Structural-functional peculiaritities of 14-day seedlings of Triticum aestivum L. cv. yatran 60 at temperature stress

Authors

  • Лідія Михайлівна Бабенко M. G. Kholodny Institute of Botany NAS 2 Tereshchenkivska str., Kiev, Ukraine, 01601, Ukraine https://orcid.org/0000-0001-5391-9203
  • Микола Миколайович Щербатюк M. G. Kholodny Institute of Botany NAS 2 Tereshchenkivska str., Kiev, Ukraine, 01601, Ukraine https://orcid.org/0000-0002-6453-228X
  • Дмитро Олександрович Климчук M. G. Kholodny Institute of Botany NAS 2 Tereshchenkivska str., Kiev, Ukraine, 01601, Ukraine https://orcid.org/0000-0002-7076-8213
  • Ірина Василівна Косаківська M. G. Kholodny Institute of Botany NAS 2 Tereshchenkivska str., Kiev, Ukraine, 01601, Ukraine https://orcid.org/0000-0002-2173-8341
  • Юрій Миколайович Акімов M. G. Kholodny Institute of Botany NAS 2 Tereshchenkivska str., Kiev, Ukraine, 01601, Ukraine

DOI:

https://doi.org/10.15587/2313-8416.2015.44830

Keywords:

Triticum aestivum L., lipoxygenase, pigments, ultrastructure, temperature stress

Abstract

The effect of short-term temperature stresses on the activity of lipoxygenase, content of photosynthetic pigments and ultrastructure composition of mesophyll cells of leaves heat-resistant cv. Triticum aestivum L. Yatran 60 has been investigated. It is determined that three isoforms of 9-lipoxygenase is found in the overground part of seedlings. Specific changes in the photosynthetic pigments were revealed. The increase in the number of globular inclusions in chloroplast stroma after exposure to low positive temperatures and the lack of change after heat stress were found

Author Biographies

Лідія Михайлівна Бабенко, M. G. Kholodny Institute of Botany NAS 2 Tereshchenkivska str., Kiev, Ukraine, 01601

Candidate of Biological Sciences, senior Scientific Researcher

Department of phytohormonology

Микола Миколайович Щербатюк, M. G. Kholodny Institute of Botany NAS 2 Tereshchenkivska str., Kiev, Ukraine, 01601

Scientific Researcher

Department of phytohormonology

Дмитро Олександрович Климчук, M. G. Kholodny Institute of Botany NAS 2 Tereshchenkivska str., Kiev, Ukraine, 01601

Candidate of Biological Sciences, Senior Scientific Researcher

Head of Laboratory of Electron Microscopy

Ірина Василівна Косаківська, M. G. Kholodny Institute of Botany NAS 2 Tereshchenkivska str., Kiev, Ukraine, 01601

Doctor of biological sciences, professor

Head of department

Юрій Миколайович Акімов, M. G. Kholodny Institute of Botany NAS 2 Tereshchenkivska str., Kiev, Ukraine, 01601

Engineer

Laboratory of Electron Microscopy

References

Dubrovna, O. V., Chugunkova, T. V., Bavol, A. V., Lyalko, І. І. (2012). Biotechnology and cytogenetic basis for the creation of plants resistant to stresses. Kiev: Logos, 425.

Weyers, J. D. B., Paterson, N. W. (2001). Plant hormones and the control of physiological processes. New Phytologist, 152, 375–407. doi: 10.1046/j.0028-646X.2001.00281.x

Kolupaev, Y. E., Karpets, Y. K. (2010). Formation of the adaptive responses of plants to abiotic stress effects. Kiev: Osnova, 352.

Porta, H., Rocha-Sosa, M. (2002). Plant lipoxygenases. Physiological and molecular features. Plant Physiol., 130 (1), 15–21. doi: 10.1104/pp.010787

Liavonchanka, A., Feussner, I. (2006). Lipoxygenases: Occurrence, functions and catalysis. Journal of Plant Physiology, 99 (1), 37–42. doi: 10.1016/j.jplph.2005.11.006

Feussner, I., Wasternack, С. (2002). The lipoxygenase pathway. Annual Review of Plant Biology, 53, 275–297. doi: 10.1146/annurev.arplant.53.100301.135248

Babenko, L. M., Kosakivska, I. V., Skaterna,T. D., Kharchenko, O. V. (2013). Plant lipoxygenases in adaptation to abiotic stresses. Biulleten Kharkivskoho Natsional. ahrar. un-tu (Ser. biology), 2 (29), 6–19.

Gerebtsova, N. A., Stallions, N. A., Popova, T. N., Zyablova, T. V. (2000). Fumaric acid – a competitive inhibitor of lipoxygenase wheat germ. Biochemistry, 5, 727–729.

