The dorsal root damage identifications by the longitudal distribution of the evoked potentials of spinal cord

Authors

DOI:

https://doi.org/10.15587/2313-8416.2016.60275

Keywords:

spinal cord, evoked potentials, amplitude, longitudinal distribution, deafferentation, dorsal root

Abstract

In experiments on cats we recorded somatosensory evoked potentials (SEP) of the spinal cord (SС) in response to stimulation of peripheral nerves of hindpaw in normal cases and sequential transection of the dorsal roots of lumbosacral intumescence. It is shown that the point of breaks of dorsal roots in case of SC injuries can be studied by measuring of the longitudinal distribution of its SEP. We explain the reason for the shifts of the maxima in the longitudinal distribution of the answers at segmental deafferentation

Author Biography

Олег Олегович Шугуров, Oles Honchar Dnipropetrovsk National University 72 Gagarina str., Dnipropetrovsk, Ukraine, 49050

Professor, Doctor of biological sciences

The department of general biology and aquatic bioresources

References

Qin, W., Bauman, W. A., Cardozo, C. (2010). Bone and muscle loss after spinal cord injury: organ interactions. Annals of the New York Academy of Sciences, 1211 (1), 66–84. doi: 10.1111/j.1749-6632.2010.05806.x

Chew, D. J., Leinster, V. H. L., Sakthithasan, M., Robson, L. G., Carlstedt, T., Shortland, P. J. (2008). Cell death after dorsal root injury. Neuroscience Letters, 433 (3), 231–234. doi: 10.1016/j.neulet.2008.01.012

Hu, Y., Liu, H., Luk, K. D. (2011). Time-frequency analysis of somatosensory evoked potentials for intraoperative spinal cord monitoring. Journal of Clinical Neurophysiology, 28 (5), 504–511. doi: 10.1097/wnp.0b013e318231c15c

Shugurov, О. А., Shugurov, O. O. (2006). Evoked potentials of spinal cord. Dnipropetrovsk: Sciense and Education, 319.

Regan, D., Regan, M. P. (2009). Evoked Potentials: Recording Methods. Encyclopedia of Neuroscience, 29–37. doi: 10.1016/b978-008045046-9.00317-x

Cuddon, P. A., Delauche, A. J., Hutchison, J. M. (1999). Assessment of dorsal nerve root and spinal cord dorsal horn function in clinically normal dogs by determination of cord dorsum potentials. Am. J. Vet. Res., 60 (2), 222–226.

Yanni, D. S., Ulkatan, S., Deletis, V., Barrenechea, I. J., Sen, C., Perin, N. I. (2010). Utility of neurophysiological monitoring using dorsal column mapping in intramedullary spinal cord surgery. Journal of Neurosurgery: Spine, 12 (6), 623–628. doi: 10.3171/2010.1.spine09112

Manjarrez, E., Jimenez, I., Rudomin, P. (2003). Intersegmental synchronization of spontaneous activity of dorsal horn neurons in the cat spinal cord. Exp. Brain Res., 148 (3), 401–413.

Quiroz-González, S., Segura-Alegría, B., Guadarrama-Olmos, J. C., Jiménez-Estrada, I. (2014). Cord Dorsum Potentials Evoked by Electroacupuncture Applied to the Hind Limbs of Rats. Journal of Acupuncture and Meridian Studies, 7 (1), 25–32. doi: 10.1016/j.jams.2013.06.013

Shugurov, O. O., Shugurov, O. A. (2006). The use of pre-advance averaging to improve the information content of registrations in the study of evoked potentials. Human physiol, 32 (5), 619–622.

Rudomin, P. (2009). In search of lost presynaptic inhibition. Experimental Brain Research, 196 (1), 139–151. doi: 10.1007/s00221-009-1758-9

Laumonnerie, C., Tong, Y. G., Alstermark, H., Wilson, S. I. (2015). Commissural axonal corridors instruct neuronal migration in the mouse spinal cord. Nature Communications, 6, 7028. doi: 10.1038/ncomms8028

Pinto, V., Szucs, P., Lima, D., Safronov, B. V. (2010). Multisegmental A - and C-Fiber Input to Neurons in Lamina I and the Lateral Spinal Nucleus. Journal of Neuroscience, 30 (6), 2384–2395. doi: 10.1523/jneurosci.3445-09.2010

Côté, M.-P., Detloff, M. R., Wade, R. E., Lemay, M. A., Houlé, J. D. (2012). Plasticity in ascending long propriospinal and descending supraspinal pathways in chronic cervical spinal cord injured rats. Frontiers in Physiology, 3. doi: 10.3389/fphys.2012.00330

Wall, P. D. (1994). Control of Impulse Conduction in Long Range Branches of Afferents by Increases and Decreases of Primary Afferent Depolarization in the Rat. European Journal of Neuroscience, 6 (7), 1136–1142. doi: 10.1111/j.1460-9568.1994.tb00611.x

Aggelopoulos, N. C., Chakrabarty, S., Edgley, S. A. (2008). Presynaptic control of transmission through group II muscle afferents in the midlumbar and sacral segments of the spinal cord is independent of corticospinal control. Experimental Brain Research, 187 (1), 61–70. doi: 10.1007/s00221-008-1279-y

Réthelyi, M., Szentágothai, J. (1973). Distribution and cnnections of afferent fibres in the spinal cord. Vol. 2. Springer Berlin Heidelberg, 207–252. doi: 10.1007/978-3-642-65438-1_8

Published

2016-02-26

Issue

Section

Biological sciences