Graphene in Landauer-Datta-Lundstrom transport model
DOI:
https://doi.org/10.15587/2313-8416.2015.36443Keywords:
nanophysics, nanoelectronics, graphene, mode numbers, maximum conductivity, effective mass, phonon states, thermal conductivity, thermoelectric coefficientsAbstract
There are discussed the following properties of graphene such as the density of electronic states and current carriers, the number of modes and maximum conductivity, scattering and mobility in graphene, the cyclotron frequency and the effective mass, phonon density of states, the relative contribution of electrons and phonons in the thermal conductivity of graphene. For reference purposes a summary of thermoelectric coefficients for graphene in ballistic and diffusive conduction regimes with the power law of scattering is given
References
Kruglyak, Yu. (2014). Landauer-Datta-Lundstrom Generalized Transport Model for Nanoelectronics, Journal of Nanoscience, 15. doi: 10.1155/2014/725420
Kruglyak, Yu. A. (2013). Landauer-Datta-Lundstrom Generalized Electron Transport Model for Nanoelectronics. Nanosystems, Nanomaterials, Nanotechnologies, 11 (3), 519–549. Erratum: ibid, (2014). 12 (2), 415.
Strikha, М. V. (2010). Physics of Graphene: Status and Perspectives. Sensor Electronics Microsys. Tech., 7 (3), 5–13.
Geim, A. K. (2009). Graphene: Status and Prospects. Science, 324 (5934), 1530–1534. doi: 10.1126/science.1158877
Novoselov, K. S. (2009). Beyond the wonder material. Physics World, 22 (8), 27–30.
Lozovik, Yu. E., Merkulova, S. P., Sokolik, A. A. (2008). Collective electron phenomena in graphene. Physics Uspekhi, 51, 727–744. doi: 10.3367/ufnr.0178.200807h.0757
Morozov, S. V., Novoselov, K. S., Geim, A. K. (2008). Electronic transport in graphene. Physics Uspekhi, 51, 744–748 doi: 10.3367/ufnr.0178.200807i.0776
Tsuneya, A. (2008). Physics of Graphene. Zero-Mode Anomalies and Roles of Symmetry. Progress of Theoretical Physics Supplement, 176, 203–226. doi: 10.1143/ptps.176.203
Geim, A. K., Novoselov, K. S. (2007). The Rise of Graphene. Nature Materials, 6, 183–191. doi: 10.1038/nmat1849
McClure, J. W. (1956). Diamagnetism of Graphite. Physical Review, 104 (3), 666–671. doi: 10.1103/physrev.104.666
Slonczewski, J. C., Weiss, P. R. (1958). Band Structure of Graphite. Physical Review, 109 (2), 272–279. doi: 10.1103/physrev.109.272
Ando, T. (2005). Theory of electronic states and transport in carbon nanotubes. Journal of the Physical Society of Japan, 74 (13), 777–817. doi: 10.1143/jpsj.74.777
Shon, N. H., Ando, T. (1998). Quantum transport in two-dimensional graphite system. Journal of the Physical Society of Japan, 67 (7), 2421–2429. doi: 10.1143/jpsj.67.2421
Peres, N. M. R., Lopes dos Santos, J. M. B., Stauber, T. (2007). Phenomenological study of the electronic transport coefficients of graphene. Physical Review B, 76 (7). doi: 10.1103/physrevb.76.073412
Zhu, W., Perebeinos, V., Freitag, M., Avouris, P. (2009). Carrier scattering, mobilities, and electrostatic potential in monolayer, bilayer, and trilayer graphene, Physical Review B, 80 (23), 235–402. doi: /10.1103/physrevb.80.235402
Perebeinos, V., Avouris, P. (2010). Inelastic scattering and current saturation graphene. Physical Review B, 81 (19). doi: 10.1103/physrevb.81.195442
Das Sarma, S., Adam, S., Hwang, E. H., Rossi, E. (2011). Electronic transport in two-dimensional graphene. Reviews of Modern Physics, 83 (2), 407–470. doi: 10.1103/revmodphys.83.407
Novoselov, R. S., Geim, A. K., Morozov S. V., Jiang, D., Zhang, Y., Dubonos, S. V., Grigorieva, I. V., Firsov, A. A. (2004). Electric Field Effect in Atomically Thin Carbon Films. Science, 306 (5659), 666–669. doi: 10.1126/science.1102896
Morozov, S. V., Novoselov, K. S., Schedin, F., Jiang, D., Firsov, A. A., Geim, A. K. (2005). Two-dimensional electron and hole gases at the surface of graphite. Physical Review B, 72 (20). doi: 10.1103/physrevb.72.201401
Novoselov, R. S., Geim, A. K., Morozov, S. V., Jiang, D., Katsnelson, M. I., Grigorieva, I. V., Dubonos, S. V., Firsov, A. A. (2005). Two-Dimensional Gas of Massless Dirac Fermions in Graphene. Nature, 438 (7065), 197–200. doi: 10.1038/nature04233
Zhang, Y., Tan, Y.-W., Stormer, H. L., Kim, P. (2005). Experimental observation of the quantum Hall effect and Berry's phase in grapheme. Nature, 438 (7065), 201–204. doi: 10.1038/nature04235
Laughlin, R. B. Condensed Matter Theory (II): Graphene Band Structure. Graphene Density of States. Available at: http://large.stanford.edu/courses/
Supriyo Datta. Graphene Bandstructures (2008). Purdue University. Available at: www.nanohub.org/resources/5710
Supriyo Datta. Graphene Density of States I (2008). Purdue University. Available at: www.nanohub.org/resources/5721
Supriyo Datta. Graphene Density of States II (2008). Purdue University. Available at: www.nanohub.org/resources/5722
Kruglyak, Yu. A., Kruglyak, N. E. (2012). Calculation of graphene band structure. Methodological and theoretical basis. Visnyk Odessa State Ecolog. Univ., 13, 207–218.