Nemchenko, A., Kunze, S., Feussner, I. (2006). Duplicate maize 13-lipoxygenase genes are differentially regulated by circadian rhythm, cold stress, wounding, pathogen infection, and hormonal treatments. Journal of Experimental Botany, 57 (14), 3767–3779. doi: 10.1093/jxb/erl137

Laxalt, A. M., Munnic, T. (2002). Phospholipid signaling in plant. Current Opinion in Plant Biology, 5 (4), 332–338. doi: 10.1016/S1369-5266(02)00268-6

Kosakivska, I. V., Babenko, L. M., Skaternal, T. D., Ustinova, A. Y. (2014). Influence оf hypo- and hyperthermia on lipoxygenase activity, content of pigments and soluble proteins in Triticum aestivum L. cv. Yatran 60 seedlings. Physiologiya rasteniy i genetika, 46 (3), 212–220.

Kosakivska, I. V., Babenko, L. M., Skaternal, T. D., Ustinova, A. Y. (2014). Thermosensitivity of lipoxygenase and photosynthesis pigments of of winter wheat. Biotechnologia Acta, 7 (5), 101–107. doi: 10.15407/biotech7.05.101

Andrianova, Y. E., Tarchevsky, I. A. (2000). Chlorophyll and plant productivity. Moscow: Nauka, 135.

Babenko, L. M., Kosakivska, I. V., Akimov, Yu. A., Klymchuk, D. O., Skaternaya, T. D. (2014). Еffect of temperature stresses on pigment content, lipoxygenase activity and cell ultrastructure of winter wheat seedlings. Genetics and plant physiology, 4 (1-2), 117–125.

Grodzinskiy, D. M. (2013). Adaptive strategies of plant physiological processes [47th Timiryazevskoe reading 25 years later]. Kiev: Naukova dumka, 304.

Evert, R. F. (2007). Esau’s plant anatom. Hoboken, New Jersey: Wiley Interscience, 624.

Salem-Fnayou, A. B., Bouamama, B., Ghorbel, A., Mliki, A. (2011). Investigations on the leaf anatomy and ultrastructure of grapevine (Vitis vinifera) under heat stress. Microscopy Research and Technique, 74 (8), 756–762. doi: 10.1002/jemt.20955

Carde, J.-P. (1987). Electron microscopy of plant cell membranes. Methods in enzymology. Plant cell membranes, 148, 599–622.

Selye, Н. (1956). The stress of life. New York: McGraw-Hill, 479.

Selye, Н. (1972). At the level of the whole organism. Moscow: Nauka, 122

Mokronosov, A. T., Gavrilenko, V. F., Zhigalov, T. V. (2006). Photosynthesis: physiological, ecological and biochemical aspects. Moscow: Academya, 448.

Kosakivska, I. V., Babenko, L. M., Ustinova, A. Yu., Skaterna, T. D., Demirevska, K. (2012). The influence of temperature conditions on lipoxygenase activity in seedling of rape Brassica napus var. Оleifera. Dopovidi NAN Ukrain. 6, 134–137.

Yang, X. Y., Jiang, W. J., Yung, H. J. (2012). The expression profiling of the lipoxygenase (LOX) family genes during fruit development, abiotic stress and hormonal treatments in cucumber (Cucumis sativus L.). International Journal of Molecular Sciences, 13 (12), 481–2500. doi: 10.3390/ijms13022481

Wang, G. Z., Mao, L. C., Zhu, C. G., Pang, H. Q. (2007). Involvement of phospholipase D and lipoxygenase in response to chilling stress in post harvest cucumber fruits. Plant Science, 172 (2), 400–405. doi: 10.1016/j.plantsci.2006.10.002

Wise, R. R., Naylor, A. W. (1987). Chilling-enhanced photooxidation. The peroxidative destruction of lipids during chilling injury to photosynthesis and ultrastructure. Plant Physiology, 83 (2), 272–277. doi: 10.1104/pp.83.2.272

Brehelin, C., Kessler, F., Van, W. K. (2007). Plastoglobules: versatile lipoprotein particles in plastids.Trends in Plant Science, 12 (6), 260–265. doi: 10.1016/j.tplants.2007.04.003

Jin, B., Wang, L., Wang, J., Jiang, K. Z., Wang, Y., Jiang, X. X., Ni, C. Y., Wang, Y. L., Teng, N. J. (2011). The effect of experimental warming on leaf functional traits, leaf structure and leaf biochemistry in Arabidopsis thaliana. BMC Plant Biology, 11 (1), 35–45. doi: 10.1186/1471-2229-11-35

Pinhero, R. G., Paliyath, G., Yada, R. Y., Murr, D. P. (1999). Chloroplast membrane organization in chilling-tolerant and chilling-sensitive maize seedlings. Journal of Plant Physiology, 155 (6), 691–698. doi: 10.1016/S0176-1617(99)80084-4

Morgyn, V. V., Sanіn, E. V., Schwartau, V. V., Artemchuk, І. P., Semerun, T. B., Omelyanenko, O. A. (2009). Club 100 quintals. Varieties and cultivation technology of high yields of winter wheat. Kiev: Logos, 97.

Wellburn, A. (1994). The Spectral Determination of Chlorophyll a and Chlorophyll b, as Well as Total Carotenoids, Using Various Solvents with Spectrophotometers ofё Different Resolution. Journal of Plant Physiology, 144 (3), 307–313. doi: 10.1016/S0176-1617(11)81192-2

Published

2015-06-25

Issue

Section

Biological sciences