k

n C 


 .                            (15) 

 

Substituting (14) into (15) one obtains 
 

11
( 1)

2

  n 

    , 

where 
/2

(2) 1 2

0

2
( ) sin

  kdk k






  


.              (16) 

  

The chain boundary effect is revealed in the de-

pendence of   on  . It follows from (16) that 

1 0.28 , 
2 0.18 , 

3 0.23, ..., 0.21      for 

1( 2.4 , 5.4 )  eV eV   . Thus, the chain bound-

ary effect extends, in fact, to only the first two – three 

atoms. It also follow s from (15) that 1 n n 


. 

The values n  are equal to electron populations of the 

th  AO with σ-spin in the UHF method, but it is not the 

case when the EHF method is used as shown below. In 

the latter case the values (15) can be treated as self-

consistent parameters. 

 

3. 2. Electronic Structure of Long Cumulene 

Chains 
Now we shall turn to the treatment of long cu-

mulenes 
4C H ( 1)N N  using the results obtained just 

above. As we know the π-electron system of a cumulene 
molecule consists of the two π-subsystems which have 
the maxima of the electron density at two mutually per-
pendicular planes. From now all values corresponding to 
one of these subsystems will be marked with letter a/A 
and to another – with letter b/B. There are two possible 
conformations of a cumulene molecule which differ by 
mutual orientation of its end-groups CH2. Let us denote 
the conformation of symmetry D2h in which the end-

groups lie in the same plane as A  and the alternative 

conformation of symmetry D2d – as 
A .  

Let us consider a cumulene molecule neglecting 

its end-groups. In the short-range interaction approxima-

tion [33] one can obtain the following expression for the 

Hamiltonian of a long chain =(С=)N 

where ˆ 
kA   and ˆ 

kB   are the operators of electron creation 

in the states (0)

,k a  and (0)

,k b  with σ-spin, 
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
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e dV r r r

e dV r r r r r  (18) 
  

Taking into account that the orbitals of different 

subsystems do not mix and assuming that the values 

ˆ ˆ

k kA A  , ˆ ˆ

k kB B  , ˆ ˆ

k k
A A 

 and ˆ ˆ

k k
B B 

 being 

averaging over the ground state do not vanish, we obtain 

the effective UHF Hamiltonian for a long cumulene  

molecule 
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where 
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 
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According to [33], there are two possible self-

consistent solutions: 
 

 (1) 1    a b , 

 

 (2) 2    a b . 

 

Since the lowest ground state energy is known to 

correspond to the first case [33], we shall restrict our-

selves to the case   a b
. Substituting this condition 

into Eq. (19) one obtains 
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( )
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1 1
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1 1
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The expression (20) have the same form as (3). 

Because of this the expressions (20) are diagonalized by 

canonical transformation of the type (05), namely: 
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the self-consistent value of 
1  is defined by the equation 
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The operators ( )ˆ i

kA   and ( )ˆ i

kB   correspond to the 

functions ( )

,

i

k a  and ( )

,

i

k b . Their coefficients of the ex-

pansion in terms of the atomic orbitals ( )a

  and ( )b

  are 

diagonal as to the marking a and b and have the form 
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where ( )i

kC   are determined by (14) if 
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In the ground state all levels (1)

k  of the two sub-

systems are filled and all levels (2)

k  are empty. Thus, the 

UHF wave function of the cumulene ground state has the 

following form 
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Using (17) and (25) one can obtain the expression 

for the ground state energy 
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Atomic populations are defined as 
 

( ) ( ) 11
( 1)

2

   a bn n 

     ,             (27) 

 

where 

 

 

/2

1 2 2

0

2 2 1/2 2

1

2
[4 cos

] sin .





 
 



  

 
 

  

 dk k

k       (28) 

  

The analysis of (28) allows to reveal the depend-

ence of   on    
 

( 3.6 , 5.4 , 0.5   eV eV eV   [33]) 
 

1 2

3 1

0.16, 0.07,

0.13,... 0.11. ( 1)

 

   

 

              (29) 
  

Thus, as with the polyenes, the chain boundary in-

fluence on   sharply decreases when the distance from 

the chain boundary increases.  

We shall need further the equations for the coeffi-

cients (23), which can be obtained by proper transfor-

mation of (21), namely: 
 

( ) ( ) ( ) ( )

, , ,

1

( ) ( )

,1 , , ,

( ) ( ) ( ) ( )

, , ,

ˆ( ) ( , ) ( )
2

[(1 ) ( 1) (1 ) ( 1)]

[ ] ( ). (30)

  



   

     

 
      

    

    



 

 
     

      

   


N

i i UHF i

k k a a k a

i i

k a N k a

a b b i

k a

C H C

C C

n n n C

 

 

To obtain the equations for ( )

,

i

k bC   it is necessary to 

permute markings a and b in (30). 

Now let us consider cumulenes taking into ac-

count the end-effects. In the conformation A  with sym-

metry D2h the subsystem a contains N π-electrons and the 

subsystem b contains N – 2 π-electrons. In the confor-

mation 
A  with symmetry D2d both subsystems a and b 

contain the same N – 1 π-electrons. In passing from the 

long ideal no-end-groups cumulene to a real cumulene 

molecule with the end-groups some alterations in the 

equation (30) result due to the relative shift of the cu-

mulene π-electron subsystems a and b. Namely, the ef-

fective values of the Coulomb integrals are changed ac-

cording to 
 

( ) ( ) ( ) ( )

,

( ) ( ) ( ) ( )

,

,

.





   

   

a a b b

b b a a

n n n

n n n

    

    

    

                   (31) 
 

It follows from (31) and (29) that the effective 

Coulomb integrals of the end-atoms decrease by the value 
 

( ) ( ) ( ) ( ) ( )

1 1 1 1 4.7       i i i i i

N n n n eV         
 

without regard for a change in the interaction between σ- 

and π-electrons in passing from the long ideal no-end-

groups cumulene to real cumulene molecule. However, 

as long as the end carbon atoms of a cumulene molecule 

have the sp
2
 hybridization, one should expect that the 

absence of the Coulomb interaction between π-electrons 

at the end-atoms is compensated by an interaction be-

tween σ- and π-electrons. This point of view is supported 

by the fact that the first ionization potential of a carbon 

atom in the valence sp
2
 state coincides with that in the sp 

state within 10
–3

 eV [36]. On the other hand, the ex-

change interaction   does not appear to be compensated 
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for in this case. Thus, we shall assume that the change in 

the Coulomb integrals (31) at the end-atoms is 
( ) ( )

1| | | | 0.66 0.3    i i

N eV    . Let us consider the 

alteration of ( )i

  at the atoms next to the end-atoms. Using 

(29) and (31) one can obtain for the longer subsystem 
 

2 30.04 , 0.02       eV eV       , 
 

and for the shorter subsystem 
 

2 30.04 , 0.02       eV eV       . 
  

Thus, the end-effects in cumulenes are of a local 

nature and can be considered by means of the local per-

turbation theory, which was applied to long polyenes in 

the framework of the UHF method in [1].  

The ratio ( ) ( )| / | | | i i

     is a parameter which 

defines the relative magnitude of a local perturbation. It 

follows from evaluations given above that 
( )Max| | 0.08i

 , i. e. the perturbation due to the end-

effects in cumulenes is small enough. It was already 

shown in [1] that small local perturbation do not disturb 

the self-consistency of the UHF Hamiltonian (accurate 

within  ). Therefore, let us consider the electronic 

structure of cumulenes in the conformations A  and 
A  

neglecting the small alterations of the parameters ( )i

 . In 

one of the two conformations, namely 
A , each π-

subsystem a and b consists of an odd number of elec-

trons, being a long polyene radical. Nevertheless, it fol-

lows from the previous section of this paragraph that the 

energy spectra of long even polyenes and long polyene 

radicals are the same in the framework of the UHF (or 

EHF) method. Thus, in both conformations of a cumulene, 

its excited states are separated from the ground state with 

the gap 
12( )    in accordance with Eq. (21). 

Let us evaluate the difference between the ground 

state energy of a long cumulene chain in the confor-

mation A  and that in the conformation 
A : 

  E E E . The value of E  is usually referred to as 

the torsion barrier of cumulene end-groups. Using the 

relations (17) and (25), one can obtain 
 

(1) (1) (1)

2 1

2 2 2

1 1 2 1 1

[ ] [ ] 2 [ ]

( )[( ) ( ) 2( ) ],

  

  

 

 

 

    

      

  k N k N k N

k k k

N N N

E

N    (32) 
 

where (1)[ ] k N

k

 stands for k  changes from 0 to / 2  

spaced / ( 1)N  when summing up, 
1( ) N

 is the root 

of the equation 
 

1/2
/2

2 2 2 2

1

1

4 cos ( ) 1
1





   
     

  

N

i

i
N

  
  


. (33) 

  

In order to evaluate Eq. (32) it is important to note 

that if ( )f k  is a continuous function of k then 
 

2

1
2

1 1

       
          

        

a a a
f f f

N N N N
.   (34) 

It follows from Eqs (34), (21), and (33) that 

(1/ )  E N , i.e., the torsion barrier tends to zero when 

the cumulene is lengthened. From the mathematical point 

of view this result is due to the fact that the intervals be-

tween the levels occupied in the ground state are of 

1/ N  whether the cumulene subsystems a and b con-

sist of the even or odd number of π-electrons. 

Let us evaluate the influence of the small pertur-

bations ( ) i

  on the π-electronic structure of cumulenes. 

