LDPC code optimization techniques to improve the error correction threshold

Authors

  • Роман Сергійович Новиков Kharkiv National University of Radioelectronics 14 Lenina ave., Kharkov, Ukraine, 61166, Ukraine

DOI:

https://doi.org/10.15587/2313-8416.2015.53966

Keywords:

stopping set, error control coding, Tanner graph, parity check matrix

Abstract

Non-empty stopping sets, which are the main reason for achieving a threshold of errors in data transmission channels, are studied. New algorithm of transfer smallest stopping sets and stop distance of any LDPC code is proposed. More functional and flexible technique of splitting-and-filling is proposed. Time for which will be transferred the smallest stopping sets and founded stop distance of any LDPC code is calculated

Author Biography

Роман Сергійович Новиков, Kharkiv National University of Radioelectronics 14 Lenina ave., Kharkov, Ukraine, 61166

Department of Telecommunication Systems

References

Richardson, T. (2003). Error-floors of LDPC codes. Flarion Technologies Bedminster, N. J., 1426–1435. Availablew at: http://www.ldpc-codes.com/papers/ErrorFloors.pdf

Milenkovic, O., Soljanin, E., Whiting, P. (2007). Asymptotic Spectra of Trapping Sets in Regular and Irregular LDPC Code Ensembles. IEEE Transactions on Information Theory, 53 (1), 39–55. doi: 10.1109/tit.2006.887060

Tian, T., Jones, C., Villasenor, J., Wesel, R. D. (2003). Construction of irregular LDPC codes with low error floors. Vol. 5. Communication, Control and Computing, 3125–3129. doi: 10.1109/icc.2003.1203996

Chih-Chun, W., Kulkarni, R. S., Poor, H. V. (2006). Exhausting Error-Prone Patterns in LDPC Codes. IEEE Transactions on Information Theory, 46–70.

Li, H., Huang, W., Dill, J. (2010). Construction of irregular LDPC codes with low error floors. Communication, Control and Computing, 1123–1128.

Richardson, T. J., Shokrollahi, M. A., Urbanke, R. L. (2001). Design of capacity-approaching irregular low-density parity-check codes. IEEE Transactions on Information Theory, 47 (2), 619–637. doi: 10.1109/18.910578

Kou, Y., Lin, S., Fossorier, M. P. C. (2001). Low-density parity-check codes based on finite geometries: a rediscovery and new results. IEEE Transactions on Information Theory, 47 (7), 2711–2736.

Published

2015-11-23

Issue

Section

Technical Sciences