Lundstrom, M. (2009). Sums in k-space/Integrals in Energy Space. Purdue University. Available at: www.nanohub.org/resources/7296
Berdebes, D., Low, T., Lundstrom, M. (2009). Lecture Notes on Low Bias Transport in Graphene: An Introduction. Purdue University. Available at: www.nanohub.org/resources/7435
Lundstrom, M., Jeong, C. (2013). Near-Equilibrium Transport: Fundamentals and Applications. Hackensack, New Jersey: World Scientific Publishing Company. Available at: www.nanohub.org/resources/11763
Kruglyak, Yu. A., Strikha, М. V. (2014). Lessons of nanoelectronics: Hall effect and measurement of electrochemical potentials within «bottom–up» approach, Sensor Electronics Microsys. Tech., 11 (1), 5–27.
Kruglyak, Yu. A. (2013). From Ballistic Conductivity to Diffusional in the Landauer-Datta-Lunstrom Transport Model. Nanosystems, Nanomaterials, Nanotechnologies, 11 (4), 655–677.
Kruglyak, Yu. A., Kruglyak, N. E. (2013). Lessons of nanoelectronics. 3. Electronic conductivity and conductivity modes by «bottom – up» approach, Physics in Higher Education, 19 (3), 99–110.
Kruglyak, Yu. A., Kruglyak, N. E. (2013). Lessons of nanoelectronics. 2. Elastic resistor model and new Ohm’s law by «bottom – up» approach, Physics in Higher Education, 19 (2), 161–173.
Kruglyak, Yu. A. (2014).Heat transfer by phonons in Landauer-Datta-Lundstrom approach, Proceedings of the International Conference. Nanomaterials: Applications and Properties”, 3 (2), 5.
Singh, D., Murthy, J. Y., Fisher, T. S. (2011). Spectral phonon conduction and dominant scattering pathways in graphene. Journal of Applied Physics, 110 (9). doi: 10.1063/1.3656451
Fisher, T. S. (2013). Thermal Energy at the Nanoscale. Hackensack, New Jersey: World Scientific Publishing Company. Available at: www.nanohub.org/courses/2
Das Sarma, S., Adam, S., Hwang, E. H., Rossi, E. (2011). Electronic transport in two-dimensional graphene. Reviews of Modern Physics, 83 (2), 407–470. doi: 10.1103/revmodphys.83.407
Kim, R. S. (2011). Physics and Simulation of Nanoscale Electronic and Thermoelectric Devices. West Lafayette: Purdue University, 220.
Supriyo Datta, Lessons from Nanoelectronics: A New Perspective on Transport (2012). Hackensack, New Jersey: World Scientific Publishing Company. Avaialble at: www.nanohub.org/courses/FoN1
Kruglyak, Yu. A., Strikha, М. V. (2013). Lessons of nanoelectronics: Non-equilibrium Green’s functions method in matrix representation. II. Model transport problems, Sensor Electronics Microsys. Tech., 10 (4), 5–22.
Downloads
Published
Issue
Section
License
Copyright (c) 2015 Юрій Олексійович Кругляк
This work is licensed under a Creative Commons Attribution 4.0 International License.
Our journal abides by the Creative Commons CC BY copyright rights and permissions for open access journals.
Authors, who are published in this journal, agree to the following conditions:
1. The authors reserve the right to authorship of the work and pass the first publication right of this work to the journal under the terms of a Creative Commons CC BY, which allows others to freely distribute the published research with the obligatory reference to the authors of the original work and the first publication of the work in this journal.
2. The authors have the right to conclude separate supplement agreements that relate to non-exclusive work distribution in the form in which it has been published by the journal (for example, to upload the work to the online storage of the journal or publish it as part of a monograph), provided that the reference to the first publication of the work in this journal is included.