As we already know from § 5 in [1], small local pertur-

bations can give rise to local states in the forbidden zone 

of a system like long polyene chains. These local state 

energies differ from the nearest zone state energy by val-

ues 2a , where a is the width of the forbidden zone in 

the ideal cumulene chain. It means that in our case the 

forbidden zone width 
12( )    is not affected practi-

cally by the end-effects. It was also shown in § 5 in [1] 

that local perturbations placed at the large distance from 

one another do not interact. Hence it follows that the end-

effects in long cumulenes can not change the value of the 

torsion barrier. Indeed, the contributions into the ground 

state energy are additive relative to perturbations of at-

oms placed at the different ends of a long cumulene 

chain and, because of this, are the same whether the cu-

mulene is in the conformation A  or 
A .  

To study spin properties of cumulenes we should 

pass from the UHF method to the EHF approach. As it 

will be shown below, the SCF equations for systems con-

sisting of the large number of electrons are the same 

whether one uses the UHF or the EHF method. So, the 

orbitals ( )

,

i

k a  and ( )

,

i

k b  corresponding to the operators 

( )ˆ i

kA   and ( )ˆ i

kB   are also self-consistent ones in the EHF 

method. To put it another way, the Eqs (230) remain val-

id in spite of the fact that the values ( )in  given by (27) 

are not equal to the AO electron populations with σ-spin 

when the EHF method is used.  

Let us now consider the multiplicity of the cu-

mulene grounf state. Suppose the number of cumulene 

carbon atom to be even, i. e. 2N q . Then both cumulene 

subsystems a and b in the conformation A  consist of the 

even number of π-electrons N and N–2, respectively. 

Hence, the total spin projection for each of the two subsys-

tems in the ground state when all levels of both subsys-

tems are filled is equal to zero: 0 a bM M . Therefore, 

the cumulene ground state in the conformation A  is a 

singlet one (S = M = 0) and its EHF wave function, as will 

be shown below, has the following form 
 

( )

0
ˆ Â  EHF

A S M A AO   ,                 (35) 
 

where Â  is the antisymmetrization operator be specifi- 

ed later, 
 

(1) (1)

, ,
1 1

(1) (1)

, ,
1 1

( ) ( )

( ) ( ),

  

 

 
 

 
 

  

   

 

 

a b

a b

n n

A ai a i b
i i

m m

ai a i b
i i

i i n

i n i n m          (36) 



Фізико-математичні науки                                     Scientific Journal «ScienceRise» №6/2(11)2015 

 

 
130 

( ) ( )

, , , / ( 1),

(1) (2) ( ) ( 1) ( 2) ( ),

, ,

/ 2, 1.
2

  

     

   

    

i

l l

i j k i

A

a b a b

a a b b

k i N

n n n n m

m m m n n n

N
n m N n m

   

      

 (37) 

  

Let us now discuss the conformation 
A . Each of 

the cumulene subsystems a and b consists of the odd N – 

1 number of π-electrons and, consequently, possesses the 

total spin projection | | | | 1/ 2 a bM M . To determine the 

total spin projection of the cumulene  a bM M M  we 

shall consider the Eqs (19) taking into account the equiv-

alence of the equations of the UHF and EHF methods for 

large systems. ―Unpaired‖ electrons in the cumulene sub-

systems a and b occupy the levels involving / 2k   

and energies 
1( )     in both subsystems according to 

(19). It follows from the relation   a b
 and (19) that 

one-electron functions of these levels should have the 

same spin parts in the 

two different subsystems. 

Hence, a bM M  and the 

ground state of cumulene 

in the conformation 
A  

is a triplet. Its EHF wave 

function can be written as 
 

( )

1
ˆ Â , 

    EHF

A S M A AO  

 

where 
A  and 

A  are defined by Eqs (36) and (37) if 

the following relations are taken into account, namely: 
 

1 1 / 2.     a b a bn n m m N  

 

Let us pass now to the calculation of the AO spin 

populations in long cumulene chains. Using the Eqs (23) 

and (24) according to the UHF method one can obtain in 

the two conformations of cumulenes 
 

( )

1 1

/2

2 1 2 2

0

1

1

( )

2( )
( 1)

[ ] [sin sin ( 1)]

( 1) 2( ).







 

 

 



  

 











 
  

   

  



UHF

z

kdk k k

  
 (38) 

 

To obtain spin populations in the framework of 

the EHF method one should multiply (38) by the factor 

/ ( 1)S S  in accordance to the relation (52) below. So, 

the AO spin populations in long cumulene chains CNH4 

with an even number N vanish identically in the confor-

mation A . But, they differ from zero in the confor-

mation A  and are equal to 

 

( ) ( )

1 1

1

1
( ) ( )

2

( 1) ( ) 0.22 ( 1) . ( 1) 



 

     

EHF UHF

z z

 

 

   

  

 

3. 3. EHF and UHF Methods when Applied to 

Large Electronic Systems 
Before to give the final discussion for this para-

graph let us compare the UHF and EHF approaches as 

applied to large systems. The EHF wave function can be 

written as (see § 3 in [1]) 
 

( ) ( )

0 , 0 , 0 0
ˆ ˆ Â   EHF UHF

S M S MO O   ,        (39) 

where 
 

0 1 21 2

0

(1) (2) ( ) ( 1) ( 2) ( ),

(1) (2) ( ) ( 1) ( 2) ( ). (40)

      

      

    
    

     

mn
n n n N

n n n n m
 

,
ˆ

S MO  is the operator of the projection on the state with 

the multiplicity 2S + 1,  

ˆ ˆ( ) / 2, A  M n m 


   is the antisymmetrization 

operator. In the EHF method the ground state energy of a 

many electron system has the form 
 

 

where we have used the standard notations for the elec-

tron interaction integrals, 
1( , )S i j  and 

2 ( , )S i j  are the 

sums of some electron interaction integrals, 
 

[ (1 ) ] 
   i j i i iji j          ,     (42) 

 

if S M , then 
 

1

0

0

0

,

( ) | ,

( , ) | ,








 

 
   







i

i j

m J

p

p

x

x x

n
TIJ A

p I

TIJ i TIJ

TIJ i j TIJ

                   (43) 

 

1 2

1 2

2

( , ,..., )

( )

, ( )



   p

p

i j

p k k k k k

k k k

k k

A x x x x  ,     (44) 

 
 
 

n

k
 is the binomial coefficient. If the relations 

 

0 0 ( ) 0 ( , )
1,

00 00 00

( ) ( , )
0

00 00 00

  

  

T J T J i T J i j

T T T

TIJ TIJ i TIJ i j

T T T
               (45) 

 

are valid with , 1,2I J  then the expression (41) coin-

cides with 
( ) ( )

0 0
ˆ UHF UHFH , i.e. ( ) ( )

0 0UHF EHFE E . It is 

shown [37 – 39] that the relations (45) are valid for the 

limit case  n m  in the one-parameter AMO meth-

od ( , 0 1)  ix x x . In that case one may write 

 

1 12 12

1 1 1 2

( ) ( ) ( ) ( ) ( ) 1

0 0 0 0 0

1ˆ ˆ ˆ01( ) 21( , ) , , , ,
2

1 1ˆ ˆ, 11( ) , 11( ) 12( , ) ( , ) 22( , ) ( , )
2 2

ˆ / 00

 



  

     

      

  
  



   
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i ij

i i ij

EHF EHF EHF EHF EHF

i h i T i T i j i j g i j i j g j i

i h i T i i h i T i T i j S i j T i j S i j

E H T

   

 

         

   

,


 
 


 
  

 (41) 
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2

2

0 00 1/ (1 ),

1
1 ( 00),

1
2 ( 00),

( 1)
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




T J T x

d
T J T

m dx

d
T J T

m m dx
               (46) 

 

where | 
ix xTIJ TIJ . Let us evaluate the values of TIJ  

for the many-parameter AMO method and, therefore, for 

the EHF method. To do this let us reduce the expression 

(44) to the form 

 
  
 

p

p p

m
A t

p
, 

where 

1 2

1 2

1/

1

( , ,..., )

( )





 
  

   
  
 

 p

p

i j

p

p k k k

k k k

k k

m
t x x x

p
,         (47) 

 

Since, according to (42) 0 1 ix , then [40] 

 

1 2    mt t t .                         (48) 

 

Taking into account that all terms in (43) are posi-

tive and using (47) and (48) one can obtain 
 

1
| |  

mx t x tTIJ TIJ TIJ .                 (49) 

  

It follows from (46), (49), and (43) that the rela-

tions (45) are also valid in the framework of the multi-

parameter AMO method for the limit case  n m . 

Thus, the relation 
 

( ) ( )

0 0EHF UHFE E                             (50) 
 

is valid in general if the system under consideration 

consists of a large number of electrons. Besides, it 

follows from equation (50) that the SCF equations are 

the same in the EHF and UHF methods for this case. 

This can be proved directly through the use of the 

EHF (or the GF) equations (see § 3 in [1]) obtained by 

Goddard. 

As far as the EHF approximation, the spin density 

expression has the following form 
 

( ) ( ) ( )

0 0
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ˆ( ) 2 ( ) ( ) / 00
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i
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S
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in the analogous spin density expressions [41, 42] there 

seems to be a mistake in the coefficients in the last term 

in (51). 

