Methods of resource management and applications in computing systems based on cloud technology

Authors

  • Карина Андріївна Мацуєва National Aviation University 1 Kosmonavta Komarova ave., Kyiv, Ukraine, 03680, Ukraine

DOI:

https://doi.org/10.15587/2313-8416.2015.46591

Keywords:

information system, cloud computing, virtual resources, load distribution, resource management

Abstract

This article describes the methods of resource management and applications that are parts of an information system for science research (ISSR). The control model of requests in ISSR is given and results of working real cloud system using the additional module of load distribution programmed in Python are presented 

Author Biography

Карина Андріївна Мацуєва, National Aviation University 1 Kosmonavta Komarova ave., Kyiv, Ukraine, 03680

Postgraduate student, assistant

Department of Computerized Management Systems

References

Armbrust, M., Fox, A., Griffith, R. (2009). Above the Clouds: A Berkeley view of cloud computing, Science, 1, 191–196.

Matsueva, K. (2015). Methods of resource management and applications in computing systems based on cloud computing. Tenth International Scientific Conference Mathematical and simulation systems. MODS' 2015, 89–90.

Buyya, R. (2011). Cloud Computing. Principles and Paradigms. John Wiley, 675. doi: 10.1002/9780470940105

Blazewicz, J. (2007). Handbook on Scheduling. From Theory to Applications. Berlin: Springer, 647.

Jones, W. M. (2014). Beowulf Mini-grid Scheduling. The Pennsylvania State University. Available at: http://citeseer.ist.psu.edu/696342.html

Aida, K., Kasahara, H., Narita, S. (1998). Job scheduling scheme for pure space sharing among rigid jobs. Lecture Notes in Computer Science, 98–121. doi: 10.1007/bfb0053983

Sinnen, O., Sousa, L. A. (2005). Communication contention in task scheduling. IEEE Transactions on Parallel and Distributed Systems, 16 (6), 503–515. doi: 10.1109/tpds.2005.64

Sinnen, O. (2005). Communication contention in task scheduling. IEEE Transactions on Parallel and Distributed Systems, 16 (6), 503–515.

Gergel, V. P. (2010). Research of scheduling algorithms of parallel tasks for cluster computing systems using the simulator. Bulletin of the Nizhny Novgorod University N. I. Lobachevskogo, 5 (1), 201–208.

Brucker, P. (2007). Scheduling Algorithms.Berlin. Springer, 371. doi: 10.1007/978-3-662-03088-2

Bender, M. A., Bunde, D. P., Demaine, E. D., Fekete, S. P., Leung, V. J., Meijer, H., Phillips, C. A. (2005). Communication-Aware Processor Allocation for Supercomputers. Lecture Notes in Computer Science, 3608, 169–181. doi: 10.1007/11534273_16

Pinedo, M. L. (2009). Planning and Scheduling in Manufacturing and Services. LLC: Springer Science. Business Media, 509. doi: 10.1007/978-1-4419-0910-7_14

Petrov, D. (2010). Optimal algorithm of data migration in scalable cloud storages. System management, 30, 180–197.

Borodin, A., El-Yaniv, R. (1998). Online computation and competitive analysis. Cambridge University Press, NewYork, 53.

Aspnes, J. (1998). Competitive analysis of distributed algorithms. Lecture Notes in Computer Science, 118–146. doi: 10.1007/bfb0029567

OpenStack Open Source Cloud Computing Software. Available at: http://www.openstack.org/

Published

2015-07-26

Issue

Section

Technical Sciences