Improving the item to item algorithm of collaborative filtration method for the development of recommendation systems based on the cosine measure by relevant assessment

Authors

DOI:

https://doi.org/10.15587/2313-8416.2018.120886

Keywords:

correlation, cosine, collaborative, filtration. vector, Tanimoto, user, ID, URL

Abstract

 The analysis of comparative results of reference systems on the basis of the Tanimoto correlation coefficient in comparison with the "item to item" algorithm of collaborative filtration with the help of relevant assessment is presented. Data for surveys in the form of users with unique IDs are formed. Algorithm of collaborative filtration is based on a cosine measure, which represents the similarity of objects as a cosine between the vectors of purchases in the matrix of users and objects

Author Biographies

Vladimir Kucheruk, Vinnytsia National Technical University Khmelnytske highway, 95, Vinnitsa, Ukraine, 21021

Doctor of Technical Sciences, Professor, Head of Department

Department of Metrology and Industrial Automation

Mikhail Hlushko, Vinnytsia National Technical University Khmelnytske highway, 95, Vinnitsa, Ukraine, 21021

Department of Metrology and Industrial Automation

References

Recommendation system (2016). Wikipedia. Available at: https://uk.wikipedia.org/wiki/Рекомендаційна_система

Collaborative filtration (2012). Habrahabr. Available at: https://habrahabr.ru/post/150399/

Slope One (2015). Available at: https://en.wikipedia.org/wiki/Slope_One

Su, X., Khoshgoftaar, T. M. (2009). A Survey of Collaborative Filtering Techniques. Advances in Artificial Intelligence, 2009, 1–19. doi: 10.1155/2009/421425

Gomzin, A. G., Korshunov, A. V. (2012). Systems of recommendations: an overview of modern approaches. Proceedings of the ISP RAS, 402–417. Available at: http://cyberleninka.ru/article/n/sistemy-rekomendatsiy-obzorsovremennyh-podhodov

Ghazanfar, M. A., Prugel-Bennett, A. (2010). Building Switching Hybrid Recommender System Using Machine Learning Classifiers and Collaborative Filtering. International Journal of Computer Science, 37 (3). Available at: http://www.iaeng.org/IJCS/issues_v37/issue_3/IJCS_37_3_09.pdf

Example ad (2017). Automoto. Available at: https://automoto.ua/uk/Mercedes-Benz-GLE-Class-2017-Khmelnytskyi-18044982.html

Linden, G., Smith, B., York, J. (2003). Amazon.com recommendations: item-to-item collaborative filtering. IEEE Internet Computing, 7 (1), 76–80. doi: 10.1109/mic.2003.1167344

Hu, Y., Koren, Y., Volinsky, C. (2008). Collaborative filtering for implicit feedback datasets. 2008 Eighth IEEE International Conference on Data Mining. Pisa, 263–272. doi: 10.1109/icdm.2008.22

Sarwar, B. M., Karypis, G., Konstan, J. A. (2001). Item-based collaborative filtering recommendation algorithms. Proceedings of ACM WWW '01. Hong Kong, 285–295. doi: 10.1145/371920.372071

Karypis, G. (2001). Evaluation of object-based top-N algorithms. Proceedings of the tenth international conference on Information and knowledge management – CIKM'01. Atlanta, 247–254. doi: 10.1145/502624.502627

Glushko, M. V., Kucheruk, V. Yu., Mitkovsky, O. (2017). Improvement of the algorithm item to item method of collaborative filtration for the development of advisory systems by the assessment of relevance. Measurement, control and diagnostics in technical systems. Vinnitsa, 215. Available at: http://mpa.vntu.edu.ua/images/conference/conf2017/VCDTS%202017.pdf

Published

2018-01-12

Issue

Section

Technical Sciences