Using (45) one can obtain from (51) for the case 

( )  N n m  
 

( ) 2 2

1 1

( )

( ) | ( ) | | ( ) |
1

( ).
1

  




 

 
   

  




 
n m

EHF

z ii
i i

UHF

z

S
R R R

S

S
R

S
 (52)  

 

For long polyene chain from (42) and (14) one  

obtains 
 

2 2 2 2cos / (cos )  k kx k k d ,                (53) 
 

where / 2 | | d   . Using (47) and (53) let us evaluate 

the values of 
1t  and 

mt  for this case, namely: 
 

/2

2 2 2

1

0

1 2
cos / (cos ) 0.77    k

k

t x dk k k d
m




, 

 

/2

2 2 2

0

1 2
ln ln ln[cos / (cos )]   m k

k

t x dk k k d
m




, (54) 

 

hence 
 

2 1[1 2 2 (1 )] 0.55    mt d d d .          (55) 
  

So far 
1 0t  and 0mt , then the relation (50) in 

case of polyenes immediately follows from (55), (46), 

and (49). So, the orbitals ( )i

k  are self-consistent ones in 

the framework of the EHF method as well as in the UHF 

method. The EHF spin density vanishes identically in 

long even polyenes (S = 0) and differs from zero in long 

polyene radicals (§ 4 in [1]) according to Eq. (52).  

Let us calculate the weight of the lowest multi-

plicity state with the normalized UHF wave function, 

namely 
 

2 1 2 1 1
00 2

1 1


 
 

 
S M

S S
T

n N x
 ,                (56) 

 

where 
1   mt x t . It is interesting to note that using the 

Gaussian approximation supposed by van Leuven [43, 

44] one can obtain 
 

1

0

10

(1 ) 2 1
exp sin

4 1





 
     
S

m t
d

N t
    .   (57) 

  

It follows from (57) that the Gaussian approximation 

gives the same value of 
S  as the approximation used for 

this purpose in [6]. Comparing (57) with the exact expres-

sion (56) one can see that the approximation (57) correctly 

reflects the asymptotic behaviour of 
S  when N  

(except for the constant). It should be noted that the relation 

(50) can be obtained also by means of the rotation group 

theory [43]. However, using this method we lose some im-

portant details, e. g. it is impossible to obtain the asymptotic 

form (52) for the spin density expression (51). 

Next let us discuss the excited states of long poly-

ene chains by means of the EHF method. Let us replace 

an orbital (1)

k  by (2)

k  in (239) and denote this ―configu-

ration‖ as 
( )

( ) EHF

k . In general the function 
( )

( ) EHF

k  is not 

orthogonal to ( )

0 EHF : 
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( ) ( ) 2

0 ( ) 11( ) 1    EHF EHF

k k kT k    .      (58) 

 

But, when N  it follows from (45) that 
 

( ) ( ) ( ) ( )

( ) 0 ( ) 0

( ) ( ) ( ) ( )

0 0 ( ) ( )

1
| 0

   
  

   

EHF EHF EHF EHF

k k

NEHF EHF EHF EHF

k k
N

 

 

. (59) 

  

So, the wave function ( )

( ) EHF

k  is asymptotically 

orthogonal to ( )

0 EHF  and may be used for a description 

of the excited state the energy 
 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) (2)

( ) 0

ˆ / 00

2 .

  

 

   

  

EHF EHF EHF

k k k

UHF UHF

k k

E H T

E E       (60) 

  

To summarize, the ground state energy, energies 

of the lowest excitations and the the SCF equations for 

large systems ( 1N ) are the same in the framework of 

the UHF and the EHF methods. Thus, to calculate the 

electronic structure of the system, which consists of large 

number of electrons, by the EHF method one may use the 

simple single determinant UHF wave function rather than 

the much more complicated EHF wave function (39). 
 

3. 4. Some Conclusions 

As already known the appearance of the forbidden 

gap of about 1 eV width in the optical spectra of long 

cumulene chains can be explained by means of the RHF 

method with the alternation of bond lengths being intro-

duced. However, the torsion barrier of the end groups of 

long cumulene chain does not vanish in this model. This 

fact seems unnatural as far as the end-groups CH2 of long 

cumulene chain CNH4 ( 1N ) are placed at the large 

distance from one another. On the other hand, the simple 

MO methods give 0( )  E N  for cumulenes with 

equal bond length. But in this case the first electronic 

transition frequency also tends to zero which contradicts 

the experiment.  

To put it another way, the assumption that the en-

ergy gap in the spectra of long cumulene chains is due to 

the bond alternation gives rise to the dependence of the 

gap value to the torsion barrier. The gap value is shown 

to be equal to the torsion barrier in this model [45]. From 

the mathematical point of view this correlation between 

the gap value and the torsion barrier results from neglect-

ing electron correlation. Indeed, if the long cumulene 

chain in the conformation 
2( ) dA D  involving the odd 

number of π-electrons in each of the two subsystems a 

and b is treated by means of the Huckel or the RHF 

methods, then in the spectrum of such chain there are two 

levels in the ground state which correspond to the zero 

values of one-electron energies, whether the bond alter-

nation is introduced or not.  

It is shown in this paragraph that the appear-

ance of the forbidden zone in spectra of long cumulene 

chains is not connected with the value of the torsion 

barrier in the framework of the EHF method in con-

trast to the simple models mentioned above. Further-

more, the EHF method gives zero value of the torsion 

barrier for long cumulenes with equal bond lengths. 

On the one hand, these results once more suggest the 

necessity for taking account of electron correlation 

when large conjugated systems are treated. On the 

other hand, we think that these results provide some 

further evidence for the correlation nature of the for-

bidden zone in spectra of long cumulene chains and, 

consequently, long polyene chains.  

 

4. Coexistence or Contradiction of the Peierls- 

and Mott-type Instabilities in Quasi-One-Dimensional 

Systems 

It has been first stated by Mott [46–54] that the 

one-dimensional array of atoms with a half-filled valence 

band should necessarily exhibit metal – dielectric transi-

tion as a result of increasing the lattice constant. Modern 

developments of the Mott instability have been reviewed 

in [54–56]. In such Mott-type dielectrics the lowest qua-

si-ionic excitations are separated from the ground state 

by the energy gap of the order   I A (I and A are 

being the ionization potential and electron affinity corre-

spondingly). The value of this important parameter 

should be ~10 eV in the case of isolated small atoms, but 

some factors in real systems like polarizability of the 

given elementary unit (CH2 group in polyenes, TCNQ 

fragment in charge transfer salts) or of the neighbouring 

elementary units [57] reduce this gap to 3 4   eV  for 

polyenes and up to 1  eV  in TCNQ chains. Further-

more, electron exchange at the real interatomic distances 

should be taken into account which results in the broad-

ening of previously highly degenerate ionic excited states 

to a conductance band of width 4 | | , where β being 

the resonance integral. In the case of / | | 1  , this 

does not change the spectrum qualitatively and even at 

real distances one gets the Mott-type dielectric at zero 

temperature. In the opposite case / | | 1  , the ex-

change broadening is larger than the energy gap which 

leads to the metal type structure of the excitation spec-

trum of the 3d-crystal. However, in the 1d-case such a 

structure is unstable with respect to nuclear displace-

ments of a special kind and the Peierls transition to the 

usual semiconducting state takes place [58–60]. As a 

result one gets an initially continuous band of allowed 

states split in two bands with a forbidden zone of the 

width 
1 2| |  , where 

1  and 
2  are exchange inte-

grals of the neighbouring bonds; no magnetic structure 

has to be expected.  

As it has been pointed out in [61], a close rela-

tionship exists between the so-called metal – insulator 

transition and the various instabilities of the conventional 

Hartree-Fock state which is associated with formation of 

the charge or spin density waves [62–73].  

The following question naturally arises: what will 

happen if | |  and   are of the same order of magni-

tude? Concerning some similar problems [74, 75] it has 

been supposed that the gap in the energy spectrum would 

arise from combined effects of two factors. Nevertheless, 

the opposite points of view have also been introduced 

[76, 77]. Let us mention here that the situation seems to 

be different for 1d- and 3d-systems; in the last case there 

is a strong evidence, both experimental and theoretical, 

in favour of coexistence of Peierls and Mott instabilities 
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[56]. In this paragraph the 1d-problem will be treated 

with generalization to consider finite temperatures. 

It should be mentioned that for both types of in-

stabilities the gap should be temperature dependent and 

should be equal to zero if the temperature raises above 

some critical temperature Tc. This may be qualitatively 

understood as follows. In the case of the Peierls transi-

tion, the width of the gap is determined by two subtle 

effects: lowering of the total energy due to the lowering 

of filled energy levels and raising the energy due to lat-

tice distortion. The energy minimum is reached at the 

definite distortion which determines the energy gap val-

ue. If the temperature is raised, some of the electrons 

pass to the band of excited states which results in two 

effects of the same sign: 

1) the energy gain due to the energy levels lowering 

becomes smaller because not all those levels are now filled; 

2) from the point of view of the excited electrons, 

decreasing the gap is preferable as it lowers their energy. 

Thus, the gap width   and the lattice distortion 

depend on the occupation n of the one-electron states, 

which in its turn depends on the temperature: 

 ( )   n T . 

Thus, at a higher temperature the gap becomes 

smaller, which makes it easier for the electrons to occupy 

excited states after the temperature rise and so on. It 

seems likely that the process is fast enough and at some 

Tc the gap vanishes. The quantitative treatment [59, 60] 

confirms this explanation.  

