Comparison of the results of the modeling of the temperature field in the process of bimetal melting by the scanning laser for the rays, which focused in the rectangle and in the circle

Authors

DOI:

https://doi.org/10.15587/2313-8416.2018.131866

Keywords:

bimetal alloy, laser melting, scanning laser, temperature field, finite difference method, through calculation

Abstract

The problem of numerical simulation of temperature field in the process of bimetal melting by the scanning laser for rays focusing in a rectangle and in a circle are considered. The mathematical model of the process is a boundary problem for unsteady three-dimensional nonlinear partial differential equation in the variable domain. Comparison of results of the modeling with different laser beam shape and power distribution is made according to key characteristics

Author Biographies

Oksana Perekipska, National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute” Peremohy ave., 37, Kyiv, Ukraine, 03056

Department of Automation of Designing of Energy Processes and Systems

Valery Tretyak, National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute” Peremohy ave., 37, Kyiv, Ukraine, 03056

PhD, Associate Professor

Department of Automation of Designing of Energy Processes and Systems

Anna Ostapenko, National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute” Peremohy ave., 37, Kyiv, Ukraine, 03056

Department of Automation of Designing of Energy Processes and Systems

References

Shmidt, M., Kuryncev, S. V. (2014). Poluchenie bimetallicheskih zagotovok s pomoshh'iu lazernoi svarki proplavnym shvom [Producing of bimetal joints by laser welding with full penetration]. Automatic Welding, 4, 47–51.

Golovko, L. F. (2008). Application of laser technology for sintering of the tool composites containing diamonds. Automatic Welding, 8 (664), 15–23.

Golovko, L. F., Lukianenko, S. O., Mykhailova, I. Yu., Tretiak, V. A. (2015). Kompiuterne modeliuvannia u lazernykh tekhnolohiiakh [Computer simulation in laser technology]. Kyiv: VPP "Tekst", 236.

Golovko, L. F. (2012). Mozhlivostі pіdvishchennia iakostі znosostіikikh pokrittіv zastosuvanniam lazernogo opromіnennia [Possibilities of improving the quality of wear-resistant coatings using laser irradiation]. Herald of Khmelnytskyi national university, 1, 20–28.

Grabowski, A., Formanek, B., Sozanska, B. M. (2009). Laser remelting of Al-Fe-TiO powder composite on aluminium matrix. Journal of Acheivements in Materials and Manufacturing Engineering, 1 (33), 78–85.

Kalvand, A. (2009). Osobennosti processov plavleniia-zatverdevaniia pri pogruzhenii blokov v rasplav vysokotemperaturnogo koriuma [Perculiarities of the melting-solidification processes by sinking of the melting blocks into high-temperature corium melt]. Nuclear Physics and Atomic Energy, 10 (2), 178–184.

Pereloma, V. A., Likhoshva, V. P., Shatrava, A. P., Skripka, N. N. (1998). Nekotorye osobennosti lazernoi obrabotki metallicheskikh materialov [Some features of laser processing of metallic materials]. Casting Processes, 3-4, 9–16.

Verhoeven, J. C. J., Jansen, J. K. M., Mattheij, R. M. M., Smith, W. R. (2003). Modelling laser induced melting. Mathematical and Computer Modelling, 37 (3-4), 419–437. doi: http://dx.doi.org/10.1016/s0895-7177(03)00017-7

Marchuk, G. I. (1988). Metody rasshchepleniia [Splitting methods]. Moscow: Nauka, 264.

Tretiak, V. A. (2012). Usovershenstvovanie adaptivnogo metoda postroeniia setok dlia zadach teploprovodnosti s nestatcionarnym istochnikom energii [Improvement of the adaptive method for constructing grids for heat conduction problems with a nonstationary energy source]. Mathematical and computer modelling. Series: Technical sciences, 7, 197–206.

Published

2018-05-22

Issue

Section

Technical Sciences