The approximate forecast of winter temperatures in Crimean mountains with accounting the suboptimal set of factors

Authors

  • Александр Вадимович Холопцев Sevastopol Maritime Academy st. Rybakov 7, g Sevastopol,99055,

DOI:

https://doi.org/10.15587/2313-8416.2014.28595

Keywords:

forecasting, winter season average temperatures, Ai-Petri, multiple-regression model

Abstract

It is proposed the technique of factor search, the use of which as arguments of the multiple-regression model of average temperature changes of the surface layer of atmosphere in winter season in Crimean Mountains provides the approximate forecast of these characteristics with the highest accuracy in advance of 1–4 years at condition that the statistical relationships between them in the future will remain the same. The forecast on period to 2020 is carried out. 

Author Biography

Александр Вадимович Холопцев, Sevastopol Maritime Academy st. Rybakov 7, g Sevastopol,99055

Professor, Doctor of Geographical Sciences, member of the Crimean Academy of Sciences and the Polish Academy of Sciences (Committee on Meteorology and Agroclimatology)

Navigation and Maritime Safety department

References

1. Pozachenyuk, E. A. (2009). Modern Landscapes of Crimea and adjacent waters. Simferopol: Business Inform, 611.

2. Dymnikov V. P., Lykosov V. N., Volodin, E. M. (2005). Modeling climate and climate change. In "Modern Problems of Computational Mathematics and Mathematical Modeling." Moscow: Science, 2, 38–175.

3. Volodin, E. M., Diansky, N. A. (2003). The response of the coupled model of the general circulation of the atmosphere and the ocean on the increase in carbon dioxide. [Text]- Izvestiya, Atmospheric and Oceanic Physics, 39, 193–210.

4. Climate Change 2007 – Impacts, adaptation and vulnerability. Contribution of Working Group II to Assesment Report Four of the Intergovernmental Panes of Climate Change (IPCC) (2007). Cambridge Unsversity Press. Cambridge. UK, 973.

5. Aivazyan, S. A., Mkhitaryan, V. S. (1998). Applied Statistics and Econometrics bases. Unity, 1022.

6. Boks, J., Dzhenkins, G. (1974). Analysis of time series. Forecast and Control. Moscow: Miry, 197.

7. Barabanov, V. S. (2004). Global and regional climate variability. Development of Marine Science and Technology at the Marine hydrophysical institute for 75 years. - Sevastopol: MHI NASU, 442–468.

8. Fedorov, E. E. (1921). Influence of sunspots on the temperature and air pressure. Math. Main Physical Observatory. 3, 64–72.

9. Bogolepov, M. A. (1923). Perturbation of the climate and the life of the Earth, and the people. Berlin, 24.

10. Markov, K. K. (1949). On the connection between changes in solar activity and the Earth's climate. Questions geography. TH., 12, 15–26.

11. Predtechensky, P. P. (1948). Cyclicity in the oscillations of solar activity. Trudy GGO, 8 (70).

12. Shnitnikov, A. V. (1951). Variability of solar activity for the historical period on the basis of some of its earthly manifestations. Bulletin commission to study the sun, 7.

13. Eigenson, M. S. (1957). Essays physiographic manifestations of solar activity. Lviv, 252.

14. Eddy, J. A. (1976). The Maunder Minumum. Science, 192, 1189–1202.

15. Borisenkov, E. P. (1988). Climate variability over the last millennium. [Text]/ L. Gidrometeoizdat, 275.

16. Abdulsamatov, H. I. (2009). The sun dictates the Earth's climate. St. Petersburg. Logos, 197.

17. Mohanakumar, K. (2011). Interaction of the stratosphere and troposphere. Moscow. – FIZMATLIT, 451.

18. Monin, A. C. (1969). Climate as a problem of physics. Moscow: Science, 184.

19. Polonsky, A. B. (2008). The role of the ocean in climate change. Kiev. Naukova Dumka, 184.

20. Lipinski, V. M., Dyachuk, V. A., Babichyenko, V. M. (Ed.) (2003). Climate of Ukraine. Kiev: Rayevskogo Publishers, 343.

21. Enfield, D. B., Mestas-Nunez, A. M., Trimble, P. J. (2001). The Atlantic multidecadal oscillation and it's relation to rainfall and river flows in the continental U.S. Geophysical Research Letters, 28 (10), 2077–2080. doi: 10.1029/2000gl012745

22. Database Index AMO. Available at: http://www.aoml.noaa.gov/phod/amo fag.php

23. Database result reanalysis surface temperature of the oceans. Available at: http://wxweb.meteostar.com/SST/index.shtml?point=730

24. Database Wolf numbers. Available at: http:///www.tituempo.net/climate/.html

25. Database of changes in average concentrations of carbon dioxide in the atmosphere. Available at: http://www.iiasa.ac.at/web-apps/tnt/RcpDb".

26. Meinshausen, M., Smith, S. J., Calvin, K. V., Daniel, J. S., Kainuma, M. L. T., Lamarque, J.-F., Matsumoto, K., Montzka, S. A., Raper, S. C. B., Riahi, K., Thomson, A. M., Velders, G. J. M., van Vuuren, D. (2011). The RCP Greenhouse Gas Concentrations and their Extension from 1765 to 2300.. Climatic Change (Special Issue). Available at: http://www.gao.spb.ru/database/esai.html doi: 10.1007/s10584-011-0156-z

27. Zipkin, J. Z. (1968). Adaptation and learning in automatic systems. Moscow: Science, 400.

Published

2014-11-13

Issue

Section

Geographical sciences