The situation is formally similar in the case of 

Mott semiconductors. In this case the creation of ionic 

excitation makes it easier for the electron at the neigh-

bouring atom to be excited also, i. e., the energy gap de-

pends on the electron distribution at the levels of the 

ground and excited states which, in turn, is temperature 

dependent.  

The method used below is simple and straightfor-

ward: the 1d-chain with lattice displacement x  of the 

kind of bond alternation will be considered using the 

SCF calculations allowing, in principle, to get the corre-

lation gap. The total energy or the free energy in the case 

of 0T  will be evaluated to investigate whether its min-

imum correspond to the nonzero values of both correla-

tion gap and the lattice distortion or whether only one of 

them may differ from zero for the 1d-system. 
 

4. 1. Peierls and Mott Instabilities at T=0
◦
 K 

We start with a Hamiltonian that differs from the 

Hubbard Hamiltonian in two points: the lattice distortion 

as the bond alternation is taken into account and the re-

pulsion of electrons when accounted for the neighbouring 

atoms 
12  is included, namely: 

 

1, 1,

12

1, 1, 1, 1,

ˆ ˆˆ

ˆ ˆ ˆ ˆ[ ( 1) ]( )

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ( ),
2

 



   



   

     





 





 

 

 

  

       



 

     

 

 









n n

n

n

n n n n

n

n n n n

n

n n n n n n

n

H A A

A A A A

U A A A A

A A A A A A  (61) 

where   is the Coulomb integral, U is the Hubbard pa-

rameter of the electron repulsion on the same atom, 
12  

accounts for electron repulsion on the nearest-

neighbouring atoms. The second term describes the Pei-

erls doubling of the unit cell. The first term will be omit-

ted in the following treatment bearing in mind that it re-

sults only in a trivial equal shift of all energy levels. 

The translational invariance of the Hamilton (61) 

may be used to reduce it to a more nearly diagonal form. 

Let us introduce the operators ˆ 
kB   and ˆ

kB  which create 

and annihilate, respectively, an electron in a state with 

quasi-momentum k and spin σ: 
 

1ˆ ˆ

, , 1, 2,..., .
1ˆ ˆ

   
 


    








ink

n k

k

ink

n k

k

A B e
nN

k n N
N

A B e
N

 

 


 (62) 

 

The usual anticommutation relations for the oper-

ators ˆ
kB   are obeyed 

 

ˆ ˆ ˆ ˆ[ , ] [ , ] 0,

ˆ ˆ[ , ] .

   

   

 

     



    

 



k k k k

k k kk

B B B B

B B             (63) 
 

The inverse relations are 
 

1 ˆˆ ,

1 ˆˆ .

 

 

 











ink

k n

n

ink

k n

n

B A e
N

B A e
N

                    (64) 

 

Transforming the Hamiltonian (62) to the new op-

erators, one obtains 
 

1 2 3 4

1 3 2 4

,

, ,

12

1 2

ˆ ˆ ˆ ˆ ˆ2 cos 2 sin

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ cos( ).

    

   

   

 



 



 

  



 



  

  

 

 

 





k k k k

k k

k q k k q k

k k q

k k k k

k k k k

H B B k i B B k

U
B B B B

N

B B B B k k
N

 (65) 

  

 

The quadratic part of the Hamiltonian is diagonal 

only for the regular lattice ( 0  ). In the alternating 

lattice ( 0  ) there are N/2 equivalent pairs of sites 

rather than N equivalent sites. Thus, a linear combination 

of the operators (64) is required to diagonalize the quad-

ratic part of the Hamiltonian. The energy spectrum 

breaks up into two bands, separated by a forbidden zone 

4  in width. We do not follow this procedure here 

because it is useless in treating the last two quartic inter-

acting terms in (65). 

To treat the full Hamiltonian , we have to simplify 

it in an appropriate way. We wish to obtain the self-

consistent solution of our problem. Thus, we shall reo-

lace some terms in the quartic part of the Hamiltonian by 

their average values. Bearing this in mind one can reduce 

(65) leaving only the terms we expect to have as nonzero 
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average values in the ground state we are looking for and 

omitting all the terms with zero ground state average. 

In the Hubbard term of (65) only two terms 

should be left: 

(i) the q=0 term, namely: 
 

ˆ ˆ ˆ ˆ 

 



 k k k k

k k

U
B B B B

N
    .                 (66) 

  

Assuming that in the ground state the average 

numbers of electrons with spin α and β are equal 

( / 2 n n N  ), and remembering that 

 

ˆ ˆˆ ˆ ˆ   k k n n

k n

B B A A n     , 

 

one may replace (66) by the C number / 4UN ; and (ii) 

the q=π term, namely: 
 

, ,
ˆ ˆ ˆ ˆ ˆ ˆ 

  


   k k k k

k k

U
B B B B UN

N
        ,       (67) 

 

where 

,

1ˆ ˆ ˆ

   k k

k

B B
N

    ,                     (68) 

 

and analogous expression for ̂ . 

To understand the physical meaning of the opera-

tor ̂ , let us return to the site operators ˆ
nA   and ˆ 

nA   

following Eq. (64). Then one obtains 
 

1 ˆ ˆˆ ( 1)    n

n n

n

A A
N

   .                  (69) 

  

Equation (69) evidently shows that ̂  is pro-

portional to the overall difference in the number of elec-

trons with spin σ at the even and odd atoms of the chain 

and differs from zero only if spin alternation at the 

neighbouring sites of the chain take place. Retaining this 

term makes it possible to account for the correlation con-

tribution to the energy gap or, in other words, to treat the 

Mott-type semiconductors, while, as it has been men-

tioned, the second term in (65) allows ua to consider the 

Peierls instability.  

In the last term of (65) we preserve the following 

four terms: 

(i) 
1 2k k , namely, 

 

1 1 3 3

1 3

12

, , ,

ˆ ˆ ˆ ˆ 





 k k k k

k k

B B B B
N

   
 


,               (70) 

 

which is merely a correction to the Hartree-type term 

discussed above, and in the ground state assumbed to be 

replacable by the C number 12N ; 

(ii) 1 4 2 3, k k k k , namely, 

 

1 1 2 2

1 2

12

1 2

, , ,

ˆ ˆ ˆ ˆ cos( ) 

 

 

  k k k k

k k

B B B B k k
N

   
 


,     (71) 

 

which is the usual exchange term; 

(iii) 1 2 k k  , namely, 

1 1 3 3

1 3

12

, ,

, , ,

ˆ ˆ ˆ ˆ 

  


  k k k k

k k

B B B B
N

     
 


,             (72) 

 

which is a Coulomb-type term connecting the states with 

impulses k  and k   (these states are already connect-

ed in the second term in Eqs (65) and (67), thus we con-

tinue to keep the terms of this kind); and finally 

(iv) 
1 4 k k  , namely, 

 

1 1 2 2

1 3

12

, , , , 1 2

, , ,

ˆ ˆ ˆ ˆ cos( ) 

  


  k k k k

k k

B B B B k k
N

     
 


, (73) 

 

which is an exchange-type term, connecting the k  and 

k   states. Writing 
1 2cos( )k k  as 

1 2sin sin k k  

1 2cos cos k k , and reffering to subsequent integration, 

one can reach further simplification of the Hamiltonian 

due to the fact that the ground-state everage of some 

terms appearing vanish, thus, 
 

,

ˆ ˆ ˆ ˆ, sin 0,

ˆ ˆ cos 0.

    

  
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


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

k k k k
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B B B B k

B B k
 

 

Introducing two new operators 
 

,

1ˆ ˆ ˆ sin ,

1 ˆ ˆˆ cos ,















k k

k

k k

k

B B k
N

B B k
N

   

  



                 (74) 

 

one ia able to rewrite the reduced Hamiltonian in the 

form 
 

2 2 212

12

ˆˆ ˆ2 2

2 ˆˆ ˆ ˆˆ( )
2



   


      

 

 

H

U

 
 

    
 

   


   .      (75) 

 

This reduced Hamiltonian is formally very similar 

to the reduced Hamiltonian solved in the Bardeen – 

Cooper – Schrieffer (BCS) theory of superconductivity. 

As has been proved by Bogolyubov [78, 79], its SCF 

solution for a large system ( N ) asymptotically 

coinsides with the exact one. Thus, what we have to do 

now is to solve the wave equation with Hamiltonian (75) 

using the SCF method. It seems to be convenient in our 

case to write the wave equation in the form of equation 

of motion. 

Let us use the standard Bogolyubov transfor-

mation 

,
ˆ ˆ ˆ

 k k k k kb U B V B                         (76) 
 

to define the new operators ˆ ˆ,

k kb b  , satisfying the equa-

tion of motion 
 

ˆ ˆˆ[ , ] k k kb H b   .                          (77) 
  

If the coefficients ,k kU V   in (76) are found to 

satisfy Eq. (77), then the transformation (77) diaginalize 

Hamiltonian (75). 

Requiring the new operators (76) to be of the 

Fermi-type 
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ˆ ˆ[ , ]

    k k kkb b    ,                       (78) 
 

one obtains the following relation for ,k kU V  : 
 

2 2| | | | 1 k kU V  .                         (79) 
  

Substituting Eqs (76) and (75) into (77), and per-

forming the calculations required using (78), one obtains 

the system of two nonlinear equations with respect to 

,k kU V  . Linearizing these equations, which corresponds 

to the SCF procedure, and using (79), one obtains the 

solution in the form 
 

22 2 2 2 2 1/2(4 cos 4 sin )     k k k U    , (80) 
 

2

22 2 2 2 2 1/2

2

22 2 2 2 2 1/2

1 cos
| | ,

2 (4 cos 4 sin )

1 cos
| | ,

2 (4 cos 4 sin )





 
   


   

k

k

k
U

k k U

k
V

k k U











 



 
 (81) 

 

where 

12

12

ˆ, ,
2 2

.





