Quadratic sieve acceleration based on the search of additional B-smooth numbers

Authors

  • Vitalii Misko Pukhov Institute for Modelling in Energy Engineering National Academy of Sciences of Ukraine Henerala Naumova str., 15, Kyiv, Ukraine, 03164, Ukraine https://orcid.org/0000-0001-5952-1140

DOI:

https://doi.org/10.15587/2313-8416.2017.118298

Keywords:

quadratic sieve method, additional B-smooth numbers, factor base, sieving interval

Abstract

The quadratic sieve method is the fastest for integers under 100 decimal digits or so. To get the best speed and less amount of memory it is necessary to successfully choose the size of factor base and sieving interval. This paper describes method, which will allow to reduce size of factor base and sieving interval without reducing the size of B-smooth numbers

Author Biography

Vitalii Misko, Pukhov Institute for Modelling in Energy Engineering National Academy of Sciences of Ukraine Henerala Naumova str., 15, Kyiv, Ukraine, 03164

Postgraduate student

Department of automation of design of power plants

References

Gorbenko, I. D., Dolgov, V. I., Potiy, A. V., Fedorchenko, V. N. (1995). Analiz kanalov uyazvimosti sistemy RSA. Bezopasnost' informatsii, 2, 22–26.

Brown, D. R. L. (2005). Breaking RSA May Be As Difficult As Factoring. Cryptology ePrint Archive. Available at: https://eprint.iacr.org/2005/380

Pomerance, C. (1985). The quadratic sieve factoring algorithm. Lecture Notes in Computer Science, 169–182. doi: 10.1007/3-540-39757-4_17

Lindquist, E. (2001). The Quadratic Sieve Factoring Algorithm. Math 488: Cryptographic Algorithms, Diciembre.

Song, Y. (2009). Quadratic Sieve. Primality Testing and Integer Factorization in Public-Key Cryptography. New York: Springer, 234–239.

Diffie, W., Hellman, M. (1976). New directions in cryptography. IEEE Transactions on Information Theory, 22 (6), 644–654. doi: 10.1109/tit.1976.1055638

Shenkhage, A., Shtrassen, V. (1973). Bystroe umnozhenie bol'shikh chisel. Kiberneticheskiy sbornik, 2, 87–98.

Pomerance, C. (1982). Analysis and comparison of some integer factoring algorithms. Mathematisch Centrum Computational Methods in Number Theory, 1, 89–139.

Pomerance, C. (2008). Smooth numbers and the quadratic sieve. Proc. of an MSRI workshop, 69–81.

Crandall, R., Pomerance, C. (2005). Smooth numbers and the quadratic sieve. Prime Numbers A Computational Perspective. New York: Springer, 261–315.

Published

2017-12-30

Issue

Section

Technical Sciences