Information technology for determining the structural fault tolerance index of technical objects

Authors

DOI:

https://doi.org/10.15587/2313-8416.2016.58713

Keywords:

fault tolerance, reliability of technical objects, morphological model, information technology

Abstract

It is proposed the information technology for evaluating the structural reliability of technical objects, the structure of which corresponds to one of the known types of neural networks. Structure of the information technology contains morphological model that allows for the formation and change in the structure of the object model being studied by the rules, based on the determination of the probability of failure-free operation in reliability theory

Author Biography

Оксана Степанівна Савєльєва, Odessa National Polytechnic University 1 Shevchenko ave., Odessa, Ukraine, 65044

Doctor of Technical Sciences, Associate Professor

Department of Oil, Gas and Chemical Mechanical Engineering 

References

Riabinin, I. A. (2007). Nadiezhost i bezopasnost strukturno-clozhuh system. Stankt-Petersburg, 326.

Oborskiy, G. A. (2000). Postroenie effektivnyih sistem upravleniya nadezhnostyu slozhnyih tehnicheskih sistem. Tr. Odess. politehn. un-ta, 1, 27–30.

Dillon, B., Singh, C. (1984). Inzhenernyie metodyi obespecheniya nadezhnosti sistem. Moscow: Mir, 318.

Krasnyanskiy, M. N. (2010). Nadezhnost funktsionirovaniya protsessov i apparatov mnogoassortimentnyih himicheskih proizvodstv. Moscow. Mashinostroenie, 116.

Savelyeva, O. S., Krasnozhon, O. M., Lebedeva, O. U. (2014). Using the structural fault-tolerance index in project designing. Odes’kyi Politechnichnyi Universytet. Pratsi, 2, 130–135. doi: 10.15276/opu.2.44.2014.24

Kuyundzhich, S. M. (2001). Razrabotka i analiz modeley nadezhnosti i bezopasnosti system. Moscow: Fizmatlit, 463.

Ball, M. O., Colbourn, C. J., Provan, J. S. (1995). Network reliability. Network Models, 673–762. doi: 10.1016/s0927-0507(05)80128-8

Kochkarov, A. A., Malinetskiy, G. G. (2005). Obespechenie stoykosti slozhnyih sistem. Strukturnyie aspektyi. Moscow, 32.

Shier, D. R. (1991). Network Reliability and Algebraic Structures. Oxford: Clarendon Press, 144.

Bibik, T. V., Purich, D. A., Saveleva, O. S. (2010). Otsenka setevoy nadezhnosti pri strukturnom proektirovanii slozhnyih tehnicheskih sistem. Visoki tehnologiyi v mashinobuduvanni, 1 (20). 18–21.

Saveleva, O. S. (2011). Ekspress-model nadezhnosti slozhnyih sistem v SAPR. Pratsi Odesk. politehn. un-tu, 2 (36). 174–178.

Wood, R. K. (1989). Triconnected decomposition for computingK-terminal network reliability. Networks, 19 (2), 203–220. doi: 10.1002/net.3230190203

Aboelfotoh, H. M., Colbourn, C. J. (1989). Series-Parallel Bounds for the Two-Terminal Reliability Problem. ORSA Journal on Computing, 1 (4), 209–222. doi: 10.1287/ijoc.1.4.209

Skvorcov, M. S. (2011). Metodika optimizacii nadezhnosti sistem s setevoj strukturoj. Trudy SPIIRAN, 1 (16), 231–242. Available at: http://www.szma.com/skvortsov_1.pdf

Gordeyev, V., Basenko, V., Vozgrina, G., Minkovich, E. (1992). Method and Programmer for Calculation of Large-Span Spatial Symmetrical Structures Using Personal Computer. Innovative Large Steel Structures. Concept, Design, Construction. Montreal, Canada, 627 – 639.

Colbourn, C. J. (1987). The combinatorics of network reliability. N. Y.: Oxford Univ. Press, 160.

Sekerin, A. B. (2005). Metod ocenki ustojchivosti nejronno-setevyh modelej. Jelektronnyj zhurnal «Issledovano v Rossii», 350–354. Available at: http://masters.donntu.org/2009/kita/stolyar/library/01.pdf

Saveleva, O. S. (2015). Primenenie entropiynogo pokazatelya pri podderzhke prinyatiya resheniy na etape proektirovaniya stroitelnyih konstruktsiy. VIsnik NatsIonalnogo tehnIchnogo unIversitetu «HPI», 11, 63–68.

Published

2016-01-25

Issue

Section

Technical Sciences