 
   

   

    

   

k

          (82) 
  

To make the solution complete, we have to calcu-

late  , ̂ , and  , where the everaging is im-

plied over the just found ground state, corresponding to 

all states 
k occupied with the minus sign in Eq. (80), 

i.e. the ground state has the form 
 

( )

0

1

ˆ 0 



 i

N

k

i

b ,                       (83) 

 

where the operators ( ) ˆ 

kb  are defined by Eqs (76) and 

(81) with the lower sign in (81).  

To perform the required calculations, one should 

express ˆ
kB   and 

,
ˆ

kB   in terms of the operators 

( ) ˆ 

kb and ( ) ˆ 

kb ; and after substituting them into (74) to 

average  , ˆ , and  over the ground state (83). Tak-

ing into account that only terms like ( ) ˆ

kb and ( ) ˆ 

kb  con-

tribute to the ground state average values, one obtains the 

following system of coupled integral equations with re-

spect to  , ̂ , and  : 

 

/ 2

22 2
0

1

/2 2

12

22 2
0

1

/2 2

12

22 2
0

1,

( )

2 cos
1 ,

( )

2 sin
1 ,

( )







 

 
  
    

 
    
    







U dk

k U

k dk

k U

k dk

k U













 


 

 


 

 
 (84) 

 

where 

2 2 2 2 2( ) 4( cos sin ). k k k    
  

This system of equations may be solved iterative-

ly, but in the usually assumed case of 
12 ,U  it 

breaks into 

, ,        

and 
/2

22 2
0

1,

( )



 


U dk

k U




 

                 (85) 

 

where 
2 2 2

1 2 1 2

1 2

( ) 2 cos2 ,

1 1
, ,

2 2

  

     

k k    

     
 

 

the last equation being the gap equation that, in the case 

of the regular chain structure (no bond alternation), trans-

forms to equation for the correlation gap [33] 
 

/2

22 2 2
0

1

4 cos



 


U dk

k U




 

.         (86) 

  

As has been stated in [87], Eq. (86) has a nonzero 

solution 0   for all values of the parameters, which 

we will denote as 
0 . 

Let us now return to the general case of Eq. (85), 

assuming that 
 

0( )  xx e    , 
 

where x denotes displacement from the regular, 

equal-bond configuration. Thus, Eq. (85) may be re-

written as 
 

/2

22 2 2 2
0

1 2 0

1

( ) 4 cos



   


U dk

k U




   

. (87) 

  

Comparing (87) with (86) one easily concludes 

that if 
0  is the solution of (86) then the solution of (87) 

is given by 
 

2 22 2 2

1 2 0
2 ( )    U U   , 

 

so that 
2

2 2 1 2

0

1

2

 
     

 U
 

 
.              (88) 

 

We are now in a position to turn to the final step 

of the treatment, namely, calculation of the total energy 

and minimization of it with respect to x . 

Substituting Eqs (75) and (80)–(83) into the usual 

expression for the total electronic energy in the ground 

state 
 

0 0
ˆelE H  , 

 

one obtains 
 

2

4
   el k

k

U
E U .                  (89) 
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It is important to recognize that according to (80) 

and (88) 
 

2

1 2( ) /k U    
 

is independent on x  because the only term containing 

this dependence cancels in the expression for 
k . Thus, 

assuming x  to be small, which results in 
1 2  x   , 

one can rewrite (89) in the form 
 

2

0 1( ) elE E E x .                     (90) 
 

Adding the core deformation energy 
 

21
( )

2
coreE к x , 

 

one obtains the total energy of the chain in the form 
 

2

0 ( ) E E x  .                       (91) 
  

This expression, when minimized with respect to 

x , gives us a solution 0x  only in the case 
 

1

1
0

2
  E к , 

 

which obviously corresponds to a vanishing bond corre-

lation and to the energy gap (86) of the pure ―correla-

tion‖ type. 

In the opposite case of 0 , the total energy 

does not exibit a minimum at all, decreasing formally  

to    when x  increases. Nevertheless, taking into 

account (88), one can see that for some x  and corre-

sponding 
1 2  , value of 2  becomes negative, 

which evidently means that our solution fails completely. 

Here we should remember that apart from the solution 

described by Eqs. (84) and (86), which is the non-trivial 

solution of the UHF SCF equations, we always have the 

trivial solution 0  , corresponding to the usual HF 

SCF procedure. We have used the non-trivial solution in 

the case of the regular chain structure (no alternation) 

because in this case it corresponds to a lower energy than 

the trivial solution [61]. However, for 0  this non-

trivial solution does not minimize the total energy, and 

for some x  in the process of its increasing we get 

0  ; at this point we should jump to the trivial solution 

because the non-trivial one ceases to exist. Hence, in this 

case we have an alternating-bond chain with a vanishing 

( 0  ) contribution of the Mott-type correlation to the 

creation of the energy gap; while the gap due to the bond 

alternation should be calculated in a quite different way 

[58–60]. The results is well known: in the absence of the 

Mott-type contribution, the Peierls-type transition to a 

semiconducting state necessarily takes place, and the gap 

obtained can be approximately calculated as 
 

/2

08   к

alt e  .                        (92) 
  

Therefore, at least at zero temperature the picture 

is clear: depending on the numerical values of the param-

eters involved the quasi-one-dimensional chain repre-

sents either a Mott-type or a Peierls-type semiconductor, 

but not their combination, and the choice should be done 

by comparison of the total energies of both states. 

Roughly speaking, it may be stated that the real state is 

the state with the larger gap calculated neglecting the 

possibility of the other state available. In fact, in addition 

to the criterion | |U   mentioned above for the Mott 

metal – dielectric transition, one more criterion should be 

formulated determining the value of the gap arised due to 

Peierls instability. However, it is evident that if we have 

| |U  , then the correlation gap is large, ca. U, very 

likely larger than the gap due to the lattice distortion, and 

the situation is reversed for | |U  . 

 

4. 2. Finite Temperatures 
Let us now consider the same question of the pos-

sible combined nature of the energy gap in the case of a 

finite temperature. Only the general method of calcula-

tions and the final results will be presented below. For 

details of calculations see [59].  

To get the temperature dependence of all the val-

ues we are interested in the following procedure may be 

proposed: in all equations used the average over the 

ground state should be replaced by statistical average 

calculated as 
ˆ ˆ/ /ˆ ˆ /  H kT H kTA SpAe Spe .                 (93) 

  

Bearing in mind that the Hamiltonian expressed in 

terms of the operators ˆ ˆ,k kb b  at (76) – (82) is diagonal, 

standard equation (93) is reduced to 
 

,

,

ˆ ˆ( ) k l

k l

A T kl A kl   ,              (94)  

where 
k l is the average number of particles in the state 

(k,l) with k stands for the quasi-impulse and l – for the 

zone number. During all transformations the Fermi char-

acter of quasi-particles has been required (see Eq. (78)), 

hence 
 

1

, , ,( ) {exp[ / ] 1} ,  k l k l k l kT kT       .    (95) 
  

For the temperature dependent energy gap playing 

a central role in all the treatment using Eqs (78) and (94) 

one obtains 
 

,

1 ˆ ˆ

   kl k k

kl

B B
N

    .              (96) 

  

Substituting Eqs (95) and (76)–(80) into (96) and 

performing the calculations required which are very simi-

lar to those leading to (85) one obtains the following 

equation determining ( ) T , namely: 
 

0

th ( ) /2
1

2 ( )


U E k kT
dk

E k




,                   (97) 

 

where 
2 2 1/2

2 2 2 2

1 2 0

( ) [( ) ( )] ,

( ) ( ) 4 cos .



   

  

  

E k U k

k k             (98) 
 

Introducing the density of states, one can trans-

form (97) into the form 
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2 2

2 2 2 2 2

th /2
1






   


F

U kT
d





   

,        (99) 

 

where the same assumption 
0( )  xx e     and notation 

0| |F   have been used, but now 
 

22 2

1 2| |      .                 (100) 
  

Equation (99) may be considered in the same way 

as it has been done concerning Eq. (87). The one-electron 

energy levels which are now temperature dependent are 

also independent on x  and all the discussion following 

Eq. (91) may be repeated leading to the same conclusions 

at the finite temperature as were arrived at in the case of 

zero temperatute.  

Let us now note that if our system is a Mott-type 

semiconductor with 
1 2( ) 0    and 0  , then 

Eq. (99) becomes similar to the Peierls gap in the chain 

with bond alternation, namely, both of them are BCS-

type gaps in superconductors. Unfortunately this does not 

provide us much information on the nature of metal – 

Mott semiconductor phase transition because low-lying 

triplet and singlet excitations should be taken into ac-

count before one treats the quasi-ionic states with higher 

energies; but only these later states may be considered 

using the standard UHF procedure. 

 

5. Coexistence of Mott and Peierls Instabilities 

in Quasi-One-Dimensional Systems 
The quasi-one-dimensional conductors have so far 

being studied are of interest for both theoreticiants and 

experimentators. This interest, on the one hand, is due to 

advances in synthesis of polyacetylene (PA), polydi-

acetylene (PDA), organic crystalline conductors based on 

molecular donors and acceptors of electrons. On the oth-

er hand, 1d-conductors are nontrivial systems. Thus, 1d-

metal is unstable to the transition into semiconducting 

state. As a result the 1d-metal with half-filled conduction 

band becomes the Mott semiconductor or Peierls semi-

conductor. The Peierls transition leads to dimerization of 

the uniform regular 1d lattice (bond alternation) and sem-

iconducting energy gap is proportional to the dimeriza-

tion amplitude. The Mott transition is a result of electron 

correlation and energy gap in the Mott semiconductor 

vanishes with decreasing electron – electron interaction 

strength. The semiconductor of the Mott and Peierls type 

possesses some interesting properties. For example, the 

Mott semiconductors are characterized by antiferromag-

netic structures [80], and in the Peierls semiconductors 

the kink-type excitations are possible [81, 82].  

The influence of the Mott and Peierls instabilities 

on the properties of real quasi-one-dimensional systems 

have already long story. The main problem in theoretical 

studies consists in complications related to correct ac-

count of electron correlation effects. In ealier papers con-

tradiction of the Mott and Peierls transitions was usually 

stated. Then it was shown that this contradiction is a re-

sult of one-electron approach in the RHF theory. The 

conclusion that the Mott and Peierls transitions coexist 

one with another was first made in [83]. This result was 

obtained due to more correct treatment of pair electron 

correlations using varying localized geminals (VLG) 

approach [84–86]. It was shown that electron – electron 

interaction can enhance the Peierls dimerization [83]. 

This somewhat surprising result initiates several theoreti-

cal studies [87–92] which conformed the conclusion that 

even account for a small electron – electron interaction 

leads to increase in dimerization. This conclusion has 

been received on the basis of perturbation theory for infi-

nite chains using computations [90] and the Feynman 

diagram technique [91]. Numerical calculations of short 

polyene chains within the same geminals approach con-

formed this result slightly deformed by boundary condi-

tions [83].  

Thus, we can state now that the theory predicts 

coexistence of the Mott and Peierls instabilities in real 

systems. So, the experimental data on 1d-systems should 

not correspond to the simple picture of the Peierls or the 

Mott semiconductors. One must expore the more compli-

cated theoretical model including the both phenomena. 

On this way only one can give correct description of real 

1d materials. For example, we can now give the correct 

answer to the question what mechanism of the forbidden 

gap formation is more essential – the electron correlation 

or dimerization. 

In this paragraph we shall study now the simulta-

neous effect of the Mott and Peierls instabilities on elec-

tronic spectra and lattice distortion in real 1d conductors 

such as organic donor – acceptor molecular crystals and 

conjugated polymers of PA type. These studies are based 

on the VLG approach [83–86]. 

 

5. 1. The Method of Calculations and Qualita-

tive Evaluations 
Studying the electronic properties of organic 1d 

materials the following model of uniform chain with the 

adiabatic Hamiltonian is used: 

 

1, 1,

, 1

2

1 1 1

ˆ ˆ ˆ ˆ ˆ( )

ˆ ˆ ˆ ˆ

( ) ,
2

   











 

 



 

  

 

  

 

  





 

N

m m m m m

m

m mm m
m

m m m m

m m

H c c c c

c c c c

K
n n x x        (101) 

 

where ˆ ˆm m mn c c   , number of sites N , 
mx  is the 

mth site displacement, resonance integrals 
 

1[ ( ) ] (1 ),

, 0,

   

 

       



m m m mx x

 (102) 

 

  and   are the electron repulsion parameters, K is 

the lattice elasticity constant. 

Treatment below will be restricted by the most in-

teresting case of half-filled conduction band with the 

number of electrons eN N . The Peierls deformation in 

this case reduces to the chain dimerization 
 

1 0( 1) , [1 ( 1) ]        m m

m m mx x x   .    (103) 
  

The experimental values of displacements 
0x  are 

small as compared to the lattice constant a. For example, 
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in PA 
0 0.07x A  and a=1.395 A [80, 93], for [K

+
–

TCNQ] complexes 
0 0.18x A  and a = 3.6 A [94]. For 

small values of 
0x  the linear dependence 

 

0


  x




                                (104) 

 

is valid. The increase of displacement 
0 x a  destroys 

the relation (104) as well as the harmonic adiabatic ap-

proach used in (101). Thus, the method used here is valid 

only for small values of 1 . 

In this region Hamiltonian (101) is the Frohlich-

type Hamiltonian with linear relative to displacements 

mx  electron – phonon interaction. 

Thus, when 1  the adiabatic approach is good 

enough and the problem of 1d instabilities is reduced to 

studying the ground state energy dependence on the val-

ue of  (104). In other words, we need the ∆-value opti-

mizing the expression 
 

21
( ) ( )

2


   t el

к
  ,                   (105) 

 

where 
el  is the electronic contribution into the ground 

state energy per an electron pair, and 
 

2( ) / (2 )к K  .                      (106) 
 

is the constant of electron – phonon interaction.  

In order to calculate the electronic contribution in-

to the ground state energy mentioned above the VLG 

approach will be used. The ground state wave function 

has the form 
 

0

1 1

ˆ ˆ ˆ ˆˆ 0 ( ) 0    

   
 

    
M M

m m m m m
m m

G u f f v f f , (107) 

 

where 
 

  

| |

| |

2ˆ ˆ ,

2ˆ ˆ
,

 

 

















m

F

m

F

ikR

m k

k K

ikR

m k

k K

f A e
N

f A e
N

          
 (108) 

 

ˆ cos sin ,

ˆ
cos sin ,

 

 

k k k kk

k k k kk

A a a i

A a a i

  

 

 

              (109) 

 

1

1 



 
N

ikna

k n

n

a c e
N

  ,                 (110) 

 

cos , sin , u v                    (111) 
 

2 arctan( tg ), 2 / ,

( 0, 1, 2,...)

   

  

k ka k l Na

l       (112) 
 

  and   are the variational parameters, the Fermi oper-

ators ˆ
mf   and ˆ

mf   correspond to the orbitals mf   and 

mf   which are partially localized near points 

(2 ) mR m a .                        (113) 
 

The ground state energy in units of   per elec-

tron pair has the form 
 

2 2

0 1

2
2 cos2 sin 2 ( | | )cos 2   el l

l

t k v P
N

    , (114) 

 

where the kinetic energy average 
 

[1 ( 1) ] ( ) ( 1)

ˆ ˆ0 0 ,

     



 m

m m

m

m m

t f n f n

f T f      
 (115) 

 

1, 1,
ˆ ˆ ˆ ˆ ˆ( ), 

   m m m m

m

T c c c c              (116) 

the exchange integral 
 

4 2 2

0 1 0 0

ˆ ˆ ˆ0 0

| ( ) | | ( ) | | ( 1) | ,

 

   
 

    

eem m m m

n n

K f f V f f

U f n U f n f n  (117) 

 

1 1/ , / , U U     
 

average of non-diagonal density or bond order 
 

0 1, 1, 0
ˆ ˆ ˆ ˆ

( ) ( 1)

1
( 1) ln cos2 .

4

   


 

 

 

 



    

  

 
   
 



l l l l l

m m

m

l

P c c c c

f l f l

            (118) 

  

Now we consider the Hubbard approach 
1 0  in 

(101). Then, variation of the energy (314) with respect to 

  gives 

/ 2,  el g U                        (119)  

where 

2 24 . g t K                        (120) 
 

The values of , ,t K P  depend on the value of   

[83, 90], so 
 

2
24 (1 )

( ) (1 ) (4 ) ,
  

     
 

E
t E x


 

 
     (121) 

 

where the ( )E x  is the elliptic integral. 

The explicit form of λ-dependence of K 
 

( ) Const ln .
3

   
U

K                  (122) 

 

can be obtained in the limit of small  . We can see from 

(122) that when   and, as a result, U are small the ener-

gy dependence (120) on   is nonanalytic. Thus, we can 

suppose strong dependence of U on 0  which minimizes 

the total energy. Results of numerical study of U on   

will be given below. Now the evaluation of asymptotic 

behaviour in two limiting cases 0U  and U  will 

be given. 

When 0U  the non-interacting-electron model 

is valid and the energy is defined by the value of (121) 
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and its optimization with respect to   gives   . The 

energy minimum corresponds to 
 

0 04exp( / 8 ) |    Uк                (123) 
 

due to the fact that [83] 
 

2 24 2 4
2 ln .

2

  
    

 
t

к


 
            (124) 

 

When 4U  one can use the simpler approach 

instead of (112), namely: 
 

.k k                            (125) 
 

Using (325) one obtains [84, 85] 
 

2

4 cos
( ) ,

1 4
 


t

 


 
 

 

1
( ) 1 sin .

3 2

 
  

 

U
K     

 

Substituting ( )t   and ( )K   in (119) and (105) 

and optimizing   one obtains 
 

0 2

8 4
1 .
 

   
 

к

U U
                     (126) 

  

We note that Eqs (121 ), (122 ), and (119) de-

scribe well the dependence of the total energy on U for 

any value of U>0 [84, 85]. But, the correct description of 

the Peierls instability near the point U = 0 needs more 

precise relations due to the fact that the Peierls instability 

results from a logarithmic term. The latter just lost when 

passing from (112) to (125) [83].  

Now we consider the effect of electron – electron 

interaction at neighboring sites resulting from the terms 

with 
1  in (101). One can conclude from (114) and (118) 

that γ1-term increases the amplitude of dimerization. In 

the limiting case of weak interactions 
1 0 U U  one 

obtains 
 

1

1

0 1 0 0 2

1

2

( ) | exp( )
24

4exp( ) exp( ).
8 24





    

  

U

U
U

к

U

к к
              (127) 

 

Thus, we can see an exponential increase of 
0  

with 
1 0U . 

In order to define the optimal value of 
0  we 

have to look for the minimum of the energy (105) taking 

into account (119) in the space of 
0  and λ variables, 

namely:  
 

2
2 2 1/2( , , ) [4 ( , ) ( , )] ,

2


     E U t K U

к
    (128) 

 

where t and K are defined by (115) and (117), respective-

ly. This task is not too complicated, but when 1U  

some difficulties arise with the increase of the chain 

length due to the logarithmic ∆-dependence of the elec-

tronic energies in (119) and (124). As a result we cannot 

use the standard method of quantum-chemical optimiza-

tion of the bond lengths. This method is based on the 

linear relations between bond length and bond order re-

sulting from the energy expansion 
 

2

0

1
( ) ,

2
           

 

where 

1( ), ,


    l l l

l

P x x K
N




   

 

and, as a result, 

0 .


  lP

N K


                             (129) 

  

Some calculations of PA chains based on formula 

(129) were performed. It was found that even for com-

paratively long chains with N = 70 the difference   be-

tween 
Nt  and 

t  is just a few units of 410 . The Peierls 

contribution into the ground state energy 2 ln   when 

0.01   is of the same order. 

Let us consider now the contribution of dimeriza-

tion and correlation effects in optical spectra of such or-

ganic materials like PA and PDA. For these conjugated 

polymers one can use the following parameter values: 
22.4 , 4 / , 47 /  eV eV A K eV A   [95]. These val-

ues are consistent with the parameters available for small 

conjugated molecules [55, 95] and with frequencies of 

vibrations active in IR and Raman spectra of PA [95]. 

Using these values of parameters one obtains from (106) 

that 0.07к . It means that we are in the region of 

strong dependence of U on 
0 . 

Now let us calculate the dielectric gap E . Ac-

cording to [86] one can write 
 

2 2

02[ (1 ) ],    g kE t U T U           (130) 
 

where 

 ikm

k n n m

m

T e f T f . 

  

The gap value (130) consists of two contributions: 

correlation contribution  corrE  and dimerization contri-

bution 
dimE . When U is small one can assume 

 

0 dim 02 2 , 4 ,     corr gE t E   

 

where 
g  is determined by (120) and 

0t  – by (121 ). 

The dependence of correlation  corrE  and dimeri-

zation contributions dimE  on the value of U is shown on 

Fig. 1. 

It follows from fig. 1 that the dimerization contri-

bution 
dimE  to the forbidden zone E  exceeds the cor-

relation contribution  corrE  when 2 3 U . This fact is 

due to the strong dependence (126) of 
0  on U. Using 

data of Fig. 1 one can now reevaluate the parameters of 

real organic conductors.  

We can conclude from experimental data for 

trans-PA that 1.9 E eV [95]. Using the estimation of 
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the electron – phonon interaction constant 0.07к  

above one obtains 2.5U , thus 6.2 eV . It is inter-

esting to note that in this region, according to Fig. 1, 

dim  corrE E . Nearly the same situation occurs in PDA 

where 2.5 E eV . 

 
 

Fig. 1. The U-dependence of the energy gap in electronic 

spectra of the Mott – Peierls semiconductors like PA or 

PDA: ■ – 
dimE , ○ –  corrE ,   – E  

 

Now using data of Fig. 1 one can also easily un-

derstand why there are some differences in evaluation of 

correlation and dimerization contributions to the gap val-

ue. Namely, in the region of intermediate values 

1 4 U  the  corrE  sharply increases, exceeding 
dimE  

after U = 3. Thus, the values of , 0.1U к  are strongly 

dependent on small perturbations such as the boundary 

conditions or chain length. 

In such organic materials like [K+-TCNQ] we have 

instead 0.9 , 0.05, 0.15 ,   E eV к t eV  which gives 

6U . Thus, the correlation contribution into E  is domi-

nant and one can use (126) for the evaluation of 
0 .  

One can conclude as well that the agreement of 

the calculated values of 
0  or 

0x  in (104) can be obtained 

by different approaches. But it needs different values of 

parameters , , , K    which depend on the model used in 

calculations of short or infinite chains as well as also chains 

with cyclic boundary conditions. Giving preference to either 

calculation model one must bare in mind different experi-

mental data, not only the values of 
0 . 

 

6. Conclusions & Perspectives 
Advances in physics and chemistry of low-

dimensional electron systems have been magnificent in 

the last few dacades. Hundreds of quasi-1d and quasi-2d 

systems have been synthesized and studied experimentally 

and theoretically. The unusual properties of these materials 

attract attention of physicists, chemists, and engineers. 

The most popular representatives of real quasi-1d 

materials are polyacethylenes [55] and conducting do- 

nor – acceptor molecular crystals TTF-TCNQ [96]. One 

of the promising families of quasi-2d systems are new 

high temperature superconductors (HTSC) based on 

cooper oxides La2CuO4, YBa2Cu3O6+y [97] and organic 

superconductors based on BEDT-TTF molecules [98].  

Quantum processes in low-dimensional systems 

are characterized by a number of peculiarities. Thus, spe-

cial and new theoretical approaches have been developed 

to study low-dimensional phenomena. We will be con-

cerned further mostly with the 1d-systems. In one-

dimensional physics and chemistry there is a number of 

difficulties and some of them are far from being over-

come. On the one hand, equations of motion for 1d-

systems are much simpler. This facilitates rigorous solu-

tions of the model problems which are often impeded in 

case of the larger number of dimensions. On the other 

hand, manifestations of various interactions in 1d-

systems are rather peculiar. This relates, in particular, to 

electron – electron and electron – phonon interactions. 

The standard perturbation theory is inapplicable for treat-

ing both interactions. Thus, electron – phonon interaction 

leads to the field localization of electron excitation in 1d-

systems which results in soliton excitations and the Pei-

erls deformations. Calculations of soliton excitation can 

not be done by decomposition in the series of electron – 

phonon coupling constants. 

Electron – electron interactions, even within the limit 

of a weak coupling constant, produces an energy gap in the 

spectrum od 1d-metal which initiate the Mott transition 

from metal to semiconducting state. In this case the standard 

perturbation theory is also not applicable. 

Similar situation occurs in 1d-systems with re-

spect to electron – impurity interactions. Started by Mott 

and Twose theoretical studies of this problem show that 

all one-electron states in 1d disordered system are local-

ized and, as a result, cannot be calculated using the per-

turbation theory. State localization turns the direct cur-

rent conductivity into zero.  

Inapplycability of the perturbation theory is one of 

the main difficulties on the way to succeed in the theory 

of quasi-1d-systems. These difficulties were being partly 

surpassed in different ways. 

Regardling electron – phonon interaction the most 

fruitful method is to reduce the set of corresponding 

equations into a completely integrable system like the 

nonlinear Schrodinger equation, the sine-Gordon equa-

tion, and others. 

Advances in description of electron – electron in-

teractions turned out to be less pronounced however. The 

major reason for it lies in the well known complications 

of the many-electron theory for systems with an infinite-

ly large number of electrons.  

Traditional quantum chemistry as one of the many 

applications of the general theory of many-electron sys-

tems is based upon the Hartee – Fock approximation 

which came first as ―the word came first‖. Then various 

many-electron theories being developed where the wave 

function were not represented by one Slater determinant 

rather then an infinite series of the determinants. If the 

number of particles in the system grows as N  then 

the number of terms in this  

infinite series must increase at least as aNe , where a is a 

constant 1 . This particular infinite complication of the 

theory is the main hindrance in it wide applications in 

calculations. It is time now to say that these difficulties 

are often being considerably exaggerated. As a rule, hav-

ing analyzed the Hamiltonian of the system under study 



Фізико-математичні науки                                      Scientific Journal «ScienceRise» №6/2(11)2015 

  

 
141 

using the many-electron theory one can reduce the prob-

lem to a simpler Hamiltonian or without any loss in qual-

ity construct multicinfigurational wave function of the 

system which can be factorized into an antisymmetrized 

product of one- or two-electron functions. As approxima-

tions for a wave function, besides the EHF approxima-

tion described in details in § 3 in [1], the spinless fermion 

approximation in case of strong interactions and the VLG 

approximation described in previous paragraph can be 

mentioned.  

In the EHF and spinless fermion approaches a 

many-electron wave function is finally factorized into the 

product of one-electron functions (orbitals), but in the 

VLG approach the factorization into the product of two-

electron functions (geminals) is performed. 

Now we draw attention to another aspect of the 

theory of quasi-1d electron systems. Real systems with 

one-dimensional anisotropy are, in fact, three-

dimensional. In case of a theoretical study it is expedient 

to mentally separate a 1d-system out of the real system 

using its specific properties. This separation of a quasi-

1d-subsystem goes naturally through analysis of the total 

Hamiltonian represented by the sum 
 

,

1ˆ ˆ ˆ
2

  n nm

n n m

H H V ,                   (131) 

 

where ˆ
nH  is the Hamiltonian of a n-th quasi-1d subsys-

tem (filaments, needles, chains, stacks, etc), and the op-

erators ˆ
nmV  describe its interactions with other quasi-1d 

subsystems.  

Further it is usually assumed that the interaction 

operators do not include terms responsible for electron 

exchange between separate quasi-1d subsystems. Namely 

this predetermines the subdivision of the Hamiltonian 

into the sum (131). This approximation provides satisfac-

tory description of PAs, donor – acceptor molecular con-

ducting crystals as well as many other quasi-1d electron 

systems.  

Before we consider particular expressions for the 

Hamiltonians for electron – phonon systems under study 

it is worthwhile to note the following. Most processes in 

quasi-1d systems are determined by the energy spectrum 

and the nature of elementary excitations. The low-energy 

region of the spectrum is mainly related to a small part of 

the total number of electrons in the system under study. 

This facilitates a rigorous enough description of electron 

processes occurring in these systems. As example, most 

interesting properties of polyenes, cumulenes, and polya-

cethylenes originate from the π-electron number equals 

or proportional to the number of carbon atoms and essen-

tially less than the total number of all electrons in the 

system. Studying the most significant properties of do- 

nor – acceptor molecular conducting crystals it is suffi-

cient to consider one electron only per a donor – acceptor 

pair. In case of TTF-TCNQ crystal it means that only one 

electron out of 208 is to be considered.  

Despite of the simplifications mentioned above 

we are still have to restrict ourselves with semi-empirical 

models of quantum chemistry. For example, the well 

known Huckel – Pople (HP) Hamiltonian 

 

ˆ ˆ ˆ ˆˆ

1 ˆ ˆ ˆ ˆ
2

 

 



 

  



  



 



m m mm m m

m mm

mm m m m m

mm

H C C C C

C C C C

   


   


 

        (132) 

 

is very popular and useful to study many properties of 

molecules with conjugated bonds. 

As a rule, it is sufficient in (132) to account for 

resonance interaction (so called electron hopping) for the 

adjacent atoms only, namely: 
 

, 1( )   mm mm m mR   .                  (133) 
  

As far as the electron interaction in (132) is con-

serned only the first several terms are usually accounted 

for. As an example, in the Hubbard – Anderson (HA) 

Hamiltonian 
 

0mn mn   .                            (134)  
 

Interaction between two neighbouring atoms is 

only often used: 
 

0

1 1,

,

.


 


mn

mn

m n

 


 
                         (135) 

  

Accounting for the bond distance dependence of 

the resonance integrals it is often sufficient to use only 

the first term of the β-function expansion in the vicinity 

of 
0 1.397R A  which corresponds to the C꞊C bond 

length in benzene 
 

0 0( ) ( )   R R R   .                (136)  
 

To account for vibrational degrees of freedom the 

phonon Hamiltonian 
 

1ˆ ˆ ˆ( )
2

 ph ki ki ki

ki

H B B               (137) 

 

is added to (132), where ˆ 
kiB  is a phonon creation opera-

tor for the ith mode with a quasimomentum k. Starting 

from (136), the operator of electron – phonon subsystem 

interactions may be chosen as suggested by Frohlich 
 

/ , , , ,
ˆ ˆˆ ˆ ˆ( ) 

  e ph qi q i q i k k q

kq

H B B A A           (138) 

 

where a constant   is proportional to the   derivative 

with respect to R, that is   in (136). Like in other cases, 

for quasi-1d systems it is often sufficient to use only the 

classical form of the phonon part of the Hamiltonian 
 

2 2

1,

1 1ˆ ( ) ,
2 2

   ph i mi i mi m i

mi mi

H M R K R R      (139) 

 

and 

/ 0 1,
ˆ ˆˆ ( ) ( . .)


  e ph m m

m

H R R C C h c 


 .   (140) 

  

The Hamiltonian (132) together with the expres-

sions for the matrix elements (133)–(136) allows us to 

consider the properties of materials based on conjugated 

polymers and of donor – acceptor molecular crystals with 
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quasi-1d conductivity such as the crystals based on TTF-

TCNQ and their derivatives like TSF, TST, and HTSC 

[55, 96–98].  

The greatest interest with respect to newly synthe-

sized quasi-1d and quasi-2d systems is attached to the 

compounds with high electric conductivity. But on the 

way to create good organic conductors the investigators 

encounter difficulties of not only technical but principal 

nature which relates to an electron instability of a con-

ducting state. Their most important peculiarity lies in the 

fact that a metallic state of a quasi-1d crystal is unstable 

with respect to a transition into a dielectric or semicon-

ductive state. The character of instability and its force 

strength which determines the metal – insulator transition 

temperature depends on structural features of the crystal.  

Let us consider a system consisting of long nee-

dles packed into a 3d-crystal. The Hamiltonian of each 

needle is supposed to be the first term in the general ex-

pression (131) 
 

0 1,
ˆ ˆˆ ( . .)

   m m

m

H C C h c 


 ,                  (141) 

 

where the same notifications as in (132) are used and let 

the number of particles N . The 1d-system with 

Hamiltonian (141) is a metal independently on the num-

ber of electrons in the conduction band Ne with density 
 

1 ˆ ˆ  e

m m

m

N
C C

N N
 



 ,                   (142) 

 

that is, with any filling of the conduction band 

0 2  . In case when the number of electrons and 

sites coincides we have a half-filled conduction band, 

eN N  and the Fermi momentum is / 2Fk a  where 

a is a 1d-lattice parameter.  

A 1d-metal with a half-filled conduction band is 

unstable with respect to the following metal – insulator 

transitions: 

1) The Mott metal – insulator transition resulting 

from electron interactions. Instability of a 1d-metal with 

respect to this transition arises from the fact that elect- 

ron – electron interactions produce the gap at T=0° K 

even within a weak coupling constant 
0/U    in the 

Hamiltonian (132). 

2) The Peierls metal – insulator transition is con-

nected with electron – phonon interactions. Alongside 

with the gap a periodic deformation of the crystal occurs 

with the period / Fk . 

3) The Anderson metal – insulator transition re-

sulting from structure disordering of the crystal. The in-

stability of a 1d-metal in this case is stimulated by locali-

zation of electron states even by a weak random field. 

When coupling constant U is large the Wigner or-

dering of electrons in quasi-1d conductors appears.  

Early theories of quasi-1d systems came to the 

conclusion that various instabilities in a 1d-metal are 

being competive [55]. However, further analysis have 

shown that, in fact, a coexistence of different instabilities 

is possible. Thus, in [83] it was shown that the Mott and 

Peierls instabilities coexist both at 1  and at 1/ 2 . 

In other words, a 1d Mott insulator also undergoes lattice 

deformation with the period / Fk . 

If we want to obtain a good organic conductor or 

even superconductoe we should stabilize the system with 

respect to the above transitions. All history of quasi-1d 

metal sysnthesis is, in fact, the history of fighting the 

above instabilities.  

One of the effective means to fight the metal – in-

sulator transitions is to shift electron density  

  from the values approaching 1, ½, ⅓ and other 

fractions with small denominators. This can be achieved 

by crystal doping with electron donors ot acceptors or by 

violation of a simple stoichiometric ratio. To understand 

why this simple and clear method is so efficient we shall 

discuss the instabilities and their descriptions for a sys-

tem with a half-filled band with 1  in more details. 

The Mott metal – insulator transition. A system 

with Hamiltonian (141) at 1  is a metal. Adding an 

Interaction operator like (131) to (141) we obtain the 

system with the Hubbard Hamiltonian 
 

1,

0 , ,

ˆ ˆˆ {( )[ . .]
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2

 
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 

 

   



 m m

m

m m m m

H C C h c

UC C C C          (143) 

  

The spectrum of a cyclic chain with Hamiltonian 

(143) is the spectrum of an insulator at any U > 0, that is, 

the excitation of states with charge transfer requires an 

energy E . For the first time a conclusion on the energy 

gap formation in such a system appeared in calculations 

by EHF method [55].  

The Peierls metal – insulator transition. Let us 

consider a system with the Hamiltonian which can be 

represented as the sum of (139), (140), and (141) 
 

0 1 1,

2

1

ˆ ˆˆ { [ ( )] . .}

1
( ) .

2



 



     

 





m m m m

m

m m

m

H R R C C h c

k R R

 


 

(144) 

 

The energy minimum of an infinite chain is 

reached with the Hamiltonian (144) when 
 

0 0cos( ), mR R Qam                  (145) 
 

where a is a non-deformed lattice parameter, 
0  is the 

phase of bond deformation, 2 FQ k , and 
Fk is the 

Fermi momentum. 

For a half-filled band / 2Fk a  and 
 

0

0 2
2 exp .

( )

 
    

k
R

 

 
                    (146)  

 

The energy spectrum of conduction electrons for a 

half-filled band is given by 
 

2 2 2

1,2 0 0

0

2 cos 4 sin ,
 

    
 

k R k


 


        (147) 
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where ―–‖ sign corresponds to a completely filled con-

duction subband, and ―+‖ sign corresponds to the vacant 

subband.  

Thus, the gap in the one-particle spectrum is 
 

08 . gE R                          (148) 
 

The ground state energy correction is 
 

2 2

0 0 0

1
4 ln .

2
  cE R R KR               (149) 

  

Some specific features of physics in one dimen-

sion remain valid also in two dimensions. Theoretical 

treatment of 2d-models is more complicated. For exam-

ple, The Mott and Anderson metal – insulator transitions 

can occur also in quasi-2d systems. However, the Peierls 

transition in 2d case can appear only for special forms of 

the Fermi surface in the case of so called ―nesting‖. Gen-

erally speaking, the conditions for the metal – insulator 

transitions in 2d-systems are stronger than those in 1d 

case. Passing to 2d-systems one can stabilize conducting 

and superconducting states. 
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